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Abstract: Analysis of two crystal structures of lithium bis(pentafluoroethanesulfonyl)imide is pre-
sented. Two orientations of the anion, that is a cis and trans orientation, are observed. Both structures
exhibit unique interactions leading to the formation of discrete fluorous domains in the solid-state. A
notable difference in the F···F interactions is seen when contrasting the two orientations wherein the
trans geometry has a higher percentage of fluorine interactions than the cis orientation. The inclusion
of water molecules in one of the structures also leads to the formation of a polar domain formed
through a series of cyclical hydrogen bonding rings. The two structures allow for a detailed examina-
tion of the bond distances and angles involved in the formation of the two structures. Analysis of the
void space in the two structures leads to the observation that the trans conformation exhibits notably
higher void space as compared with the cis orientation. Hirshfeld surface analysis is used to help
rationalize the interactions leading to unique changes in geometries and structure.
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1. Introduction

An ionic liquid (IL) is a class of soft material that consists of a charge disperse organic
cation and anion. It follows that the choice for which specific charge disperse anion to use
is of vital importance for the rational design of ILs [1]. The field of ionic liquids has seen
prolific development since the introduction of modern air and moisture stable anions [2,3].
The most common anions studied today typically contain fluorine groups which help
disperse charges while also repelling other anions [4,5]. The three most common anions
used in the synthesis of ILs are [PF6]−, [BF4], and [TF2N]− [6]. ILs incorporating the
tetrafluoroborate [2] and hexafluorophosphate [7] anions were reported first, followed by
the introduction of the [TF2N]− anion (see Figure 1) [8]. To date, the [TF2N]− anion remains
one of the most important anions given the favorable physicochemical properties it tends
to impart on IL systems. However, other perfluoroalkyl-based anions capable of forming
ILs have also been reported such as FAP [9], NCyF [10], and B(hfip)4 (Figure 1) [11].

With approximately 1000 reported crystal structures [12], [TF2N]− has found applica-
tions across a variety of fields. For example, [TF2N]− has been used in catalyst design [13],
in the formation of conductive materials [14], and in separations applications [15]. The
crystal structures of the alkali salts of [TF2N]− were reported by Xue et al. [16] In their
studies, it was noted that the alkali salts have unique solvent behavior based on the nature
of the alkali metal (i.e., Li vs. Rb). The inclusion of water and crystallization solvents was
noted for several samples in the series examined. Further, it was found that the [TF2N]−

anion could exist in either the cis or trans isomers, simply defined by the orientation of the
CF3 groups with respect to the central S—N—S plane [17]. The trans isomer is energetically
lower than the cis when examining the anion by itself [18]. In the presence of a metal
ion, however, the anion often adopts the cis conformation to allow for the formation of
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chelate rings from the sulfonyl oxygens. This appears to be the preferred orientation when
interacting with metal cations, simply based on the reported structures in the CSD showing
a preference for the cis isomer. It should be noted that there are reported examples wherein
the trans conformation is seen binding to a metal also [19]. Both cis and trans conformations
of [TF2N]− have also been observed for several crystal structures of ILs [20,21]. The con-
formational flexibility of [TF2N]− along with its charge dispersion and favorable thermal
properties is what makes the anion particularly attractive for IL applications [1].
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In contrast to the many structures incorporating [TF2N]−, few [BETI]− structures that
have been reported. Two reported structures are organometallic, with a cobaltocenium
cation balancing the [BETI]− anion [22]. Three additional structures are classified into
the realm of ILs given the use of quaternary ammonium cations [23–25]. A report by
Henderson and Frech described the structures and thermal behavior of several glyme-
coordinated [BETI]− species [26]. While structural reports on [BETI]− are limited, there
are numerous reports detailing the use and application of [BETI]− anions, establishing this
anion’s diverse application across many fields of study. For example, [BETI]− has been
used to form fluorescent materials [27]. Further, [BETI]− has been used for carbon capture
systems, helping to improve solubility when compared with other structurally related
perfluorinated anions in the study [28]. Systems incorporating the [BETI]− anion have also
been applied for extractions, specifically in the separation of rare-earth metals [29].

As expected, based on the structural and compositional similarities, [BETI]− shares
several parallels with [TF2N]−. For example, both anions impart high thermal stability for
ILs while simultaneously depressing the melting point [30]. Structurally, the [BETI]− anion
can adopt both a cis or trans conformation as well [23]. The energetics of the conformers
were examined by the Davis group and found that similar to [TF2N]−, there is an energetic
preference for the trans conformation [31]. Given the increased ethyl chain length it is also
likely that there would exist additional conformers arising from unique rotations of the
ethyl chains in combination with the cis/trans isomers. A more in-depth computational and
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experimental investigation of [BETI]− would certainly be of benefit to the IL community,
especially in light of the anion crisis [32].

Herein we present the crystal structure of lithium bis(pentafluoroethanesulfonyl)imide
and diaqua lithium bis(pentafluoroethanesulfonyl)imide. Given that the lithium salts are
fundamental components in the synthesis of ILs, and that the metathesis of ILs is typically
carried out in an aqueous solution, understanding the structure of the alkali salts of
[BETI]− is of importance to the broader scientific community. Further, these two crystal
structures represent some of the few current examples of simple metal complexes with
this anion. The high-resolution structures are also of importance for the development of
theoretical models to understand the electronic structure of the anion allowing for the
development of novel materials [33]. Moreover, the [BETI]− anion is observed in a cis and
trans orientations, allowing for a more in-depth analysis of variations brought about by
these unique conformers.

2. Materials and Methods
2.1. Chemicals

Lithium bis(pentafluoroethanesulfonyl)imide was purchased from TCI Chemicals and
used as is without further purification.

2.2. Single Crystal Diffraction

Single crystals suitable for X-ray diffraction were grown from a saturated aqueous
solution of the anhydrous LiBETI salt. The solution was placed in a 10 mL scintillation vial
and loosely capped to allow for evaporation. Slow evaporation over 10 months yielded
both sets of crystals in a single vial.

Single crystals of both samples were coated with a trace of Fomblin oil and were
transferred to the goniometer head of a Bruker Quest diffractometer. Data collection of
[Li{BETI}] used Cu Kα wavelength (λ = 1.54178 Å) on an instrument with kappa geometry,
an I-µ-S microsource X-ray tube, laterally graded multilayer (Goebel) mirror single crystal
for monochromatization, and a PhotonIII_C14 area detector while [Li{BETI}(H2O)2] was
collected using Mo Kα wavelength (λ = 0.71073 Å) on an instrument with a fixed chi
angle, a sealed tube fine focus X-ray tube, single crystal curved graphite incident beam
monochromator and a PhotonII area detector. Both instruments are equipped with an
Oxford Cryosystems low temperature device and examination and data collection were
performed at 150 K. Data were collected, reflections were indexed and processed, and the
files scaled and corrected for absorption using APEX3 [34] and SADABS [35]. The space
groups were assigned and the structures were solved by direct methods using XPREP
within the SHELXTL [36] suite of programs and refined by full matrix least squares against
F2 with all reflections using Shelxl2018 [37] and the graphical interfaces Shelxle [38] and
Olex2 [39]. Water H atoms were located as electron density and were refined. O-H bond
distances were restrained to 0.84(2) Å. Uiso(H) values were set to a 1.5 times Ueq(O).

Complete crystallographic data, in CIF format, have been deposited with the Cam-
bridge Crystallographic Data Centre. Table 1 contains the relevant crystallographic data
for both compounds. CCDC 2126084 and 2126085 contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

www.ccdc.cam.ac.uk/data_request/cif
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Table 1. Crystallographic data and refinement details for [Li{BETI}] and Li{BETI}(H2O)2.

Li{BETI} Li{BETI}(H2O)2

Chemical formula C4F10LiNO4S2 C4H4F10LiNO6S2

Mr 387.11 423.14

Crystal system, space group Monoclinic, C2/c Triclinic, P1

Temperature (K) 150 150

a, b, c (Å) 42.733 (5), 5.4927 (7), 10.4751 (14) 6.4581 (3), 8.0725 (4), 13.0495 (5)

α (◦) 90 95.160 (3)

β (◦) 99.632 (11) 103.406 (3)

γ (◦) 90 91.403 (3)

V (Å3) 2424.0 (5) 658.37 (5)

Z 8 2

Radiation type Cu Kα Mo Kα

µ (mm−1) 5.50 0.56

Crystal size (mm) 0.21 × 0.15 × 0.02 0.20 × 0.05 × 0.03

Data collection

Diffractometer

Bruker AXS D8 Quest
diffractometer with PhotonIII_C14

charge-integrating and photon counting
pixel array detector

Bruker AXS D8 Quest
diffractometer with PhotonII

charge-integrating pixel array detector
(CPAD)

Absorption correction Multi-scan
SADABS 2016/2

Multi-scan
SADABS 2016/2

Tmin, Tmax 0.503, 0.754 0.676, 0.747

No. of measured, independent and
observed [I > 2σ(I)] reflections 7332, 2443, 1991 21544, 4985, 3337

Rint 0.097 0.066

(sin θ/λ)max (Å−1) 0.638 0.770

Refinement

R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.112, 1.05 0.042, 0.091, 1.01

No. of reflections 2443 4985

No. of parameters 199 229

∆ρmax, ∆ρmin (e Å−3) 0.36, −0.38 0.49, −0.54

2.3. Software

Hirshfeld surfaces, images, and fingerprint plots were calculated and produced using
CrystalExplorer17 [40]. Discussion about the analysis of fingerprints and surfaces can be
found in the appropriate references [41,42]. Images and analysis of the structures was
accomplished using Olex2 [39]. Void space images and calculations were accomplished
using Mercury [43]. Void spaces were calculated with a 0.8 Å probe radius.

3. Results and Discussion

[Li{BETI}] crystallizes in the C2/c space group with one molecule in the asymmetric
unit. [Li{BETI}(H2O)2] crystallizes in the P1 space group, also with one molecule in the
asymmetric unit. The asymmetric units of both structures are shown in Figure 2. In
both structures, the sulfonyl oxygen atoms are binding to the metal center forming a
six-membered chelate ring. Despite forming a similar chelate structure, there are several
notable differences in the structures. For example, in [Li{BETI}], the sulfonyl groups
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make shorter bonds to the lithium with S—O···Li distances of 1.927(5) and 1.917(5). In
[Li{BETI}(H2O)2], however, the distances are slightly longer with S—O···Li distances of
2.094(4) and 2.163(3). One noteworthy distinction between [Li{BETI}] and [Li{BETI}(H2O)2]
is that [Li{BETI}(H2O)2] is the first example of the [BETI]− anion in the cis geometry wherein
the anion is not disordered [23]. As discussed above, the [TF2N]− anion exists both in the
cis and trans geometry, with there appearing to be an approximately equal distribution of
both isomers in the reported crystalline structures. Currently, however, [Li{BETI}] has only
been reported in the lower energy trans conformation.
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Figure 2. Asymmetric units of [Li{BETI}] (left) and [Li{BETI}(H2O)2] (right) shown with 50% probabil-
ity ellipsoids. Gray, carbon; green, fluorine; red, oxygen; pink, lithium; yellow, sulfur; blue, nitrogen.

Several potential factors influence the distances and interactions in the two molecules.
Predominantly, the coordination geometry of the lithium is a factor. In [Li{BETI}], the lithium
exists in a pseudo-tetrahedral geometry with four oxygen atoms making bonds to the metal.
Two of the oxygens are from a single bidentate [BETI]− anion, and the remaining oxygens
are from symmetry adjacent anions, effectively making an infinite chain linked through the
lithium ion (see Figure 3). In [Li{BETI}(H2O)2], the lithium atom exists in a distorted trigonal
bipyramidal geometry with two water molecules, one bidentate [BETI]− anion, and a single
sulfonyl oxygen from an adjacent anion making up the coordination sphere (see Figure 3).
The hydrated structure, thus, forms a near-linear arrangement of the lithium ions. The bound
water molecules help arrange the layers of the structure by forming reciprocal hydrogen
bonds to symmetry adjacent water molecules. The unique coordination in addition to the
cis/trans geometries lead to distinctive arrangements of the structures.

The long-range ordering of both structures does share similarities, as expected (see
Figure 4). For instance, both show distinctive fluorous layers wherein the perfluoroalkyl
groups are in close contact with each other. Further, there exists a distinct layer wherein the
lithium ions and sulfonyl groups exist. The inclusion of the serendipitous water molecules
in [Li{BETI}(H2O)2], in addition to the structural changes associated with the coordination
of the lithium ion, influences the void space in the lattice (see Figure 5). Examining
Figure 5 one can readily observe the differences in the two structures. [Li{BETI}] has
significantly higher void space in the lattice (5.8% of volume, 140.59 Å3) as compared with
[Li{BETI}(H2O)2] (1.1% of volume, 7.03 Å3). [Li{BETI}] has void space near the lithium
ion as well as in the fluorous domain whereas the voids in [Li{BETI}(H2O)2] are in the
hydrophilic pocket formed by the waters and sulfonyl oxygen atoms. The differences in
the void space is also observed through examining the varied interactions in the crystalline
structures (vide infra).
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To better understand the interactions and structures of the two compounds, Hirsh-
feld surface analysis was performed [44]. The surfaces for both structures are shown
in Figures 6 and 7, respectively, and the fingerprint plots [41] in Figure 8. Several key
similarities are observed in the fingerprints of the structures. A diagonal region of red
interactions is observed in both fingerprints, indicative of a large number of interactions
at similar distances [45]. These interactions are primarily from F···F interactions. Fur-
ther, there are regions of disperse spots in both fingerprints, especially at longer distances
(di ≈ de ≈ 2.5 Å). These disperse spots can be indicative of inefficient crystal packing. While
not directly quantifiable, the increased void space in [Li{BETI}] is observed as the larger
regions of disperse interactions seen in the fingerprint for [Li{BETI}] when contrasted with
[Li{BETI}(H2O)2]. Finally, a set of pincer-like features are seen in both structures, with
[Li{BETI}] showing more pronounced features. These shapes arise from the fact that the
structures are polymeric, forming interactions linking multiple asymmetric units through
O···Li bonds which form the pincer shapes. These bonds manifest as the indicated red
indentations observed on the dnorm surfaces (Figures 6 and 7).
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oxygen atoms to adjacent lithium ions.

Several key differences can also be observed when looking at the fingerprints (Figure 8).
Looking at the shape of the fingerprints at higher di/de values, [Li{BETI}] shows a flared tail
while [Li{BETI}(H2O)2] tapers to a blunted end. As discussed, this corroborates the void
space analysis and the differences between the two structures. Looking closely at the F···F
interactions in both fingerprints (the diagonal red line, vide supra), [Li{BETI}(H2O)2] displays
shorter interactions as observed by the starting distances of the red line in [Li{BETI}(H2O)2]
(di ≈ de ≈ 1.5 Å) vs. [Li{BETI}] (di ≈ de ≈ 1.7 Å). Additionally, the shape of this red region
is unique between the two molecules with [Li{BETI}(H2O)2] having a more distinct, narrow
red line while the interactions in 1 manifest as a more disperse set. This observation points
to the unique sets of interactions that are present in both structures.
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The total percentage of F···F interactions is higher in [Li{BETI}] (60.5%) than in
[Li{BETI}(H2O)2] (46.3%). This may seem to suggest that the F···F interactions are, in
some way, favorable. However, this change in percentage is simply due to the positioning
of the perfluoroethyl chain in [Li{BETI}(H2O)2]. The cis orientation places atoms F1, F6,
F10 in close proximity intramolecularly, effectively preventing any intermolecular interac-
tions from these three positions. The trans structure, however, does not show any steric
‘blocking’ of fluorine atoms, leading to an increased percentage of F···F interactions overall.
Further, there are no O—H···F interactions observed arising from the water molecules in
[Li{BETI}(H2O)2], implying that the change in F···F interactions is not influenced by the
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presence of water and the potential hydrogen bonding. It should be stated that reports have
shown F···F interactions to be destabilizing or, at the least, do not stabilize packing [46]
though some reports seem to contradict this [47].

Given the packing of the anions into discrete fluorous domains, along with the re-
sults of the surface analysis, we sought for evidence of any F···F halogen bonds [48–50].
While the existence of halogen bonding between fluorine atoms remains debated [51],
there are a number of shorter contacts between fluorine atoms which may be evidence
of type II halogen bonding. For example, the terminal CF3 group in [Li{BETI}] shows
close contacts with a symmetry adjacent CF3 group (i = 1 − x, −y, 1 − z). Specifically,
F4 is interacting with F4i at a distance of 3.045(6) Å (∠C2—F4···F4i = 93.3(3)◦). F6 also
exhibits F···F interactions at similar distances to those seen with F4 (d(F6···F8j) = 3.087(4) Å,
∠C3—F6···F8j = 126.6(2), j = x, 1 − y, −1/2 + z). These close interactions are seen on
the shape index surface as the indicated red/yellow indentations (see Figures 6 and 7).
Aside from these interactions, however, we do not observe any defined halogen bonding.
For clarity, the F···F interactions for both molecules are visualized in Figure 9, allow for
comparison between the two structures.

Table 2 shows a complete listing of the total interaction percentages arising from
specific elements in both structures. As expected, the fluorine atoms dominate the inter-
molecular interactions (by percentage) followed by the oxygen. The roles of the oxygen
interactions are unique, however, when contrasting structures 1 and 2. Given the presence
of the water molecules in 2, hydrogen bonding is observed, linking discrete asymmetric
units together. A depiction of a portion of the hydrogen bonding is shown in Figure 10.
Further, the hydrogen bonding is observed as the reciprocal set of spikes in the fingerprint
plot (di ≈ 1.1 Å, de ≈ 0.9 Å) and at the appropriate reciprocal distances, that is di ≈ 0.9 Å,
de ≈ 1.1 Å. Overall the hydrogen bonding in [Li{BETI}(H2O)2] is quite complex, with
several unique set of hydrogen bonding rings being observed [52]. Two R2

2(8) rings are
formed from the reciprocal interactions between O2 and O5 and O5 and O6. These are
highlighted as green and yellow, respectively, in Figure 9. With respect to the O2 and O5
hydrogen interactions, the distance is 2.32 Å (d(O2···H5Bm, m = −x, 1 − y, 1 − z). The
O5 and O6 hydrogen interactions distance is 2.22 Å (d(O5···H6Bn, n = −x, 2 − y, 1 − z).
An additional R3

3(8) ring is observed involving the two water molecules (O5 and O6) and
two sulfonyl oxygens O1 and O2. This is shown as the purple highlighted ring in Figure 9.
The distances between O5 and O2 as well as O5 and O6 are given previously, 2.32 Å and
2.22 Å, respectively. The O1···H6A distance is 2.16 Å d(O1···H6Ao

, o = +x, 1 + y, +z). The
arrangement of these rings and formation of the hydrogen bonding network help to form
the void space discussed within the structure of [Li{BETI}(H2O)2].
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Table 2. Calculated interactions of atoms in both [Li{BETI}] and [Li{BETI}(H2O)2] based on Hirshfeld
surface calculations.

[Li{BETI}] [Li{BETI}(H2O)2]

F···All 69.5% 54.9%

O···All 19.9% 21.2%

N···All 2.5% 2.4%

Given the absence of water molecules, the oxygen atoms in 1 show a markedly dif-
ferent set of interactions. Predominantly there are no overtly stabilizing non-covalent
interactions [53,54] arising from the oxygen atoms. All four of the oxygen atoms are bind-
ing to a lithium ion, with O1 and O3 acting as the bidentate binding points, while O2 and
O4 act as the bridging points to the adjacent lithium ions. The majority of the ~20% of the
O interactions in [Li{BETI}] arise from long-distance O···F interactions. The distances and
angles examined do not seem to indicate any form of chalcogen bonds being formed [55].
Additional interactions between O and N and O and O complete the noteworthy interac-
tions observed in [Li{BETI}]. From our perspective, neither the O···N nor O···O interactions
are stabilizing but are simply an artifact of the packing from the crystal based on the
distances and angles observed.
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4. Conclusions

The two crystal structures of lithium bis(pentafluoroethanesulfonyl)imide and lithium
bis(pentafluoroethanesulfonyl)imide diaqua are reported. These structures represent two
new samples for the sparse but growing set of structural data for the [BETI]− anion. The
two structures clearly show the cis and trans geometries of the anion, allowing for the
detailed examination of distances and angles arising from this change in structure. For
example, the cis geometry displays unique intramolecular F···F interactions due to the
proximity of the perfluoroalkyl chains. Thus, the diaqua structure shows a lower F···F
interaction percentage due to the arrangements of the perfluoroethyl chains hindering
intermolecular interactions. In contrast, the trans geometry allows for increased interactions
with the perfluoroalkyl chains. Overall, F···F close-contacts making up the majority of the
interactions present in the solid-state.

[Li{BETI}(H2O)2], however, shows significantly lower void space in the crystal struc-
ture due, in part, to shorter F···F interactions and hydrogen bonding arising from the water
molecules. The hydrogen bonding in the molecule is quite unique, with three distinctive
reciprocal hydrogen bonding rings formed. Given the linear nature of hydrogen bonds, a
void pocket is formed within the region wherein the bound water molecules are located.
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