
Citation: Wang, P.; Nakano, T.; Bai, J.

Additive Manufacturing: Materials,

Processing, Characterization and

Applications. Crystals 2022, 12, 747.

https://doi.org/10.3390/

cryst12050747

Received: 17 May 2022

Accepted: 17 May 2022

Published: 23 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Editorial

Additive Manufacturing: Materials, Processing, Characterization
and Applications
Pan Wang 1,* , Takayoshi Nakano 2 and Jiaming Bai 3

1 Singapore Institute of Manufacturing Technology, 73 Nanyang Drive, Singapore 637662, Singapore
2 Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University,

Suita 565-0871, Japan; nakano@mat.eng.osaka-u.ac.jp
3 Department of Mechanical and Energy Engineering, Southern University of Science and Technology,

Shenzhen 518055, China; baijm@sustech.edu.cn
* Correspondence: wangp@simtech.a-star.edu.sg

The current Special Issue collected 19 original articles reporting the results of theoreti-
cal and experimental studies that provide new insights into this fascinating new generation
manufacturing process, additive manufacturing (AM). This collection is inspired by the
recent developments in this area and comprises 19 research articles from research groups
from seven different countries worldwide. Most of them focus on microstructure control
and its resultant mechanical property [1,2]. This trend is reflected in the current collection,
in which 11 articles [3–13] deal with the process–microstructure–property relationship.
Four papers [14–17] establish the model of AM process, reflecting the demand for a fun-
damental understanding of the mechanism behind AM process. Three papers [18–20],
however, discuss the lattice design and the created functional parts, which is indicative of
the growing interest of researchers in design for manufacturing [21]. One [22] paper creates
the bimetallic and evaluated its corrosion property.

Most of the articles in this collection explore the microstructure control of powder bed
fusion (PBF) AM part. Kitano et al. [3] develop a framework to determine the appropriate
process parameter range by conducting a single-track test and thermal elastoplastic analysis
in the laser powder bed fusion (L-PBF) process. Their developed framework considers de-
fects and cracks. Ikeda et al. [4] construct a process map for optimizing process parameters
and optimizing the CoCrFeNiTi-based HEAs’ fabrication condition. Gokcekaya et al. [5]
consider scan length effects on the densification and crystallographic texture of L-PBF
pure Cr, offering new insight into the L-PBF processing of metals with high ductile–brittle
transition temperature characteristics. Hibino et al. [6] demonstrate by Hastelloy-X that
it is possible to control the crystallographic textures using the L-PBF process by appropri-
ately choosing the process parameters. The mechanical properties corresponding to the
crystallographic textures can be designed and obtained. Takase et al. [7] systematically and
quantitatively investigate phase evolution of Ti-6Al-4V and residual stresses in the final
parts by considering L-PBF and electron beam (EB) PBF and their process parameters.

Based on Hunt’s columnar-to-equiaxed transition (CET) criterion, columnar grains
preferably form in the solidification front of a high-temperature gradient (G). However,
Miyata et al. [8] report the opposite tendency for CET in the solidification microstructure.
They study EB-PBF stainless steels and suggest that solidification microstructures formed
in the EB-PBF process are intricately related to various factors such as temperature gradient,
solidification rate, and flow velocity.

Some other researchers tried to fabricate new materials by modifying the powder
materials: Guo et al. [9] prove a strategy to remove oxides in L-PBF builds a Mo-based
composite using acid-treated carbon nanotubes as a carbon source and H2 as reduction.
The feedstock, CNT/Mo composite particles, is fabricated from a freeze-dried pulsated
orifice ejection method.
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On the other hand, post-processing is also essential and has been investigated in
the current collection. Pereira et al. [10] propose new customized heat treatments for
L-PBF parts in IN718 alloy to achieve its best mechanical properties. Liu et al. [11] clarify
the effect of annealing on the microstructure evolution of Al–12%Si alloy fabricated by
the L-PBF process and rationalize the change in anisotropic tensile properties during the
annealing at various temperatures. Cho et al. [12] perform a two-step heat treatment on
EB-PBF β-containing TiAl alloy rods and evaluate its microstructure evolution and high-
temperature tensile property. It should be highlighted that this resultant microstructure
in its final property should not only be investigated experimentally, and Zeng et al. [13]
perform molecular dynamics simulations to investigate the mechanical deformation of
cellular structures in the L-PBF of aluminum.

The fundamental understanding of the mechanism behind AM process is critical
to predicate the forming part. Therefore, the researchers also pay attention to this field.
Li et al. [14] establish a 3D model to accurately simulate the internal and external powder
stream characteristics of the coaxial discrete three-beam nozzle for laser direct energy
deposition (L-DED). Li et al. [15] also prove that optical signals can simultaneously reflect
the deposition height and width in L-DED. In addition, they establish a laser reflection
model to explain the correlation between reflected laser and accumulated deposition height.
Additionally, Liu et al. [16] derive some important analytical expressions of the geometric
characteristics of the powder stream in L-DED. Shcherbakov et al. [17] develop a computer
model for investigating the processes of heat and mass transfer under the influence of
concentrated energy sources on materials.

AM should not only just be considered as a forming process, but should also open
design freedom for lightweight structures and lattices because of the layer-by-layer feature.
Therefore, some novel structures can be fabricated. Ikeo et al. [18] provide a novel 3D puzzle
structure by arranging the powder and solid parts and creating it in the AM process. The
3D puzzle structure has an anisotropic Young’s modulus, making it suitable for bioimplants.
On the other hand, through EB-PBF and subsequent heat treatment, Ikeo et al. [19] also
design a novel powder/solid composite with a uniaxially anisotropic and hierarchical
structure. Santiago et al. [20] comprehensively analyze the mechanical property and
dimensional accuracy of carbon fiber PEEK lattice structures fabricated by fused filament
fabrication with high-temperature support.

In addition to the abovementioned progress, AM can also produce bimetallics for
better properties with a combination of the benefits of both metals. Therefore, it has become
more prevalent in recent years. For example, Hu et al. [22] fabricated bimetallics by wire-arc
additive manufacturing and studied their microstructure and corrosion resistance.

Reflecting from the contents of the collection, the feedstock’s preparation and charac-
terization, microstructure control by AM process and post-heat treatment, computational
studies of the interaction of powder and energy beam and its functional part design and fab-
rication provide new, interesting data about AM. These works advance the understanding
of the state of the art in the AM process. We expect that the current collection will stimulate
the idea exchange, encourage the concept development and theoretical investigations of
various classes of AM process and its feedstocks, as well as motivate newcomers to initiate
exciting research in AM domain.
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