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Abstract: Nowadays, the flurry of autonomous vehicles is in full swing regarding light detection
and ranging (LiDAR) and depth perception. For such visual perception, light plays an important
role. We human beings recognize and distinguish surrounding details when the eye focuses light on
the retina. For the LiDAR system, pulsed lasers are employed to measure the relevant range. Thus,
appropriate light sources with high performance are in urgent demand. Auspiciously, a revolutionary
semiconductor laser technology, namely the photonic-crystal surface-emitting laser (PCSEL), emerges
over the past two decades. PCSEL exhibits not only a symmetric beam profile with narrow beam
divergence but also a high-power operation with controllability. Therefore, it may be the holy
grail for an ultracompact time-of-flight (ToF) LiDAR system. Hereupon, comprehensive analyses
of PCSEL-relevant scientific publications and patent documents are conducted. We thereby review
the development progress of PCSEL technology. Moreover, a systematic simulation is performed,
providing real-time visualization of relevant point clouds with different beam divergence. PCSEL
technology with unprecedented merits indeed turns a new leaf and a paradigm shift in LiDAR
application is ongoing. It is believed that a lens-free and adjustment-free ultracompact apparatus in
simplicity can be expected.

Keywords: photonic-crystal surface-emitting laser; PCSEL; light detection and ranging; LiDAR

1. Introduction

Light is a vital element throughout the day, for we human beings, allowing us to
recognize surrounding things and distinguish the further details. Additionally, for machine
vision and intelligence, light detection and ranging (LiDAR) and depth perception are
nowadays experiencing a flurry of interest in autonomous vehicles, videlicet the self-driving
cars [1,2]. The expeditious needs for miniature devices with multi functionalities are in
urgent demand. For laser light sources toward the ultracompact time-of-flight (ToF) LiDAR
system, schematic illustration of various laser modules and relevant development progress,
are shown in Figure 1.

The edge-emitting laser (EEL), as a Fabry–Pérot semiconductor laser, is the most
common choice. However, laser light emission from EELs usually suffers from several un-
desirable features, such as a broad lasing spectrum, an inherent edge-emitting direction, an
asymmetric beam profile, and a large beam divergence. Thus, requiring a complicated lens
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system attempts to tackle the aforesaid drawbacks. Such a complicated lens system not only
needs fine adjustment but also leads to a bulky form factor, running counter to the minia-
turization trend of consumer electronics and devices. In 1988, the first room-temperature
laser light emission from a vertical-cavity surface-emitting laser (VCSEL) was demon-
strated, and some drawbacks of EELs can be thereby solved with the symmetric beam
profile and narrow spectrum, increasing the various applications with this kind of laser
light source [3–13]. Owing to the distinct structural design, laser light emission from a
VCSEL is perpendicular to the mounting surface with a circular beam profile, thus reducing
the demand for a complicated lens system for beam shaping. However, the requisite for
out-put beam collimation is yet to remain, due to the unsatisfactory beam divergence and
the multimodal lasing oscillation in high-power operation.
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Considering the perspective of miniaturization, ultracompact optical devices with
miscellaneous functionalities and new concepts are in the urgent stage of rapid develop-
ment to ameliorate the bulky form factor of common optical devices. Typically, traditional
optical devices, such as lenses, can focus or disperse a light beam by means of refraction.
Nevertheless, artificial structures fabricated at the micro- or nanoscale, such as photonic
crystals, can use the periodical changes of material refractive index to affect the propagation
of a light beam, imitating natural crystals that give rise to the X-ray diffraction with their
atomic lattices. Thus, with this kind of artificial structure, photonic crystals can pave
prospective ways for specific light modulation with ultracompact form factors.

Auspiciously, thanks to the monolithic integration of photonic crystals embedded in
the epitaxial structures, a revolutionary semiconductor laser technology nowadays turns
over a new leaf. With the monolithic integration, a photonic crystal can be adopted as a
lateral laser cavity, generating a photonic-crystal surface-emitting laser (PCSEL) [14,15].
Through the band-edge resonance of embedded photonic crystal, laser light emission from
a PCSEL exhibits a high-power single-mode operation with controllability. Moreover, such
a laser light emission presents a symmetric beam profile with narrow beam divergence
and spectral width [16,17]. Altogether, PCSEL is quite suitable for the LiDAR application,
enabling a lens-free and adjustment-free apparatus [18–20].

To gain a deeper understanding of the overall development progress for PCSEL
technology fronts, we first conduct comprehensive analyses of PCSEL-relevant scientific
publications after the proposed concept of photonic crystals and patent documents re-
trieved from Clarivate Analytics’ Web of Science (WoS) bibliometric database and Derwent
Innovation’s patent database, respectively [21–24]. Subsequently, we review the recent
development progress of PCSEL technology. Finally, a systematic simulation of different
beam divergence is conducted, providing real-time visualization of relevant point cloud
results. Based on the development progress in PCSEL, a paradigm shift in LiDAR ap-
plication is ongoing with this revolutionary semiconductor laser technology. Thus, it is
believed toward a lens-free and adjustment-free ultracompact apparatus in simplicity can
be expected.
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2. Analysis of PCSEL Technology Fronts

Statistical data of PCSEL-relevant scientific publications and patents were retrieved
and analyzed in this section. Hence, these analyses can offer a broad perspective on the
overall development progress of PCSEL technology fronts as well as a forecast for the
ongoing trend of practical uses.

2.1. Methodology

The scientific publications, 670 documents published before 8 April 2022, types of
which included articles, review articles, and proceeding papers, were retrieved from
Clarivate Analytics’ Web of Science (WoS) bibliometric database [23]. Exact phrases of
“photonic-crystal” and “surface-emitting” and the wildcard of laser, namely “laser*”, were
used as the search term and queried in “topic,” i.e., the union of publications’ title, abstract,
and keywords. Regarding the relevant patents, the same search term, i.e., exact phrases of
“photonic-crystal” and “surface-emitting” and the wildcard of laser, was queried in patents’
all text fields, comprising title, abstract, claims, and description, to retrieve the patents or
patent applications across all patent offices around the world, (e.g., United States Patent
and Trademark Office, China National Intellectual Property Administration, Japan Patent
Office, etc.), through Derwent Innovation’s patent database [24]. Thereby, 4609 patents or
patent applications published before 8 April 2022 were retrieved.

2.2. Overview of Relevant Publications from Web of Science (WoS)

The idea and device of PCSEL were first proposed in 1999 in the paper titled “Coherent
two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal
structure,” authored by Masahiro Imada, Susumu Noda, Alongkarn Chutinan, and Takashi
Tokuda, which was unsurprisingly the most cited research article of PCSEL (cited 570 times).
The others within the top five cited PCSEL research articles were “Ultralow-threshold elec-
trically pumped quantum-dot photonic-crystal nanocavity laser” published in 2011 (cited
320 times), “Watt-class high-power, high-beam-quality photonic-crystal lasers” in 2014 (cited
278 times), “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths” in 2008
(cited 249 times), and “Quantum cascade surface-emitting photonic crystal laser” in 2003
(cited 248 times).

Initially, PCSEL technology welcomed a progressive publication period from 1999 to
2007, during which the annual publication counts grew from 7 in 1999 to 50 in 2007, as
shown in Figure 2a. Later, a publication plateau was kept for 6 years until 2013. PCSEL has
kept its research momentum since then. The top five authors published the most in the area
of PCSEL were Susumu Noda from Kyoto University, Japan, Kent D. Choquette from the
University of Illinois, USA, Tien-Chang Lu from National Chiao Tung University, Taiwan,
Maciej Dems from the Technical University of Lodz, Poland, and Weidong Zhou from
the University of Texas at Arlington, USA, as shown in Figure 2b. Among them, S. Noda
was the most dedicated contributor who, every year, authored an average of four relevant
articles with an accumulated publication count of 89 since the very first article in 1999.

In addition, as shown in Figure 3, most of the PCSEL articles were published in the USA
(175 publications), Japan (143), China (75), Taiwan (71), England (52), and France (52), etc.
The publication rank reveals that Taiwan, whose population base is far less than the
other highly ranked, has great developing potential in the PCSEL research area and is
very competitive.
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(WoS) bibliometric database. Inset: A zoom-in view of Taiwan (blue dashed line square), whose
population base is far less than the other highly ranked, has the competitive potential in the PCSEL
research area.

2.3. Overview of Relevant Patents around the World

A total of 1540 of the retrieved 4609 patent documents were granted patents, and the other
3069 were patent applications. The grant rate of PCSEL-relevant patents (1540/3069) is lower
than the average grant rate of ~70% for all patents around the world. The 4609 documents
belonged to 1531 patent families, which means there were only 1531 inventions used to apply
for 3069 patent applications across patent offices of different countries.

As shown in Figure 4a, the relevant patent counts linearly grew from 49 in the year
2003 to 273 in 2008. This trend was like that of scientific publications. The PCSEL patenting
activity later faced a stagnant period from 2008 to 2015; however, unlike the latest slightly
downward trend of PCSEL research publications (see Figure 2a), the PCSEL-relevant annual
patent counts kept growing again in 2015, which implies that lots of practical uses of PCSEL
had been rapidly developed.
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Figure 4b shows the top 10 PCSEL-relevant patent assignees ranked by the sums of
their patents and patent applications. The concept of PCSEL was first proposed by the
Japanese, and the top four assignees were the “origin” of PCSEL, Kyoto University, and
Japanese companies including Canon, Hamamatsu, and Rohm. Accordingly, the top six
PCSEL-relevant patent application countries/regions were the United States, Japan, China,
Europe, Korea, and Taiwan, which implies that the most PCSEL-relevant inventions were
likely to be implemented in those countries.

3. Progress in PCSEL Technology

The concept of photonic crystals was independently proposed by E. Yablonovitch
and S. John in 1987 [21,22]. Afterward, this kind of artificial structure with photonic
bandgaps attracted much attention for their special dispersion. As an analogy to the
quantum mechanics of electrons in a natural crystal, a photonic crystal uses the periodical
changes in the refractive index of composed dielectric materials as an artificial crystal, and
thus exhibits a photonic band structure. As a result, for such a photonic band structure,
a photonic bandgap exists in between these bands, like the semiconductor bandgap in
solid-state physics.

Accordingly, within these bands, the transmission of light beams is strictly inhibited,
hence forming the forbidden bands. In early 1946, the enhancement effect for the spon-
taneous emission rate of a quantum system can be achieved by its environment, such
as by exploiting a microcavity [25]. Thereafter, relevant discussion on the coupling be-
tween electromagnetic fields and materials is well known as the Purcell effect, named
after E. M. Purcell. Taking advantage of these bands for light inhibition, an engineered
cavity with the reduction of corresponding mode volume can be accomplished; therefore,
a bandgap type of photonic crystal for lasing is possible. Due to the volume reduction of
such engineered micro- or nanocavity, the eventual number of modes supported by the
bandgap type of photonic crystals can be decreased, resulting in a dramatically increased
spontaneous emission coupling coefficient [26]. Thus, in 1996, relevant lasing actions in
such bandgap types of photonic crystals can be observed with an ultra-low lasing threshold,
even theoretically achieving thresholdless lasers [27,28]. Additionally, with pioneering
effects utilizing the bandgap property of such photonic crystals, many significant applica-
tions and relevant optical manipulation can be realized, which are particularly important
for the on-demand integration of on-chip light sources [29–32].
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On the other hand, due to the formation of standing waves with zero group velocity
of light at the band edges in such a photonic band structure, the resonant effect can also be
exploited to achieve a large-area coherent resonance for lasing action, enabling a higher
power operation while keeping the symmetric beam profile with narrow beam divergence
and spectral width. Subsequently, we overview the recent development of such band edge
types of photonic crystal lasers.

3.1. Operation Principle

The exploitation of band-edge resonance can give rise to a large-area coherent reso-
nance for lasing action; hence, a two-dimensional photonic crystal can be adopted as a
laser cavity, generating a lateral cavity photonic-crystal surface-emitting laser. Accordingly,
in 1999, two groups independently proposed this concept for the semiconductor lasers
embedded with two-dimensional photonic crystals as laser cavities [33,34]. As shown in
Figure 5a, M. Imada et al. presented a laser device with a triangular-lattice photonic crystal
via bonding fabrication [33]. In the proposed structure, a p-InP cladding layer and InGaAsP
multiple-quantum-well (MQW) layers serve as an active layer, namely the upper wafer
A. For another wafer, namely the bottom wafer B, an n-InP cladding layer is patterned
with a triangular-lattice photonic crystal. Finally, via the wafer fusion technique, a bonded
PCSEL device can be fabricated, thus embedding the photonic crystal near the active layer.
For such a structure, light emission from the active layer is thereby guided by the p- and
n-cladding layers, videlicet the adjoined photonic crystal, thus achieving a lasing action.
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cally and experimentally investigated with an in-plane multidirectional distributed feed-
back effect, as shown in Figure 5b [35]. Output laser light beam can be manipulated and 
coupled into specific directions. Moreover, a photonic-crystal laser device adopted with 
the band-edge mode at Γ-point enables specific radiation in a surface normal direction. 
Thus, an optimal band edge is figured out for a surface emission laser with truly coherent 
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lattice photonic crystal for lasing action is also demonstrated by M. Meier et al. in 1999, as 
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Figure 5. (a) Schematic illustration of the surface-emitting laser embedded with a 2D triangular-
lattice structure via wafer fusion technique [33]. (b) Band diagram of a 2D photonic crystal [35].
Insets: (i) Schematic illustration for the propagating directions of coupled waves at points I–IV.
(ii) Schematic illustration of defects introduced into a 2D photonic crystal. The corresponding electric
field pattern can be calculated via finite-difference time-domain (FDTD) method. (c) Schematic illus-
tration of layer structure with a two-dimensional triangular lattice and the corresponding emission
spectra from the device [34]. Two lasing peaks with different polarizations can be observed. In
addition, the spontaneous emission spectrum from the gain medium is shown with a dashed line.

In 2002, relevant lasing modes in a two-dimensional photonic crystal were theoretically
and experimentally investigated with an in-plane multidirectional distributed feedback
effect, as shown in Figure 5b [35]. Output laser light beam can be manipulated and
coupled into specific directions. Moreover, a photonic-crystal laser device adopted with
the band-edge mode at Γ-point enables specific radiation in a surface normal direction.
Thus, an optimal band edge is figured out for a surface emission laser with truly coherent
two-dimensional resonance.

It is worth mentioning that the exploitation of band-edge resonance in a triangular-
lattice photonic crystal for lasing action is also demonstrated by M. Meier et al. in 1999,
as shown in Figure 5c [34]. However, they did not conduct a further investigation for the
achievement of coherent two-dimensional resonance. Multidirectional light propagation is
not coupled to the in-plane photonic-crystal lattice structure, and thus two lasing peaks
with different polarizations can be observed. A fast and accurate computational technique,
namely the plane wave admittance method, for determining the electromagnetic modes
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in photonic structures was proposed by M. Dems et al. in 2005 as well [36]. Thereupon,
several remarkable efforts, especially for the relevant numerical simulation, are established
by M. Dems’s group, making great contributions to modeling activities [36–40].

3.2. Light-Emitting Control and Emission Wavelength Expansion

For the betterment of laser light emission, namely toward a high-power single-mode
operation with controllability, relevant research of PCSELs was thereafter shifted to the
photonic crystals with square-lattice structure. For such a square-lattice structure, the
corresponding four fundamental Bloch waves, oscillating in transverse-electric (TE) polar-
ization, cannot be directly coupled, yet the use of higher-order Bloch waves can indirectly
accomplish [41–45]. However, the employment of higher-order Bloch waves needs a large
refractive index contrast; thus, a photonic crystal embedded with air holes is necessary. In
addition, the resonance in a photonic crystal with relevant polarization and its coupled-
wave analysis is crucial as well [45–50].

Furthermore, the eventual laser light beam pattern, videlicet the far-field beam profile,
from a PCSEL device is via multidirectional coupling, radiating laser light in the surface
normal direction. The relationship between far-field beam profile and near-field electro-
magnetic field distribution can be investigated and expressed via Fourier transformation.
Thus, this transformation relationship can provide tunability and controllability for the
eventual electromagnetic field distribution. By engineering the geometry of the unit cell
structure for a photonic crystal, the corresponding electromagnetic field distribution can
thereby be modified. Accordingly, in 2001, S. Noda et al. demonstrated the polarization
mode selection in a PCSEL via unit cell structure design [44]. A common band diagram of a
square-lattice photonic crystal with a circular unit cell is shown in Figure 6a. The formation
of standing waves at the band edges in such a photonic band structure can be observed.
While changing the geometry of unit cells from circulars to ellipses, significant modification
of the corresponding electromagnetic field distribution can be acquired, paving a novel
strategy for the exact control of polarization modes, as shown in Figure 6b. With the recent
progress of metaphotonics, such a structural modification for PCSEL holds great promise
not only for the novel photonic devices manipulating corresponding light emission but
also for ultracompact optical devices in simplicity [51].
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Figure 6. (a) Band structure of a 2D photonic crystal structure with square lattice and circular unit
cell [44]. Insets: (i,ii) The corresponding electromagnetic field distributions at band edges I and II,
respectively. Red and blue areas indicate the amplitudes of corresponding magnetic fields in the
direction perpendicular to the plane. Arrows and thick black circles indicate the in-plane electric field
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vectors and the locations of lattice points, respectively. (b) Band structure of a 2D photonic crystal
structure with square lattice and elliptical unit cell [51]. Insets: (i–iv) The corresponding electro-
magnetic field distributions at band edges I to IV. Unified electromagnetic field distributions can
be observed at individual band edges. Thus, a linear polarization can be expected. (c) Miscella-
neous beam patterns generated by photonic-crystal lasers with engineered lattice points and/or
lattice phases [52]. (d) Near-field image and the corresponding spectra distributions of a photonic
crystal ring-cavity laser under the pulsed condition at room temperature [53]. Insets: (i,ii) Corre-
sponding focusing properties of a radially polarized halo-shaped beam and a radially polarized
doughnut-shaped beam, respectively. (e) Versatile doughnut-shaped beam patterns from fabricated
devices with photonic crystal structures [54]. Vector beams can be observed with different lobes by
the polarizer. Yellow arrows indicate the electric field direction.

In 2006, E. Miyai et al. demonstrated a series of PCSELs with miscellaneous engineered
lattice points and/or lattice phases, as shown in Figure 6c [52]. As a result, originating
from the asymmetry of lattice points, the symmetrical electric field will be broken while the
shape of lattice points is changed to a triangular shape. Consequently, the corresponding
surface-emitted beams can exhibit versatile lobe forms, namely diverse beam patterns
on-demand, maintaining stable single-mode oscillation.

On the other hand, the geometrical arrangement of a photonic crystal can be another
strategy. In 2012, K. Kitamura et al. presented a needle-like focus from a photonic-crystal
ring-cavity laser, as shown in Figure 6d [53]. By properly manipulating the inner and outer
radii of ring photonic crystal, the proposed ring-cavity laser can emit halo laser light beams
with radial polarization. In addition, such a laser light emission exhibits a needle-like
focus, and the corresponding spot size can shrink down to 0.4 times its wavelength with an
evaluated depth of focus (DoF) longer than 10 times its wavelength for an objective lens of
0.9 numerical aperture (NA). In 2011, S. Iwahashi et al. successfully generated doughnut-
shaped vector laser light beams, manifesting versatile higher-order polarization states from
PCSELs with designed lattice structures, as shown in Figure 6e [54]. Moreover, a systematic
analysis of the generated vector beams is conducted through the polarizer, paving a deeper
understanding of the cavity symmetry of PCSELs and the consequent effects.

With the advancements for autonomous vehicles, i.e., self-driving cars, relevant meth-
ods regarding depth perception and LiDAR application are prosperously developed. The
expeditious needs for miniature devices with multi functionalities are in urgent demand.
For laser light scanning in LiDAR application, the aforesaid strategy with an engineered
geometry of unit cell structure can be a practical solution for the monolithic integration
to achieve an on-chip modification of electromagnetic field distribution. Consequently,
a reliable technique for beam steering is developed, assembling an array of PCSELs [55].
Each PCSEL in this array can be electronically driven, thus rapidly emitting laser light
beams in distinct directions.

In 2010, Y. Kurosaka et al. demonstrated PCSELs with on-chip controllability of the
beam direction, as shown in Figure 7a [55]. Based on the pioneer efforts, the corresponding
output laser light beam from PCSELs can be determined by the resonant condition, and
thus a properly engineered geometry of the unit cell structure in a photonic crystal is
crucial [44,51–54,56,57]. Therefore, they proposed relevant artificial lasing band edges with
a photonic-crystal structure composed of both square and rectangular lattices. By manip-
ulating relative lattice constants, the corresponding laser light emission in such a PCSEL
device with composite photonic-crystal structures can achieve on-chip controllability in
a range of directions. It is worth mentioning that beam steering via resonance detuning
is proposed by M. T. Johnson et al. in 2013 [58]. Surface etched photonic crystals on
VCSEL array elements are employed for investigating the dynamic coupled-mode theory.
Thus, a complete theoretical connection between injected currents and the beam steering
direction is established. Accordingly, several surface etched photonic crystals on laser
devices are demonstrated by K. D. Choquette’s group, paving interesting insights into
miscellaneous responses and relevant manipulation of laser devices with photonic-crystal
structures [58–65].
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Figure 7. (a) Schematic illustration of device structure and the corresponding on-chip beam-steering
functionality [55]. The bottom left side of scanning electron microscope (SEM) image shows a
portion of fabricated composite photonic crystal with the square and rectangular lattice structures.
(b) Schematic illustration of the GaN-based photonic-crystal laser device and the corresponding
emission spectra above the current threshold [66]. The bottom left side of SEM images show the top
view and the cross-sectional view before and after the fabrication of air holes retained overgrowth,
respectively. As a result, the well-defined GaN/air periodic structure inside the GaN epitaxial layer
can be observed.

On the one hand, extending the lasing wavelength range provides a capacious appli-
cation field [66–68]. In 2008, H. Matsubara et al. proposed a GaN-based PCSEL, emitting
laser light beams in the blue-violet regime, as shown in Figure 7b [66]. To construct a
two-dimensional GaN/air photonic-crystal structure, a new fabrication called air holes
retained overgrowth is developed, exploiting the particular characteristics of GaN growth.
Meanwhile, this new fabrication can prevent the use of the aforesaid wafer fusion tech-
nique and the complicated etching techniques in a GaN system [33,69,70]. Consequently,
a current-driven PCSEL with a laser light emission at 406.5 nm was successfully created.
Moreover, considering a high-power PCSEL operation with narrow beam divergence, the
mastery of band-edge resonance along with engineering the geometry of the unit cell
structure is crucial [71–76]. Relevant effects during the growth of photonic-crystal air holes
are profoundly investigated by T. C. Lu’s group [71,76].

3.3. High-Power Operation with the Concept of Double-Lattice Structure

The mastery of band-edge resonance along with engineering the geometry of unit cell
structure for a PCSEL provides not only the corresponding light-emitting controllability
but also a crucial part in the high-power operation with narrow beam divergence. To
achieve a high-power operation, an air-hole-retained regrowth method is thereby devel-
oped, preventing the interface of discontinuous crystallinity while using the aforesaid
wafer fusion technique [33,77]. Regarding engineering the geometry of unit cell structure,
an asymmetric lattice-point shape is hence exploited, namely a square-lattice photonic
crystal with right-angled triangular lattice points. Moreover, a regrowth method for epitaxy
to bury the etched structure is also investigated to improve the stability of lasing oscillation,
generating a lower refractive index contrast at the interface [78]. It is worth mentioning
that a 0.2 W class PCSEL device that revolved around these engineered photonic crystals
has been commercially available since 2013 [79].

In 2014, K. Hirose et al. demonstrated a watt-class PCSEL, as shown in Figure 8a [80].
For such a PCSEL structure, the cladding layer, MQW layers, and blocking layer are grown
in sequence. Next, a p-GaAs layer is grown for preparing photonic crystals on an n-GaAs
substrate. The corresponding lattice constant of fabricated square-lattice photonic crystal
with right-angled triangular lattice points is exactly aligned with the band-edge mode at
Γ-point, emitting light from MQW layers at an accurate wavelength. Finally, the p-type
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cladding layer and contact layer are directly grown on the as-prepared photonic crystal
patterns via the air-hole-retained regrowth method based on metal–organic vapor phase
epitaxy (MOVPE). Such a regrowth method exploits the innate difference in growth rates
depending on distinct crystalline facets. As a result, the burial air holes can be retained
near the active layer. Moreover, to obtain a high-power operation, a sufficient extraction for
output light emission is necessary. Thus, the asymmetric lattice-point shapes, namely the
right-angled triangular lattice points, herein are also employed to break the symmetrical
electric field, increasing the surface-emitted beams. Consequently, with these efforts, such a
PCSEL exhibits a watt-class laser light emission, up to 1.5 W output power. While operating
with an output power of 0.5 W, the overall divergence angle is less than 0.5◦, suggesting a
marvelous beam quality.
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Figure 8. (a) Schematic illustration of device structure and the corresponding lasing characteristics
operated under room temperature pulsed conditions [77]. A watt-class laser light emission with high
beam quality can be achieved with such a photonic-crystal laser device. Insets: (i,ii) The SEM images
show the top view and the cross-sectional view before and after the burial by metal–organic chemical
vapor deposition (MOCVD) regrowth, respectively. After burial, well-defined photonic-crystal air
holes can be observed. (b) Schematic illustration for the concept of a double-lattice photonic crystal
and the corresponding lasing characteristic operated under room-temperature pulsed conditions [45].
With the adoption of such double-lattice photonic-crystal structure, remarkable 10-watt-class laser
light emission with quite narrow beam divergence can be attained. Insets: (i) Measured far-field
pattern for such a laser device operated with an injection current of 25 A. A quite narrow diver-
gence angle of less than 0.3◦ can be observed. (ii,iii) The SEM images show the top view and the
cross-sectional view before and after the MOVPE regrowth technique, respectively.

To further attain a high-power operation, namely toward a 10-watt-class laser light
emission, the lasing area in a photonic crystal should be expanded, obtaining enough
gain for light amplification. Holding a selective lasing oscillation in fundamental mode is
vital for a high-power laser light emission. However, with the existence of sufficient field
intensity around the photonic-crystal edge, a multimodal lasing oscillation usually occurs
while enlarging the photonic-crystal area. Moreover, due to the shrinkage of threshold gain
margin with an enlarged lasing area, namely an implicit threshold difference among the
fundamental mode and higher-order modes, the multimodal lasing oscillation thereby is
inevitable in an expanded conventional photonic crystal. Subsequently, the concept of the
double-lattice structure emerges to roll with the punches [45,80,81].

Thus, in 2019, M. Yoshida et al. proposed a modified photonic crystal with the concept
of double-lattice structure to overcome this challenge, as shown in Figure 8b [45]. For such
a modified photonic crystal, the double-lattice structure can provide a proper optical path
difference between the backward diffracted light beams with a phase difference of 180◦, thus
destructively interfering with these in-plane light beams. Therefore, relevant optical modes
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spread out, and the lasing area can be expanded. Moreover, this expanded lasing area
can maintain a widened threshold gain margin as well, leading to the suppressed higher-
order modes. In the proposed modified photonic crystal, the corresponding resonator area
is even increased up to 500 µmΦ. A remarkable 10-watt-class laser light emission with
quite a narrow beam divergence can be attained. The asymmetry of lattice points can be
adopted as well, paving a further optimization. In addition to the double-lattice structure,
the use of topology can be another novel way to manipulate relevant properties inside
the cavity [82–84].

Furthermore, in 2021, M. Yoshida et al. considered a PCSEL with the backside reflection
of distributed Bragg reflector (DBR) mirror, increasing the corresponding extraction and
efficiency for output light emission [85]. As a result, a 10-watt-class laser light emission can
be acquired with an extraordinary beam divergence of 0.17◦ (the 1/e2 beam width) and
0.1◦ (the full width at half maximum, FWHM). In other words, nearly diffraction-limited
beam divergence is achieved in such a 500 µmΦ resonator area.

4. Toward a Lens-Free and Adjustment-Free ToF LiDAR System

As the tendency of miniaturization in relevant optical technologies, ultracompact opti-
cal devices with miscellaneous functionalities are urgently needed. With the state-of-the-art
progress in PCSELs, such laser devices can provide higher-power and extraordinarily
narrow-divergence laser light beams while keeping a symmetric beam profile. Therefore,
based on these laser devices, prospects to ameliorate the bulky form factor of common
optical devices are in demand.

Owing to the blossom of advancements for autonomous vehicles, i.e., self-driving cars,
depth perception, and LiDAR applications are flourishing. In addition, for a ToF LiDAR
system, PCSELs can be appropriate laser light sources as well. In 2021, M. Yoshida et al.
proposed a 10-watt-class PCSEL with DBR, operating in pulsed mode with the repetition
rate and corresponding pulse width of 1 kHz and 100 ns, respectively [85]. Moreover, in
2021, R. Morita et al. introduced the design of two-dimensionally arranged gain and loss
sections, and the corresponding operation in pulsed mode can even reach astonishing
results [86]. In such a well-designed PCSEL, a relevant peak power of 20 W can be achieved
with the repetition rate and corresponding pulse width of 1 GHz and 35 ps, respectively.

Additionally, the performance trade-offs of PCSEL technology emerge with several
challenges in power scaling, modal competition, charge injection control, etc. Auspi-
ciously, with abundant efforts, these challenges can be ameliorated and conquered [15].
For real-world applications, the thermal characteristics and relevant management of laser
devices are crucial and should be concerned as well [87–92]. In 2020, M. De Zoysa et al.
conducted the relevant thermal analysis for PCSELs under continuous wave (CW) opera-
tion with heat dissipation [92]. The corresponding temperature properties for an assembled
double-lattice PCSEL in a water-cooling package with a highly thermally conductive
sub-mount are investigated, providing a practical paradigm for high-power operation.
Nowadays, artificial intelligence-assisted technology can be even adopted for the fabrica-
tion as well [93]. Thus, as shown in Figure 9, these demonstrated paradigms can promise
pavements toward a lens-free and adjustment-free ultracompact ToF LiDAR system soon.
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system [21,22,33,34,45,52,54,55,66,77,86].

4.1. Benchmark of PCSELs for ToF LiDAR System

Herein, the remarkable development progress of aforesaid PCSELs is outlined. The
relevant benchmark for a ToF LiDAR system is compared in Table 1.

Table 1. Benchmark of PCSELs for a ToF LiDAR system (designed wavelength = 940 nm).

Year 2014 [77] 2019 [45] 2021 [85] 2021 [86]

Lattice Square lattice
Isosceles right triangle

Square lattice
Double hole

Square lattice
Double hole

Square lattice
Double hole

Structure (µm) n-side up, 200 n-side up, 500 n-side up, 500 n-side up, 400 or 1000

Extra design NA NA w/p-side DBR w/loss section

Operation mode

Pulsed mode @20 ◦C
pulse width = 1 µs,

duty cycle = 1%

Pulsed mode
@200 Hz,

pulse width = 200 ns
Pulsed mode

@1 kHz,
pulse width 100 ns

Pulsed mode
@1.1 GHz,

pulse width ~ 35 ps
CW mode @20 ◦C CW mode @5–20 ◦C

Threshold
current (A)

0.216 2
2.1 NA

0.22 3.3

Slope
efficiency

(W/A)

0.73 0.4
0.8 NA

0.66 0.48

Maximum
power (W)

3.4 @5 A
(limited by driver) >10 @25 A

>10 @15 A

20 @3–4 A @1 GHz,
pulse width ~ 35 ps
300 @30 A @1 GHz,
pulse width ~ 40 ps1.5 @2.5 A 7

Divergence
angle

<1◦ <0.3◦ @10 W 0.17◦ @10 W 0.35◦

<3◦ @1.5 W NA NA NA

The significance of bold indicates relevant figure of merits (FoMs) for a ToF LiDAR system.

4.2. Real-Time Simulation and Visualisation via HELIOS

To gain a better insight into the factor of beam divergence for a LiDAR system, a systematic
simulation is thereby conducted via the Heidelberg LiDAR Operations Simulator (HELIOS),
providing real-time visualization of relevant point cloud results [94]. The simulation is set based
on a practical LiDAR system incorporated with the micro-electro-mechanical-system (MEMS)
mirror scanner and a single-photon imager, referring to the pioneering works presented by M.
Yoshida et al. in 2013 [95]. The scene involves three cars. Car 1, Car 2, and Car 3 are placed in
locations of 10 m, 17 m, and 28 m, respectively. In addition, a pedestrian in the location of 12 m
got stuck in traffic.
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The laser light source with an average power of 96 mW is adopted in the simulation.
In such a system, the pulse repetition frequency and pulse width are set as 600 kHz and
4 ns, respectively. For the attenuation terms, the atmospheric visibility is set as 23 km. In
addition, for the relevant mechanical configurations, a scanning frequency of 1.4 kHz is set
with the field of view (FoV) for the overall sensor of 45◦ by 11◦.

For a LiDAR system, beam divergence plays an important role in preserving sufficient
power density for ranging. An ideal Gaussian laser light beam will propagate and spread
out, depending on the divergence angle [96]. Thus, a laser light beam with a larger beam
divergence will result in the dilution of power density, limiting the working distance. More-
over, a larger beam divergence will inevitably generate bigger footprints on the objects,
decreasing the resolution of detection. Hereupon, a series of simulation studies varying
the beam divergence of 2◦, 1◦, 0.5◦, and 0.2◦ are conducted, providing the corresponding
intensity and depth images, as shown in Figures 10a and 10b, respectively. With a diver-
gence angle of 2◦, relevant intensity and depth images are both blurred. The pedestrian is
buried and hard to identify in both intensity and depth images. Auspiciously, the narrower
divergence angles the clearer images. As the divergence angle shrinks down to 0.5◦, clear
contours can be identified. Moreover, a shadow of a pedestrian emerges, and the relevant
details of Car 1′s rear wheel can be observed as well. While the divergence angle is down to
0.2◦, the contours of the pedestrian’s shadow and even of Car 1′s taillight can be identified.
Through this intuitive real-time visualization of relevant point cloud results, the effects of
beam divergence are very significant for the LiDAR system.
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Figure 10. Simulated point cloud results of (a) scalar field intensity and (b) corresponding depth
perception. Insets of (a): Some zoom-in details observed in the result of scalar field intensity. (i,ii)
As the beam divergence angle is shrunk down to 0.2◦, relevant details of rear tire, wheel disk, and
even the taillight of Car 1 can be identified. (iii,iv) The narrower beam divergence, the clearer the
pedestrian’s contour. Meanwhile, a pedestrian’s shadow can be observed, emerging on Car 2.

5. Conclusions

The comprehensive analyses of PCSEL-relevant scientific publications and patent
documents are conducted. Along with the progress of PCSEL technology development,
we thereby review this revolutionary semiconductor laser technology. With the blossom of
PCSEL-relevant annual patent counts in 2015, a tendency for the practical uses of PCSEL
can be observed. PCSEL can provide not only a symmetric beam profile with narrow
beam divergence but also the tunability and controllability for the eventual electromagnetic
field distribution, videlicet the far-field beam profile. In addition, while the concept of
double-lattice photonic-crystal structure is introduced, a high-power single-mode opera-
tion, up to ten- or even hundred-watt class, can be achieved. Considering the design of
two-dimensionally arranged gain and loss sections, PCSEL can operate in a pulsed mode,
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with a pulse repetition frequency and a pulse width of 1.1 GHz and 35 ps, respectively [86].
Furthermore, real-time visualization of relevant point cloud results varying the beam diver-
gence is conducted via the HELIOS, providing an intuitive way to confirm the relevant final
effects. Thus, owing to PCSEL technology with these marvelous advantages, a paradigm
shift in LiDAR application is ongoing. The prospects to ameliorate the bulky form factor of
a LiDAR system and toward a lens-free and adjustment-free ultracompact apparatus in
simplicity can be expected.
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