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Abstract: Nanomaterials have gained much attention in the field of environmental remediation,
largely due to their high surface area-to-volume ratio and other unique physical, chemical, and
biological characteristics that emerge due to its size effects. Metallic nanoparticles are traditionally
manufactured using wet chemical processes; however, the chemicals utilized are generally hazardous
and combustible. The biosynthesis of nanoparticles using a variety of plant resources is considered a
green technology because it does not use toxic chemicals. This work focuses on the green synthesis of
biogenetic silver nanoparticles and their use in the sequestration of colorants from aqueous solution.
The extract of aquatic macrophyte Salvinia molesta (water hyacinth) has been employed to prepare
silver nanoparticles by chemical reduction reaction. In the UV-visible spectrum of the synthesized
silver nanoparticles, the absorbance peak was detected in the 420–430 nm range. The synthesized
silver nanoparticles were used to sequester methylene blue (MB) dye in aqueous solution. About
121.04 mg/g was found as the highest adsorption capacity of methylene blue dye on the silver
nanoparticles according to the Langmuir isotherm. It was observed that the experimental results
and the pseudo-second order kinetics are in good agreement. As a result, the biosynthesized silver
nanoparticle might be a potential adsorbent material in the field of environmental rehabilitation
and cleanup.

Keywords: silver nanoparticles; green synthesis; adsorption; colorants; methylene blue dye

1. Introduction

Textile production requires a large quantity of water and energy. Factories create a large
amount of contaminated water after finishing dyeing and completing their products [1].
Due to its huge volume and nature, this water is regarded to be extremely dangerous for
human beings. There are a number of environmental problems associated with discharging
dyeing waste water directly into the environment. Waste water has a potential effect to
cause serious damage to aquatic life, soil, and drinking water [2]. Furthermore, some dyes
and their tailing-remained products have the potential to be carcinogenic and poisonous.
As a result, the dyes must be removed before disposal. A wide range of techniques have
been explored to treat wastewater, including biodegradation and ultrafiltration as well as
photocatalytic degradation, oxygenation, and adhesion. When it comes to the treatment
of these dye-containing effluents, traditional adsorption is a very low-cost and effective
method [3]. The physicochemical characteristics of the adsorbent determine the efficiency
of any adsorption procedure. The search for novel adsorbents with large specific surface
area, high adsorption capacity, and a quick adsorption rate, as well as unique surface
reactivity, is therefore highly essential and useful [4].

Crystals 2022, 12, 662. https://doi.org/10.3390/cryst12050662 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst12050662
https://doi.org/10.3390/cryst12050662
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0002-5305-2512
https://orcid.org/0000-0002-6430-5749
https://orcid.org/0000-0003-0839-8909
https://doi.org/10.3390/cryst12050662
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst12050662?type=check_update&version=1


Crystals 2022, 12, 662 2 of 12

Nanotechnology allows the creation of nanomaterials that may be used for a variety
of scientific and technical purposes. As a result of nanotechnology, new nanomaterials may
be used for a variety of applications with a measurement of less than 100 nanometers [5].
Research on nanoparticles has received increased attention in recent years, owing to a wide
range of essential uses in health and different environmental issues. As a result of their
tiny size, nanoparticles have a higher surface-to-volume ratio or a greater surface area per
weight than larger particles, making them more reactive to interact with other molecules.
Silver nanoparticles (AgNPs) are more important than other noble metal nanoparticles
due to their specific features, such as excellent optical property, electrical conductivity,
oxidative property, antibacterial activity, and catalytic activity. Silver nanoparticles are
traditionally produced using hazardous chemicals and at a high cost. The utilization of
environmentally friendly resources such as plant leaf extract, microorganisms, and enzymes
may be employed for the biological production of nanoparticles, which offers several
environmental benefits. The green production of nanoparticles is critical for the treatment
of many hazardous compounds that cannot be addressed chemically [6]. The fabrication of
nanoparticles using chemical methods are time-consuming and have a high production
cost. Therefore, scientists were particularly interested in the creation of nanoparticles by
green production methods.

In the literature, researchers fabricated silver nanoparticles and applied for different
applications. Vanaja et al. (2014) prepared silver nanoparticles using Morinda tinctoria leaf
extract under specific pH conditions and further characterized by different spectroscopic
techniques [7]. They concluded that the size as well as the quantity of silver nanoparticles
formed are strongly dependent on the pH, and basic pH supports the biosynthesis of
silver nanoparticles, whereas no silver nanoparticles were detected in the acid medium.
Silver nanoparticles were prepared with sizes ranging from 79 to 90 nm and applied for
photo catalytic activity of MB degradation [8]. Anu Kumar et al. (2016) experimented
with a simple and non-hazardous method for synthesizing silver Nano catalyst by using
Viola serpens leaf extract [9].

The biosynthesis of AgNPs mainly involves three main steps: (1) solvent medium
should be selected, (2) environmentally friendly reducing agents are selected, and
(3) nontoxic substances are chosen for the AgNPs stability. When a substrate of low value is
used by living cells to produce higher-value products, this device is called a bioreactor [10]
Plant parts act as a bioreactor for the expression in tissues remote from the penetration of
ion sites, with the capability to reduce metal ions on the surface. The plant has a strong
hyperaccumulation capacity of metal ions, which is a tool for the bioaccumulation of metal
oxide-NPs. The whole plant can be used for nanoparticle fabrication, whereas size and
shape of NPs mainly depends upon parts of the plant. Biogenic fabrication by plant ex-
tracts have been used in the production of AgNPs and found interesting owing to size,
surface area, structure, and unique properties. There are several disadvantages of physical
and chemical methods of nanometal fabrication, as they need to use biogenic synthesis
methods, which are economically feasible and ecofriendly [11]. The purpose of this work is
to synthesize AgNP using the aquatic weed, Salvinia molesta, as a reducing agent and assess
their effectiveness in sequencing MB dye, which is commonly used in the textile industry.
It was shown that the synthesized AgNPs by plant extracts adsorb and quickly decrease
the concentrations of the MB dye, both in terms of catalysis and kinetics [12].

2. Materials and Methods
2.1. Materials

Silver nitrate and methylene blue (MB) dye were purchased from Sigma Aldrich.
Salvinia molesta, a macrophyte kariba weed, is an aquatic fern and native to southeastern
Brazil [13]. Its observed as a free-floating plant that remains on the surface of water. The
leaves are 0.1–4 cm long, with a bristly surface caused by the hair-like strands and were
collected from riverbanks and ponds in the summer of 2021 (see Figure 1).
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Figure 1. Optical images with (a) low and (b) high magnifications of the Aquatic macrophyte
(Salvinia molesta) leaves under investigation.

2.2. Methods
2.2.1. Plant Extraction

The collected S. molesta was washed many times in warm distilled water to remove
any dust or other impurities. A total of 50 g of S. molesta leaves were cleaned and finely
chopped before being placed in 500 mL beakers containing 200 mL of double-distilled
water. The mixture was allowed to boil for 1 h at 100 ◦C. The obtained solution mixture was
then cooled to room temperature [14]. The leaf extracts were filtered by using Whatman
number 41 filter paper.

2.2.2. Silver Nanoparticle (AgNPs) Synthesis

In order to synthesize AgNPs, an aqueous solution of silver nitrate was prepared using
double-distilled water. AgNPs were made by mixing 1 mM silver nitrate solution with
S. molesta leaf extract and continuous stirring at 300 rpm for 72 h at room temperature
using a magnetic stirrer. The formation of AgNPs is indicated by the appearance of a
yellow-brown color after 8 h of agitation and turns reddish brown after 72 h of agitation in
the dark [15,16]. The resulting suspension of silver nitrate and S. molesta extract were cen-
trifuged at 15,000 rpm for 15 min. To remove silver ions and seed extract residue, the pellet
containing AgNPs was washed three to four times with deionized water. Biosynthesized
AgNPs were lyophilized after being precipitated. To further characterize, the lyophilized
nanoparticles were stored in a cool, dry, and dark environment.

2.2.3. Characterization of Biogenic AgNPs

The mixture of silver nitrate and S. molesta extract solution were taken in different
ratios (1:1, 1:2, 1:3, and 1:4), and the UV-visible spectra of AgNPs at different ratios were
obtained using a UV-1800 Shimadzu spectrophotometer. Silver nanoparticle morphology
was studied using a lyophilized sample of AgNPs using a scanning electron microscope
(SEM) operating at 20 kV. Transmission electron microscopy (TEM) working at an accelera-
tion voltage of 200 kV was used to determine the morphology and size of biosynthesized
AgNPs. The crystalline structure of the biogenic nanoparticles was determined using a
pattern of selected area electron diffraction (SAED).

2.2.4. Dye Adsorption and Sequestration Using AgNPs Adsorbate

For the sequestration of MB dye, batch studies were carried out in a 250 mL con-
ical flask containing 50 mL of dye solution. The effects of initial dye concentration
(10–100 mg/L), equilibrium time, pH (2–10), and temperature (30–45 ◦C) were investi-
gated. After adding a desired amount (0.1 g) of AgNPs to MB dye solution, the mixture was
stirred at 200 rpm with a magnetic stirrer at an ambient temperature for equilibrium time.
After equilibrium time, the solution was filtered to separate pellet and supernatant [17–21].
The collected supernatant was analyzed using UV-Vis spectrophotometer at a maximum
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wavelength of 660 nm to measure the MB dye concentration in the residual solution. The
efficiency of decolorization (%) has been calculated by using the following Equation (1) [10]:

Decolorization(%) =
C0 − C1

C0
× 100% (1)

where C0 is the initial concentration of dye and C1 is the concentration of dye after irradia-
tion in the selected time interval.

3. Results and Discussion
3.1. Characterization of Biosynthesized AgNPs

Silver nanoparticles were synthesized by the addition of Salvinia molesta extract to the
AgNO3 solution. In the AgNO3/Salvinia molesta solution, silver nanoparticle synthesis
is indicated by a progressive color change from colorless to yellow to reddish brown, as
shown in Figure 2. Surface plasmon vibration, an optical characteristic found only in noble
metals, is responsible for this color change [22]. Further, UV-visible spectroscopy has been
used to confirm the formation of silver nanoparticles in aqueous solution. The solution was
scanned over a range of wavelength as 300–800 nm. Biogenic AgNPs have a prominent
peak absorbance at 430 nm [23], which is typical, as shown in Figure 3. Salvinia molesta leaf
extract generated highly dense AgNPs, as shown by SEM examination in Figure 4. The
acquired morphology demonstrated that the produced AgNPs were virtually spherical.
The particles appear agglomerated because the presence of several significant bio-organic
chemicals extruded from the leaves appear as a chelating agent that stabilizes the produced
AgNPs in solution. A similar phenomenon was reported by Ranjith kumar et al. (2018) [24].
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A High-resolution transmission electron microscopy (HRTEM) investigation was
carried out to characterize the surface morphology and size (Figure 5a–c). The average
particle size was determined to be 1 nm. Additionally, the particles were rounded and
well-dispersed, suggesting the presence of capping peptides around each particle that help
stabilize the nanoparticles. For a face-centered cubic structure, the SAED patterns recorded
for a single particle in the aggregates corresponded to a characteristic polycrystalline ring
pattern as shown in the Figure 5d [25]. The bright circular ring observed is due to the
reflection from the lattice planes of crystalline biosynthesized AgNPs.
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3.2. Effect of Dye Concentration on the Adsorption Process

Adsorption processes are depending on the initial concentration of adsorbate. Initially,
a large number of surface-active sites will be available for adsorbing the desired dye
molecules. So, the adsorption is fast at the initial stage. Figure 6 shows the effect of time
and concentration of the investigated MB dye with respect to decolorization percentage.
A decrease in degradation efficiency occurs as dye concentration increases due to several
factors. As there are fewer active sites on the surface, hydroxyl radicals will be less active,
and the probability of a photon reaching the surface of AgNPs is decreased with increasing
the dye concentration, resulting in a decreased decolorization percentage [26].
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3.3. Effect of pH on the Adsorption Process

Each of the adsorbate solutions were prepared at different pH levels (2.0, 4.0, 6.0, 8.0,
and 10) using either 1.0 N HCl or 1.0 N NaOH. There were optimum amounts of adsorbents
in dye solutions that were added (0.1 g of AgNPs), and the mixture was agitated. The
amount of dye that was adsorbed was measured. From the plot of pH versus percentage of
dye removal (Figure 7), it was observed that the optimum pH of the process was 4. This is
due to the fact that the degradation of MB dye was increased. The neutralization of the
negative charges at the surface of AgNPs will enhance the diffusion phenomena to occur,
and more active sites will be available for the adsorption process. However, when the
pH is below 4, the dye degradation and the number of negatively charged adsorbent sites
decreases. The increasing in the number of positively charged surface active sites enhances
the dye-adsorbent repulsion, which reduces the efficiency of the adsorption process. At a
lower pH, the MB adsorption dye improved due to the acidic media. As pH increases, the
adsorbent surface acquired negatively charges, and they are responsible for increasing the
adsorption capacity due to the electrostatic interaction. However, the adsorption of MB
dye was observed decreasing at high pH.
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3.4. Effect Temperature on the Adsorption Process

An initial MB dye concentration of 10 mg/L was used to determine the effect of
temperature on degradation efficiency of MB on the surface of the biosynthesized AgNPs.
Figure 8 exhibits the influence of temperature on percentage decolorization. According to
the study, the optimal temperature for dye degradation was found to be 35 ◦C. Further,
when the temperature was raised above 35 ◦C, the dye adsorption decreased significantly.
This is due to the fact that the adsorptive forces at the adsorbent active sites and the
adsorbate may be weakened.
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Figure 8. Effect of temperature on the decolorization percentage of the methylene blue dye adsorbed
on the biosynthesized AgNPs.

3.5. Adsorption Isotherms

The interaction between adsorbate and adsorbent is described using adsorption
isotherms. Langmuir and Freundlich isotherm models are used to assess experimental and
theoretical MB dye adsorption data. According to Langmuir, adsorption occurs uniformly
or homogeneously on the surface of the biosynthesized AgNPs adsorbent. Langmuir’s
linear expression can be found in Equation (2) [10];

Ce

qe
=

1
Qb

+
Ce

Q
(2)

where Ce is the equilibrium concentration of a dye in solution (mg/L), qe is the amount of
dye adsorbed on to the Cs (mg/g) MB, Q is the Langmuir constant related to adsorption
capacity (mg/g), and b is the Langmuir constant related to sorption energy (L/mg). The
experimental data for the decolorization of MB dye is fitted in the rearranged Langmuir
equation, which has found successful applications of monolayer adsorption. The plot
obtained is shown in Figure 9. A Freundlich isotherm is used to determine the adsorption
capacity of MB dye on the biosynthesized AgNPs. Equation (3) is the linear form of the
Freundlich isotherm.

log qe = log k f +
1
n

log Ce (3)

where Ce is the equilibrium concentration of the dye in solution (mg/L), qe is the amount of
dye adsorbed on the adsorbent (mg/g), and Kf and 1/n are Freundlich constants [27]. The
graph of log qe is plotted against log Ce and is found not to be linear as shown in Figure 10.
The 1/n value from the experimental data is greater than 1, which shows unsatisfactory
adsorption of MB dye onto the surface of the biosynthesized AgNPs adsorbent. The
parameters of Langmuir and Freundlich constants are given in Table 1. The Langmuir
isotherm was found to be the best fit in the experimental data—better than the Freundlich
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isotherm. This shows the monolayer adsorption of MB dye onto the biosynthesized AgNPs
adsorbent, with the maximum adsorption capacity of 1.023 mg/g.
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Table 1. Freundlich and Langmuir isotherm parameters used at the adsorption of methylene blue
dye onto the surface of the biosynthesized AgNPs adsorbent.

Freundlich Parameters Langmuir Parameters

kf n R2 Qm (mg/g) b (L/mg) R2

1.0023 1.100 0.931 121.04 0.2842 0.998

3.6. Adsorption Kinetics

For the study of adsorption kinetics, pseudo first order and pseudo second order
kinetic models are widely used. These models are used to determine the rate at which
adsorption occurs or the rate at which solute is absorbed. When it comes to designing the
reactors, these models pay more attention. Our study examined the rate at which MB dye
adsorbed onto surfaces by applying pseudo first- and second-order equations in order to
determine how fast it adsorbed. There is a strong correlation between experimental data
and predicted values using different models (value close or equal to 1).
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3.6.1. Pseudo First Order Kinetic Model

The rate of MB dye adsorption on the biosynthesized AgNPs adsorbent’s surface is
proportional to the amount of dye adsorbed from the liquid phase; the pseudo first order
kinetic equation may be expressed as in Equation (4) [10]:

log qe − qt = log qe −
kadt

2.303
(4)

where q and qe represent the amount of dye adsorbed (mg/g) at time t and at equilibrium
time, respectively, where kad is the adsorption rate constant [28]. Figure 11 shows the plot
of linearized form of the pseudo first order kinetic model. The slopes and intercepts of the
plotted graph of (log qe − qt) versus time were used to determine the pseudo first order
rate constant kad and the equilibrium adsorption capacity qe.
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3.6.2. Pseudo Second Order Kinetic Model

The pseudo second order kinetics model can be expressed by Equation (5) [10]:

dqt/qt = k2(qe − qt)
2 (5)

where k2 represents the pseudo second order rate constant. The qe and qt represent the
amount of dyes adsorbed (mg/g) at equilibrium and at time t. For the boundary condition
t = 0 to t = t and qt = 0 to qt = t, the integral form of the Equation (3) becomes Equation (6) [10]:

t/qt = 1/k2q2
e + t/qe (6)

The values of the k2 and qe are calculated from the intercepts and slopes of the plots of
t/qt vs. time (Figure 12), and the corresponding coefficient of determined R2 values are listed
in Table 2. The experimental value of qe is 10 mg/L and the theoretical value is 9.708 mg/L
for second order. From this reason, it can be interpreted that the adsorption process of
methylene blue dye on the biosynthesized AgNPs follows second order kinetics [29–31].

Table 2. Pseudo first and second order kinetic models.

Pseudo First Order Pseudo Second Order

qe (mg/g) kad (1/min) R2 qe (mg/g) kad (g/mg/min) R2

81.01 0.046 0.916 97.08 0.707 0.99
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Figure 12. Pseudo second order Kinetic model—the adsorption process of the methylene blue dye on
the biosynthesized AgNPs.

As a result of these findings, the prepared nanoparticles mediated by S. molesta could
be used effectively in environmental remediation, and their phenomenal behavior might be
extensively utilized to breakdown hazardous organic colorants from different industrial ef-
fluents. The pseudo first order (P.F.O) reaction R2 value was calculated as 0.91 as compared
to pseudo second order (P.S.O) reaction 0.99 and fitted well. Decolorization percentage of
methylene blue dye as adsorbed on the AgNPs was fitted with the Langmuir model.

4. Conclusions

This study highlights the use of nanotechnology for methylene blue dye adsorption
on biosynthesized silver nanoparticles with effective results. It was shown that bioactive
components of the aquatic macrophyte (S. molesta) extracts can be used as a reducing agent
to fabricate silver nanoparticles used efficiently in methylene blue dye adsorption. This
is a quick method for the production of well-defined silver nanoparticles, as evidenced
by UV-Vis, TEM, SEM, and SAED methods. The efficient activity of silver nanoparticles
enhancing the methylene blue dye degradation was observed. The biosynthesized Ag-NPs
have high adsorption activity against the decolorization of methylene blue dye. The present
study could be an indication for further future research to identify other nanoparticles for
different synthetic dyes for efficient degradation potential.
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