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Abstract: Four pincer-type Co (II) complexes of the 2,4-bis (3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-
1,3,5-triazine ligand (L) were evaluated for their cytotoxic activities against lung and breast cancer
cell lines using cell viability assay. The X-ray single crystal structure of [Co(L)(H2O)2Br]Br (1)
confirmed the pincer coordination behavior of the ligand L as an N-tridentate chelate. The hexa-
coordination environment of Co (II) is completed by one bromide ion completing the equatorial
plane of the octahedral structure and two trans water molecules at the axial positions. It crystallized
in the monoclinic crystal system and P21/m space group with crystal parameters of a = 11.3170(10)
Å, b = 7.4613(7) Å, c = 12.6917(12) Å and β = 95.927(3)◦. Based on Hirshfeld analysis, the most
dominant contacts are H. . . H (48.8%), Br. . . H (17.6%), H. . . C (11.2%) and O. . . H (10.1%), where the
Br. . . H interactions are the most significant. The cytotoxic evaluation of the studied systems indicated
that complex [Co(L)(NO3)2] (4) has the highest activity against lung (A-549) and breast (MCF-7) cell
lines. In contrast, complex [Co(L)(H2O)3](ClO4)2.H2O(3) has the lowest cytotoxic activity against
both cell lines.

Keywords: cobalt (II); pincer; bis-pyrazol-s-triazine; Hirshfeld; cytotoxicity; breast and lung carcinoma

1. Introduction

s-Triazine and its derivatives are key heterocyclic compounds due to their remarkable
chemical behavior and high biological activities. These compounds are associated with
interesting pharmaceutical applications, due to their antimicrobial [1–5], anticancer [6–9]
and antiviral activities [10]. For example, s-triazine aminobenzoic acid derivatives were
found to exhibit promising antimicrobial activity [11]. They also showed useful assets
in many other applications, such as the fabric, plastic, and rubber industries, and also as
pesticides, dyestuffs, optical decolorizes, and explosives [12].

The coordinating capability of multidentate s-triazine ligands through nitrogen donor
atoms allows the formation of supramolecular associations which possess valuable photo-
sensitive and electrical properties [13]. On the other hand, the concern with metal-based
therapy has received increasing attention with respect to efficient schemes in the design
of repository, slow-release, or long-acting drugs [14]. In this regard, many organometallic
complexes of triazine with different transition metals exerting numerous and sole biological,
chemical, and physical properties have been synthesized [15,16]. It is well known that
many transition metal complexes have promising biological properties [17–22].

2,4-Bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine (L, Figure 1), is a pow-
erful N-pincer chelator [23–27] which is used to synthesize many discrete and polymeric
metal (II) complexes via a self-assembly technique. Cobalt (II) complexes have well-known
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antimicrobial and anticancer activities [28–31], especially those containing N-donor ligands.
Recently, we reported the synthesis and antimicrobial evaluation of some Co (II) complexes
with the bis-pyrazolyl-s-triazine ligand (L) [32]. In continuation to this study, a new Co (II)
complex with the same ligand was synthesized and its structural aspects were analyzed
using single-crystal X-ray diffraction and Hirshfeld analysis. The main goal of this study is
to shed light on the possible biological applications of these Co (II) complexes as anticancer
agents.
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Figure 1. Structure of the ligand (L).

2. Materials and Methods

Chemicals and instrumentation, as well as the single-crystal X-ray structure measure-
ment details [33–37], are presented in the Supplementary Materials. Synthesis and NMR
characterizations of L are described in Figure S1 (Supplementary Materials).

2.1. Synthesis of Co (II) Complexes

Synthesis of the [Co(L)(H2O)2Br] Br complex (1) was performed by mixing 10 mL
methanolic solution of L (~0.299 g, 1 mmol) with Co(NO3)2.6H2O (0.291 g, 1 mmol) in 5 mL
methanol followed by the addition of 1 mL of saturated KBr aqueous solution. After five
days, pink block crystals of 1 were obtained.

Yield: C14H21Br2CoN7O3 (1) 73%. Anal. Calc. C, 30.35; H, 3.82; N, 17.69; Br, 28.84;
Co, 10.64%. Found: C, 30.13; H, 3.73; N, 17.55; Br, 28.68; Co, 10.49. FTIR (KBr, cm−1):
3385 (υO-H), 3209 (υO-H), 3079 (υC-H), 1620(υC = N), 1573(Sh; υC = N), 1545(υC = C), (Figure S2,
Supplementary data).

Syntheses of [Co(L)(H2O)2Cl]Cl; (2), [Co(L)(H2O)3](ClO4)2.H2O, (3) and [Co(L)(NO3)2];
(4) complexes were performed using a self-assembly technique, as reported in our previous
study [32].

2.2. Cytotoxic Activity Determination

The cytotoxic activity of L and complexes 1–4 against lung (A-549) and breast (MCF-7)
cancer cell lines was determined. The details of the cytotoxicity determinations are de-
scribed in Method S1 (Supplementary data).

3. Results and Discussion
3.1. Structure Description of [Co(L)(H2O)2Br]Br Complex; (1)

The pincer structure of complex 1 was confirmed by determining its single-crystal
X-ray structure (Figure 2). The crystal parameters are a = 11.3170(10) Å, b = 7.4613(7) Å,
c = 12.6917(12) Å and β = 95.927(3)◦ (Table 1). Hence, the complex had crystallized in the
monoclinic crystal system. The unit cell volume was 1065.95(17) Å3 and there were two
compounds of the formula [Co(L)(H2O)2Br]Br per unit cell. The complex crystallized in
the centrosymmetric P21/m space group with a mirror plane passing horizontally through
the skeleton of the organic ligand, Br¯ and Co (II) ion. Hence, the asymmetric formula of
this complex is half one [Co(L)(H2O)2Br]Br unit.
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Figure 2. X-ray structure of 1. Symmetry code for O1# is x, 1.5 − y, z.

Table 1. Crystal data and refinement details of 1.

CCDC 2154990

Empirical formula C14H21Br2CoN7O3
Formula weight 554.13 g/mol

Temperature 293(2) K
Wavelength 0.71073 Å

Crystal system Monoclinic
Space group P21/m

Unit cell dimensions a = 11.3170(10) Å α = 90◦

b = 7.4613(7) Å β = 95.927(3)◦

c = 12.6917(12) Å γ = 90◦

Volume 1065.95(17) Å3

Z 2
Density (calculated) 1.726 g/cm3

Absorption coefficient 4.582 mm−1

F(000) 550
Theta range for data collection 3.17 to 28.33◦

Index ranges −15 ≤ h ≤15, −9 ≤ k ≤9, −16 ≤ l ≤16
Reflections collected 24,040

Independent reflections 2843 [R(int) = 0.0445]
Completeness to theta = 28.33◦ 99.60%

Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 2843/0/161
Goodness-of-fit on F2 1.024

Final R indices [I > 2sigma(I)] R1 = 0.0440, wR2 = 0.1168
R indices (all data) R1 = 0.0687, wR2 = 0.1305

Largest diff. peak and hole 0.572 and −1.102

The X-ray structure revealed the pincer coordination behavior of the s-triazine ligand
(L). It acts as a tridentate N-chelate coordinated to the Co (II) ion via three Co–N bonds with
two nitrogen atoms from the pyrazolyl moieties and one nitrogen from the s-triazine core.
The corresponding Co–N distances are 2.211(5), 2.226(4), and 2.059(4) Å for Co1–N1, Co1–
N7, and Co1–N5 bonds, respectively. As a general trend in similar s-triazine complexes [32],
the Co–N (triazine) is shorter than the Co–N (pyrazole) bonds (Table 2). The bite angles
of the N-chelate are 73.62(17) and 73.11(17) for N5–Co1–N1 and N5–Co1–N7, respectively,
whereas the N1–Co1–N7 bond angle is 146.73(16). The coordination sphere of Co (II) is
completed by two interactions with two symmetrically related water molecules at the
axial positions and an interaction with one bromide ion in the equatorial plane, which is
located at a trans position to the Co–N (triazine) bond. The Co1-O1 and Co1-Br1 bond
distances are 2.063(3) and 2.5261(8) Å, respectively. The structure of this cationic complex is
completed by another bromide anion (Br2) in the outer sphere. Hence, the coordination
geometry of the Co (II) could be described as a distorted octahedral. In the structurally



Crystals 2022, 12, 741 4 of 10

related [Co(L)(H2O)2Cl]Cl, the Co–N distances are slightly longer than the corresponding
values found in the bromide complex (Table 2). In both structures, the Co–O bond distances
are comparable, and of course, the Co–Cl bond in the previously reported structure is
shorter than the corresponding value found in the [Co(L)(H2O)2Br]Br complex.

Table 2. Selected bond distances and angles for 1 and 2.

Bond Distance Distance a Bond Distance Distance a

Br1–Co1 2.5261(8) 2.388(9) Co1–O1# 2.063(3) 2.068(2)
Co1–N5 2.059(4) 2.095(3) Co1–N1 2.211(5) 2.218(3)
Co1–O1 2.063(3) 2.068(2) Co1–N7 2.226(4) 2.238(3)

Bond Angle Angle Bond Angle Angle
N5–Co1–O1 91.42(7) 91.18(6) N1–Co1–N7 146.73(16) 146.38(11)
N5–Co1–O1# 91.42(7) 91.18(6) N5–Co1–Br1 178.34(13) 178.30(8)
O1–Co1–O1 177.14(15) 177.62(11) O1–Co1–Br1 88.58(7) 88.82(6)
N5–Co1–N1 73.62(17) 73.01(10) N1–Co1–Br1 104.72(12) 108.69(8)
O1–Co1–N1 90.22(8) 90.21(6) N7–Co1–Br1 108.55(12) 104.93(8)
N5–Co1–N7 73.11(17) 73.37(10)
O1–Co1–N7 90.59(8) 90.47(6)

a The corresponding values for the chloro complex (2).

The supramolecular structure of [Co(L)(H2O)2Br]Br is controlled by strong O–H. . . Br
hydrogen bonds and weak C–H. . . Br interactions (Figure 3). A list of the hydrogen bond
parameters is presented in Table 3. The perfectly planar ligand backbone is arranged
in a highly symmetric fashion in a way which connects the polar regions comprising
the coordinated water molecules and bromide anions with the complex units along the
crystallographic b-direction via strong O1–H1A...Br2 and O1–H1B...Br1 hydrogen bonds
in addition to the weak C3–H3A...Br2 interaction. On the other hand, the other two C9–
H9A...Br2 and C12–H12...Br2 interactions connected the less polar part (organic ligand) of
the complex along the a-direction. For simplicity, these weak interactions were omitted
from the packing scheme; hence, the supramolecular structure of this complex could be
described as 1D hydrogen bonding polymer extended through the b-direction.
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O–H. . . Br hydrogen bonds along the ab plane. All weak C–H. . . Br interactions were omitted from the
packing scheme for better clarity.
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Table 3. Hydrogen bond parameters in the [Co(L)(H2O)2Br]Br complex.

Atoms D-H (Å) H. . . A (Å) D. . . A (Å) D-H. . . A (º) Symm. Code

O1–H1A...Br2 0.86 2.42 3.241(3) 159
O1–H1B...Br1 0.86 2.49 3.313(3) 162 1 − x,−1/2 + y,1 − z
C3–H3A...Br2 0.93 2.86 3.768(7) 167 1 − x,1/2 + y,−z
C9–H9A...Br2 0.96 2.77 3.709(10) 165 2 − x,1/2 + y,−z
C12–H12...Br2 0.93 2.92 3.809(7) 160 2 − x,1/2 + y,1 − z

3.2. Hirshfeld Analysis

Decomposition of the different intermolecular contacts with the aid of Hirshfeld
analysis is important to further inspect the molecular packing at both qualitative and
quantitative levels. Using the Crystal Explorer 17.5 program [38], the contacts involved
in the molecular packing and their percentages are presented in Figure 4. It is clear that
the most dominant contacts are H. . . H (48.8%), Br. . . H (17.6%), H. . . C (11.2%) and O. . . H
(10.1%). The majority of these contacts (except the Br. . . H) is generally weak and appeared
as blue or white regions in the dnorm map (Figure S3; Supplementary data). The blue and
white colored area represent contacts with longer distance than the vdWs radii sum of the
interacting atoms [39–43].
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On the other hand, the Br. . . H contacts appeared as red regions, indicating a shorter
distance than the vdWs sum of the Br and H atoms (Figure 5). Additionally, the Br. . . H
contacts appeared as sharp spikes in the fingerprint plot revealed short distance atom-atom
interactions. The Br2. . . H1A (2.307 Å), Br1. . . H1B (2.368 Å), Br2. . . H13 (2.655Å), Br2. . . H9A
(2.708 Å), and Br2. . . H12 (2.781 Å) contacts are the most important.

3.3. Cytotoxic Activity

The free ligand L and the four Co (II) complexes were examined for their cytotoxic
activities against lung (A-549) and breast (MCF-7) cancer cell lines. The detailed cytotoxicity
results using cell viability assay for the studied compounds against these cell lines are
given in Tables S1–S10 (Supplementary data). In addition, the effect of concentration of
the studied compounds on the cell viability of A-549 cell line is presented graphically in
Figure 6. Evaluation of the cytotoxic activity of the studied compounds was performed
by detecting the IC50 value, which is the concentration required to cause toxic effects
in 50% of intact cells. The cytotoxicity activity of the free L against the lung A-549 cell
line is 1245.37 ± 45.57 µM. For complexes 1–4, the IC50 values were determined to be
367.60 ± 14.74, 486.25 ± 20.27, 694.35 ± 25.87, and 353.13 ± 13.04 µM, respectively. The
order of the cytotoxic activity is 4 > 1 > 2 > 3 > L. As a result, the nitrato complex 4 has the
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best cytotoxic activity against lung carcinoma. Additionally, the bromo complex (1) has
better cytotoxic activity than the chloro compound (2).
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On the other hand, the effect of concentration of the studied compounds on the cell
viability of MCF-7 cell line is presented graphically in Figure 7. The order of the cytotoxic
activity of the studied compounds was found to be 4 > 2 > 1 > 3 > L. The IC50 values
of the studied complexes indicated that complex 4 (IC50 = 431.23 ± 20.28 µM) slightly
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outperformed complexes 1 (439.27 ± 19.76 µM) and 2 (IC50 = 438.79 ± 19.17 µM) against
the MCF-7 cell line. The IC50 value is the least for complex 3 (674.40 ± 30.85 µM) and
the free L ligand (940.77 ± 54.22 µM). In both cell lines, the perchlorate complex has
the worst cytotoxic activity. Notably, all the studied complexes comprised the [Co (L)]
unit but differed in the structure of the small coordinating groups and the anion as well.
These differences could have a significant impact on the cytotoxic activity of the studied
complexes. For cisplatin as a positive control and in the same experimental conditions,
the IC50 values against the A-549 and MCF-7 cell lines were determined to be 25.01 ± 2.29
and 15.31 ± 1.76 µM, respectively. Hence, the cytotoxic activity of the studied Co (II)
complexes was considered weak against both cell lines. Notably, the free salts CoCl2
and Co(NO3)2.6H2O have no or very weak cytotoxic activities against both cell lines
(Tables S11–S14, Supplementary data).
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4. Conclusions

The X-ray single-crystal structure of the new [Co(L)(H2O)2Br]Br complex was deter-
mined and its molecular and supramolecular structural aspects have been discussed. It
comprised a hexa-coordinated Co (II) ion with one L ligand as a tridentate pincer chelate,
two trans water molecules at the axial positions, and one equatorial bromide ion. The
cationic [Co(L)(H2O)2Br]+ inner sphere was neutralized by one free uncoordinated bromide
ion in the outer sphere. Its supramolecular structure was controlled by H. . . H (48.8%),
Br. . . H (17.6%), H. . . C (11.2%), and O. . . H (10.1%) intermolecular interactions, where the
Br. . . H contacts are the most important. Additionally, the cytotoxic activity of four struc-
turally related Co (II) complexes of the pincer ligand L was evaluated against lung (A-549)
and breast (MCF-7) cell lines. The results indicated the variation in the cytotoxic activity of
the studied Co (II) complexes depending on the small coordinating group and the nature of
the anion. Complex 4 had the best activity against breast cancer (MCF-7) and lung (A-549)
cancer cell lines, where its cytotoxic activity was two and three times better than the free
ligand (L), respectively.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12050741/s1. Physicochemical characterizations; crystal
structure determination; synthesis of L; synthesis of complexes 2–4; Method S1. Evaluation of
cytotoxic effects; Figure S1. 1H and 13C NMR spectra of the ligand (L); Figure S2. FTIR spectra of

https://www.mdpi.com/article/10.3390/cryst12050741/s1
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complex 1; Figure S3. Hirshfeld maps for the [Co(L)(H2O)2Br]Br complex; Table S1. Evaluation of
the cytotoxicity of 1 against the A-549 cell line. Table S2. Evaluation of the cytotoxicity of 2 against
the A-549 cell line; Table S3. Evaluation of the cytotoxicity of 3 against the A-549 cell line; Table S4.
Evaluation of the cytotoxicity of 4 against the A-549 cell line; Table S5. Evaluation of the cytotoxicity
of L against the A-549 cell line. Table S6; Evaluation of the cytotoxicity of 1 against the MCF-7 cell line;
Table S7. Evaluation of the cytotoxicity of 2 against the MCF-7 cell line; Table S8. Evaluation of the
cytotoxicity of 3 against the MCF-7 cell line; Table S9. Evaluation of the cytotoxicity of 4 against the
MCF-7 cell line; Table S10. Evaluation of the cytotoxicity of L against the MCF-7 cell line; Table S11.
Evaluation of the cytotoxicity of CoCl2 against the A-549 cell line; Table S12. Evaluation of the
cytotoxicity of Co(NO3)2.6H2O against the A-549 cell line; Table S13. Evaluation of the cytotoxicity of
CoCl2 against the MCF-7 cell line; Table S14. Evaluation of the cytotoxicity of Co(NO3)2.6H2O against
the MCF-7 cell line. Examples can be found at http://www.mdpi.com/2076-2615/6/6/40/htm
(accessed on 13 May 2022). References [44,45] are cited in the supplementary materials.
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