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Abstract: To facilitate measuring crystal sizes during batch crystallization at high-solid concentrations
by using an invasive imaging system, an in situ imaging measurement strategy based on edge
detection and superpixel is proposed for the ambiguous boundary problem of large amounts of
crystals. Firstly, an image filtering is employed to cope with image degradation caused by noise
disturbance and suspension turbulence in the crystallizer. Subsequently, an image segmentation
method is developed by utilizing improved edge detection and superpixel, which can be easily
performed for crystal extraction. Accordingly, crystal size measurement can be developed for
evaluation of the crystal size distribution. The experiment results on α-form L-glutamic acid present
the effectiveness of the proposed method.

Keywords: crystal; image processing; high-solid concentrations; superpixel; edge detection

1. Introduction

Crystallization has been widely applied across the majority of solid product industries,
including the pharmaceutical, food, microelectronics and materials industries [1]. For
maintaining a desired quality of the crystal products, it is necessary to monitor crystal
growth characterization for automation control and operation optimization [2–4]. The
crystal size distribution (CSD) and particle shape (PS) as the key properties of crystal
products have a considerable impact on final product quality as well as the downstream
processes [5,6].

With the rapid progress in high-speed digital imaging sensors, there is enormous
potential for using on-line imaging techniques to monitor crystal features during crystal-
lization processes [7–10]. The on-line imaging system of crystallization can be divided
into two major classes: invasive system and non-invasive system [5,11–13]. The invasive
systems with the probe-like design can be inserted into the solution to capture high-quality
images, whereas the non-invasive systems are placed outside the reactor to avoid the
contamination of the camera lens. In early research, Wilkinson et al. [14] developed an
on-line imaging instruction for crystallization monitoring instead of using off-line mea-
surement instruments, which were not capable of real-time particle measurement. In the
last decade, on-line, image-processing strategies have become popular for product quality
with desired characteristics including CSD and PS in an in-reactor environment [11,15,16].
Researchers have attempted to develop the advanced crystal segmentation methods, which
are equally important for improving the robustness of crystal measurement. Calderon
De Anda et al. [15] proposed an effective multi-scale segmentation method for extracting
crystal blocks from the ambiguous background of an on-line image. Cardona et al. [6] pro-
posed an advanced image-processing framework based on filtering and edge detection to
extract size and shape information from in-line images with Mettler Toledo Particle Vision
and Measurement (PVM). In addition to the abovementioned edge detection, the image
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segmentation methods based on thresholding were also employed for crystal images [16].
Zhang et al. [17] presented a novel image-processing technique based on combining wavelet
transform and fuzzy C-means clustering for crystal image segmentation, and the crystal
size distribution was described by the Weibull density probability function. Gao et al. [18]
utilized a deep-learning method based on Mask R-CNN to detect L-glutamic acid (LGA)
crystals and to measure the sizes of crystals. However, these algorithms did not take
into account high-concentration crystallization, resulting in the occurrence of overlapping
particles especially in industry production. To deal with the overlap of needle-like particles,
Larsen et al. [19] proposed a SHARC (segmentation for high-aspect-ratio crystals) algorithm
to extract the crystals effectively for particle-size distribution information from images of
high-concentration slurry. Ferreira et al. [20] developed a novel image-analysis technique
that combined discriminant factorial analysis to assess the agglomeration of crystals. In our
previous work [21], an image-based analysis technology was presented for segmentation of
overlapping needle-like crystals. However, crystal segmentation at higher concentration
can be still confronted with a number of bottlenecks [2], in particular for poor-imaging
conditions and large amounts of overlapped crystals with ambiguous boundaries during
crystallization. Most of the previous work focused on needle-like crystals. The proposed
method can be used to segment prismatic and blocky crystals.

In this work, considering the fact that a mass of crystals are overlapping in a stirred
suspension at high-solid concentrations, an image analysis methodology based on super-
pixel segmentation is proposed for crystal-size distribution. This systematic, image-analysis
method includes primarily image filtering, image segmentation and crystal size measure-
ment. The raw images are initially recorded with the invasive imaging instrument, which
can avoid the presence of out-of-focus crystals. Furthermore, for the on-line crystal im-
ages influenced by noise disturbance and solution turbulence, image preprocessing is
used with image filtering. Then, the valid crystals are extracted by using an effective,
image-segmentation method based on Canny edge and superpixel for multiple touching
particles. In addition, the crystal sizes can be effectively calculated after size calibration.
Finally, experiments on α-form LGA demonstrate the effectiveness of the proposed image
measurement method.

2. Experimental Setup
2.1. Material

L-glutamic acid (LGA), C5H9NO4, was used for this work. The LGA crystadls are
known to have two shapes [22]: the prismatic α and needle-like β forms. Due to the needle-
like β-form being prone to breakage, α-form LGA crystals were considered to crystallize for
demonstrating size measurement of prismatic crystals by the imaging analysis technique,
as shown in Figure 1. It is seen that the α-form crystal is prismatic in the schematic
representation. The LGA crystals with a purity of 99% were taken as the solute, and
distilled water was used as the solvent in this experiment.
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2.2. Experimental Setup

Experiments were carried out with a 2 L glass jacketed crystallizer, a PTFE four-
paddle agitator and a Pt100 temperature probe. To control the temperature, a Julabo-CF41
thermostatic circulator (JULABO, Seelbach, Germany) was used, as shown in Figure 2.
In this study, an invasive imaging system (2D vision probe, PharmaVision Nanosonic
Technology Ltd., Qingdao, China.) was able to record 60 images per second with a pixel
resolution of 1600 × 1200. The camera probe was situated into the suspension to avoid
reactor-wall effects on the images and to allow the imaging regions of crystals to be fixed to
reduce out-of-focus visualizations. It was set to capture two images per second. In addition,
a microscope device (Leica DM 2500, Leica Microsystems, Wetzlar, Germany) with LAS
software (LAS v4.4, Leica Microsystems, Wetzlar, Germany) was employed to measure the
crystal sizes for effectiveness verification. In the verification experiment, a batch of crystal
products was firstly measured using the off-line microscope, and subsequently, the same
batch was put into the stirred reactor. The on-line images were recorded and analyzed
immediately in the first fifteen seconds with the in situ method.
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The α-form LGA crystals (Sigma Chemicals, St Louis, MO, USA) were taken from
the solution in a stirred reactor. According to the dissolution characteristics of LGA in
water, the measurement range of solution concentration was set as 9.0–39.0 g/L, and the
temperature range was 75–15 ◦C. In the experiment, 1.2 L LGA solution was injected into
the 2 L reactor, and the agitator stirred at 200 rpm. Solution concentration was measured
with ATR-FTIR spectrometer (Mettler Toledo Ltd., Zurich, Switzerland). The solution with
a concentration of 33 g/L was heated to 75 ◦C to dissolve all LGA crystals. The solution
was then linearly cooled down to the temperature 35 ◦C at a constant speed of 1 ◦C/min.

3. Crystal Image Processing

The goal of the crystal image processing methodology was to measure the crystal sizes
based on the crystal images. Image segmentation is a key step in separating the crystals and
the background for size measurement. The Canny edge detection method can result in an
excellent performance for crystal images [15]. However, Canny edge detection method for
crystal images at high-solid concentrations may face a major problem in that it is difficult to
segment overlapping crystals. Therefore, considering that different crystals have different
grayscale or texture, a simple linear iterative clustering (SLIC) method [23] as an efficient
and simple superpixel algorithm was introduced to generate compact and nearly uniform
superpixels. The steps of improved segmentation based on Canny detection and superpixel
are as shown in Figure 3.
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3.1. Image Filtering

Noise is the important interference for the analysis of crystal image. For this reason,
bilateral filtering [24] is popular filtering technique used to eliminate the noise in crystal
images. The filtering process is as follows:

Firstly, the noise model of image is expressed by

g(x, y) = f (x, y) + n(x, y) (1)

where f (x, y) is the denoising image, n(x, y) is the noise and g(x, y) is the raw image.
The bilateral filter makes use of the local weighted average method to obtain the

restored image pixel value f (x, y) as

f (x, y) =

∑
(i,j)∈Sx,y

w(i, j)g(i, j)

∑
(i,j)∈Sx,y

w(i, j)
(2)

where Sx,y represents the neighborhood (size: (2N + 1)× (2N + 1)) of the central point
(x, y), (i, j) ∈ Sx,y. For each point g(i, j) within the neighborhood, w(i, j) is defined by

w(i, j) = e
−( |i−x|2+|j−y|2

2σ2
S

+
|g(i,j)−g(x,y)|2

2σ2
r

)
(3)

It is noted that N denotes the neighborhood size, σS denotes the spatial domain factor
and σr denotes the value domain factor. In this work, N = 5, σS = 3 and σr = 0.1.

3.2. Improved Canny Segmentation

For an image f (x, y), the smoothed image g(x, y) is obtained with an appropriate
Gaussian filter h(x, y, σ) as

g(x, y) = h(x, y, σ) ∗ f (x, y) (4)

where h(x, y, σ) = 1
2πσ2 e−

x2+y2
2σ and σ is the Gaussian filter parameter.

The gradient magnitude M[x, y] and gradient direction θ[x, y] at the pixel (x, y) are{
M[x, y] =

√
Gx(x, y)2 + Gy(x, y)2

θ[x, y] = arctan(Gx(x, y)/Gy(x, y))
(5)

where Gx and Gy are the gradient arrays defined as
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{
Gx = [ f (x + 1, y)− f (x, y) + f (x + 1, y + 1)− f (x, y + 1)]/2
Gy = [ f (x, y + 1)− f (x, y) + f (x + 1, y + 1)− f (x + 1, y)]/2

(6)

If the gradient magnitude M[x, y] at the pixel (x, y) is less than those at its two neigh-
bors in the same gradient direction θ[x, y], the pixel p(x, y) is marked as a candidate edge
point. Otherwise, the pixel p(x, y) is discarded. On this basis, the final edge points T(x, y)
are further defined by high threshold TH and low threshold TL, (TL= 0.4TH). The strong
edge points are defined with TH, and the weak edge points are defined with TL. Then, the
contour edges are obtained for crystal projection image. Note that TH can be calculated
using Otsu threshold method [25] as

TH = argmax
t

S1(t)S2(t)(U1(t)−U2(t))
2 (7)

where t denotes the threshold, S1(t) is the number of gray values greater than the threshold
t, S2(t) is the number of gray values less than the threshold t, U1(t) is the mean gray values
greater than the threshold t and U2(t) is the mean gray values less than the threshold t.

After edge detection, morphological closing is used to close the breaks of Canny edges
before region filling. The rest of the edges can be easily removed by morphological opening.

3.3. Improved SLIC Superpixel Segmentation

SLIC superpixel segmentation is used to generate superpixel blocks, which will be
merged with cluster algorithm to obtain extraction results of a crystal image. The main idea
of SLIC superpixel segmentation is to extract the five-dimensional feature vector of CIELAB
color and spatial coordinates, construct the similarity measurement standard of feature
vector and then to perform local clustering of image pixels [23]. The CIELAB color space is
used to measure spatial distance with color sense differences, which is convenient for color
clustering. However, the crystal images are generally gray, so the grayscale is used instead
of CIELAB color features. SLIC algorithm cannot segment the ideal superpixel blocks well
when the target and background contain different texture information but similar color.
Due to the abundant texture information in crystal images, texture feature has an important
influence on the segmentation results. Therefore, texture information is considered as a
SLIC segmentation information.

Suppose that the image with N pixels is pre-divided into K superpixels; then, the size of
each superpixel is N/K. The distance of adjacent seed points is approximately S =

√
N/K.

The superpixel cluster centers Cj = [gj, xj, yj, tj]
T with j = [1, K] at regular grid intervals

S. g denotes the grayscale of a pixel; x and y denote the row and column coordinates of a
pixel, respectively; and t denotes the texture value of a pixel for local image entropy [21]
with the region 2S× 2S as

t = −
2S

∑
m=0

2S

∑
n=0

P(m, n|∆x, ∆y) log2 P(m, n|∆x, ∆y) (8)

where P(m, n|∆x, ∆y) is the probability of the gray level pairs i and j in the image, ∆x is
the horizontal pixel offset and ∆y is the vertical pixel offset for the gray level co-occurrence
matrix [26].

The seed points are re-selected in the 3× 3 neighborhood of the seed points. The
seed points move to the place with the smallest gradient in the neighborhood to avoid
seed points falling on the contour boundary with large gradient. Each pixel is assigned
a class label i in the neighborhood around each seed point. The search region is limited
to 2S× 2S to accelerate the convergence of the algorithm. Next, distances are measured,
including space, grayscale and texture distances. The distance between it and the seed
point is calculated as follows:

dc =
√
(gj − gi)

2 (9)

ds =
√
(xj − xi)

2 + (yj − yi)
2 (10)



Crystals 2022, 12, 730 6 of 11

dt = e(tj−ti) (11)

where dc is the grayscale distance, ds is the space distance and dt is the texture distance.
The integrated distance D between this pixel and the center is defined as

D = dc +
mds

S
+

Tdt

S
(12)

where T is the weight value for adjusting texture distance.
The final step is to update the cluster centers iteratively until residual error meets the

stop condition (E ≤ 0.01). It is noted that the residual error E is defined as Manhattan
distance between previous centers and new cluster centers [23]. After the iterative opti-
mization, the neighboring merging strategy is used to merge isolated small size superpixels
to ensure a good tight-fitting degree of the final result.

3.4. Image Fusion

The fusion method is proposed to fuse the binary map of Canny edge detection and
the edge map of superpixel regions. In this process, bilateral filtering is employed to
remove noise. The agglomeration regions that are selected by convexity feature [11] in
the binary map of Canny edge detection are just fused with the superpixel edges. For
morphological processing, some small particles or background spots that are not likely to
provide reliable size or shape information are removed by specifying a minimum number
of pixels. Moreover, the fragmentary crystal blocks that are connected to the image border
are also removed to suppress border interference.

4. Size Measurement Method

Size measurement rule of crystals is still an open issue, since the shape of different
crystals is varied. In this study, the shape of α-form LGA is generally prismatic, as shown
in Figure 1. Therefore, the diameter of the minimum enclosing circle for crystal imaging
is typically considered as the one-dimension size of prismatic crystal. It can also tolerate
the problem of the incomplete particles, which are separated from overlapped crystals.
Firstly, in order to objectively reflect the relationship between actual size and image size,
an effective method of physical calibration [11] is utilized with a micron circle scale to
compute the pixel equivalent Pe. This scale is located in the probe imaging location to
compute the relationship between the pixel and the actual size. Based on the binary result,
the pixel number of the particle size can be measured by using the minimum enclosing
circle method [27], and a processing example is as shown in Figure 4. Denoted by La the
measured pixel number of the enclosing circle diameter, the actual one-dimension size of
the crystal, i.e., the actual physical diameter of the minimum enclosing circle denoted by
Lp is given by

Lp = LaPe (13)

Based on the above size measurement, crystal sizes can be provided. To clarify
population size information, a statistic histogram of CSD is smoothed with the probability
density function of Gaussian [28], which is defined by

P(l) =
1√
2πσ

exp

{
− (l − µl)

2

2σ2

}
(14)

where l is the size variable and µl and σl are the mean and standard deviation parameters
of the Gaussian distribution, respectively.

Note that the minimum enclosing circle method is only applicable to segmented
results with a mass of agglomerated particles. The method is suggested to measure blocky
and circular shapes, and it facilitates further one-dimension CSD estimation. In order to
better describe the size characteristics, different measurement methods should be employed
according to different morphologies, which can be detected for shape features [11].
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5. Experimental Results

In the experiment, the on-line crystal images of α-form LGA are recorded by the
invasive imaging system. They have just double colors in a JPEG format. To simplify the
calculation, the raw image can be translated into the gray scale image. It is seen that the
on-line images of slurries with multiple overlapped crystals suspended in a solution contain
a lot of noise, as shown in Figure 5a. It is noted that the phenomenon that a mass of crystals
are overlapped in a finite space can be seen as a case of high solid density. The image
preprocessing result with image filtering is shown in Figure 5b. Tenengrad MTen [29,30] as
a quantitative index of image quality is used for comparison between Figure 5a,b. It can
be seen that the preprocessed image is denoised and deblurred. Note that Tenengrad of
Figure 5b is higher than that of Figure 5a higher quality and Tenengrad MTen is defined for
image Y as

MTen = ∑
i

∑
j

√
K2

i (i, j) + K2
j (i, j) (15)

where i denotes the row, j denotes the column, and Ki and Kj are{
Ki =

∂Y
∂i

Kj =
∂Y
∂j

(16)
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cessing, the crystal sizes are measured by using the fast minimum enclosing circle method 
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The proposed segmentation method based on superpixel and Canny detection is
applied on the preprocessed image (see Figure 5b). In Figure 6a, the edge detection result
is obtained by using improved the Canny edge detection method. Figure 6b shows the
results of the improved SLIC superpixel segmentation method. Then Figure 6c represents
the segmented results that are detected with image fusion effectively. In the segmented
binary result, the crystal intensity can be 1 and the background can be 0. After image
processing, the crystal sizes are measured by using the fast minimum enclosing circle
method as shown in Figure 6d, and the CSD model is obtained with the probability
density function of the Gaussian. To show the superiority of the proposed segmentation
method, Figure 7 illustrates the segmentation results by using well-recognized multi-scale
segmentation algorithm [15] and the popular threshold algorithm [11]. In Figure 7, most
overlapping crystals were not able to be segmented. It can be seen that multiple overlapped
particles outlined by red circles cannot be separated with the use the two well-recognized
segmentation algorithms.
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Figure 6. Segmentation results: (a) Canny edge detection; (b) SLIC segmentation; (c) fusion image;
(d) size measurement.

In addition, another highly -concentrated image captured from the experiment is ana-
lyzed as shown in Figure 8, in order to demonstrate the efficiency of the proposed method.
Figure 8 shows that most of crystals can be properly separated from the background,
together with a good result of size measurement.
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Figure 8. Analytic result of another image: (a) the in situ captured image; (b) size measurement.

In order to validate the proposed imaging measurement method, a complementary
experiment was performed using off-line verification method. The CSDs of α-form LGA
crystals were obtained using two different methods: the proposed in situ imaging method
and off-line measurement by using digital microscope with measurement software, which
has the ability to measure size. Figure 9 shows the CSDs are produced by using the in
situ method and the off-line method, respectively. Note that about 600 crystals were
extracted from 15 images captured within one minute to produce a CSD model using in
situ image measurement. In the off-line measurement, the CSD was also calculated with
approximately 600 crystals extracted from 50 off-line images, which were captured with the
off-line microscope. The crystal sizes were obtained by using manual length measurement
with LAS software. To show the similarity, the mean value µ and standard deviation σ for
the Gaussian of CSD in size are used. For the quantitative comparison, the relative error of
µ is 1.61% and the relative error of σ is 1.08%. The comparison results show that the results
given by the proposed in situ method are very close to those of the off-line method.
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measurement.

6. Conclusions

In this work, a synthetic image-measurement method to measure CSD was developed
by combining superpixel segmentation and edge detection. The analysis capabilities of
α-form LGA crystals at high-solid concentrations were investigated with on-line invasive
imaging system. The raw images were denoised before segmentation. The segmentation
algorithm successfully extracted the crystals from the on-line images with a mass of over-
lapping crystal blocks. Furthermore, the estimation of CSD was produced by probability
density function. In the end, the experimental results on α-form LGA were performed to
show that the in situ image measurement method was effective. The proposed method
can measure crystal sizes during crystallization at high-solid concentrations. It can also
potentially assist with the evolution modeling of crystal size distributions. Our future
work will focus on studying image-based agglomeration degree and solid concentration
detection for multiple morphologies.
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