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Abstract: Pyrochlore titanate (Y2Ti2O7) is a promising material for a wide range of applications
in optoelectronics and photocatalysis due to its advantageous chemical, mechanical, and optical
properties. To enhance its potential for such uses, however, a high-quality and scalable synthesis
method is required. We here investigate the crystallization of sol–gel produced Y2Ti2O7 layers. We
observe a transition of the amorphous pyrochlore phase at annealing temperatures below 700 ◦C. The
transmittances of the Y2Ti2O7 thin layers annealed at 400 to 700 ◦C are approximately 92.3%. The
refractive indices and packing densities of Y2Ti2O7 thin layers annealed at 400–700 ◦C/1 h vary from
1.931 to 1.954 and 0.835 to 0.846, respectively. The optical bandgap energies of Y2Ti2O7 thin layers
annealed at 400–700 ◦C/1 h reduce from 4.356 to 4.319 eV because of the Moss–Burstein effect. These
good electronic and optical properties make Y2Ti2O7 thin layers a promising host material for many
potential applications.

Keywords: pyrochlore; Y2Ti2O7; amorphous; sol–gel deposition; refractive index; bandgap energy;
packing density

1. Introduction

Pyrochlore titanate (Y2Ti2O7) is an important material because it has high mechani-
cal [1,2], chemical [3], thermal stability [4,5], low phonon energy [4,6], good photocatalytic
activity [7], a high refractive index [8], and excellent ion-electron conductivity [9,10], etc.
Therefore, it has many applications, such as photocatalyst [11], solid-electrolytes of fuel
cells [12,13], gas-sensing materials [14], high-K dielectrics [15,16], H2 storage material [17],
nuclear waste storage material [18], transistor device [19], and photovoltaic material [20].
Moreover, Y2Ti2O7 can act as the host matrix of phosphor materials. The rare earth-doped
Y2Ti2O7 have attracted many researchers to pay attention to the application of fiber am-
plifiers [21], integrated electronic devices [22], up-conversion luminescence temperature
sensing material [23–25], and visible up-conversion luminescent solar converter (LSC) in
recent years [26].

To realize these applications, a large-scale synthesis approach is needed. To date,
Y2Ti2O7 nanocrystals or thin films have been produced by several approaches, such as
coprecipitation [27,28], hydrothermal processes [29], mechanical milling [30,31], the liquid
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mix technique [32], solid-state reaction [33,34], sol–gel processes [14,35,36], and aerosol-
assisted chemical vapor deposition (AACVD) [20]. However, certain processes are not
readily scalable due to stringent process conditions and complex preparation.

Sol–gel processes, on the other hand, have demonstrated the potential to produce
large scale thin films using simple tools, such as printing and spin-coating. Such films are
then annealed at high temperatures to enhance their performance.

We here systematically investigate the effects of annealing temperatures on the phase
development, layer morphology, and related optoelectronic properties of Y2Ti2O7 thin lay-
ers. We demonstrate that Y2Ti2O7 thin layers have high average transmittance (73.8–75.1%),
high refractive index (1.931–1.954 at λ = 550 nm), and high bandgap energy (4.319–4.356 eV),
which depends on the variation of annealing temperatures (400–750 ◦C). Utilizing this
understanding, we were able to produce high-quality Y2Ti2O7 thin layers directly on a
glass substrate. The good optoelectronic properties and scalable production open up new
directions for Y2Ti2O7-based applications.

2. Experimental Procedures
2.1. Fabrication of Sol–Gel Solution and Thin Layers

Titanium solution was prepared by mixing acetic acid (HAc, 99.9%, Merck, Darmstadt,
Germany), titanium isoproxide (≥99%, Acros, Geel, Belgium), and 2-methoxyethanol
(2-MOE, 99.9%, Merck) in a molar ratio of Ti/HAc/2-MOE = 1/15/10. Yttrium solution
was produced by mixing methanol (Me, ≥99.9%, Merck), ethylene glycol (EG, ≥99.9%,
Alfa, Lancashire, UK), and yttrium acetate (Y(CH3COO)3·4H2O, 99.9%, Alfa) with molar
ratio of Y/Me/EG = 1/50/15 and dissolved into the titanium solution. Homogeneous
hydrolysis reaction were completed by stirring the mixture solution for 10 h [37,38].

Subsequently, the Y2Ti2O7 precursor solution was spin-coated on a Corning 7059 glass
substrate at 1000 rpm for 10 s and then 3000 rpm for 30 s. Heating to 120 ◦C was conducted
to dry the deposited sol–gel film. The dried sol–gel films were then pyrolyzed at 380 ◦C for
50 min in ambient atmosphere.

The sol–gel coating process and subsequent pyrolysis process was repeated eight
times to obtain films of approximately 430 nm thickness. Afterwards, thin layers were
annealed from 400 to 750 ◦C for 1 h in ambient conditions. The average layer thickness of
400 ± 10 nm and other property calculations (grain size, transmittance, refractive index,
and optical bandgap) were obtained by averaging over five samples.

2.2. Characterization of Thin Layers

The α-step profile meter (Alpha-Step IQ, KLA-Tencor, Milpitas, CA, USA) is utilized
for the thickness of thin layers’ measurements. A scanning electron microscopy (SEM)
(Hitachi, Tokyo, Japan, S4800-I) was performed at an accelerating voltage of 15 kV. A
Shimadzu UV-2100 spectrophotometer was used for transmission spectra measurement
of the Y2Ti2O7 thin layer in the UV-visible range. X-ray diffraction (XRD) measurements
of thin layers were performed by an X-ray diffractometer (Bruker, Billerica, MA, USA, D8
discovery) with CuKα radiation (λ = 0.154 nm).

3. Results and Discussion
3.1. Crystal Structure and Layer Morphology

The XRD patterns in Figure 1 show the effect of annealing at different temperatures
(400, 500, 600, 700, and 750 ◦C) for 1 h on the phase transformation of Y2Ti2O7 thin
layers. For the annealing temperatures ≤ 700 ◦C, Y2Ti2O7 thin layers exhibit a weak broad
continuum around 2θ = ~30◦ ((222) peak) which is the characteristic of an amorphous
structure exhibiting short-range order. When the annealing temperature reaches 750 ◦C,
the well-crystallized pyrochlore phase is identified by the (222), (311), (400), and (622)
peaks (JCPDS No. 42-0413). No TiO2, Y2O3, and other phases are observed in this system.
This transition temperature between amorphous and crystalline Y2Ti2O7 is in the range of
previous reports on sol–gel processes, e.g., 725 [39], 750 [40], or 800 ◦C [35,36]. However,
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the other sol–gel or AACVD methods can induce the formation of crystallized Y2Ti2O7
phase at 550–570 ◦C [14,20]. The different starting materials and processes can result in the
different crystalized temperatures and crystallinity.

The average grain size (D) of Y2Ti2O7 thin layers is determined by the Scherrer
equation [41]:

D =
Sλ√

BM − BS cos θ
(1)

where S is the Scherrer constant (0.9), λ is the wavelength of incident radiation, θ is the
Bragg angle corresponding to the XRD peak being considered. BM and BS are the width in
radians of one of the sample and standard (Si powder) diffraction peaks at half-maximum,
respectively. The instrument broadening (BS) is 0.14 in our system.

After calculation, the average estimated grain sizes of the Y2Ti2O7 thin layers annealed
at 600, 700 and 750 ◦C for 1 h are ~1.4 nm, ~1.5 nm, and ~32 nm, respectively. It is worth
noting that the intensity of the broad (222) peak gradually increases when the annealing
temperature increases from 400 to 700 ◦C. Furthermore, the crystals grow up and the XRD
peak of the (222) facet becomes sharper at 750 ◦C. This means that the portion of amorphous
Y2Ti2O7 phase reduces as the crystallinity of Y2Ti2O7 phase is enhanced. Due to the glass
transition temperature of the Corning 7059 substrate, the annealing temperature range is
limited to 750 ◦C.
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Figure 1. XRD patterns of the Y2Ti2O7 thin layers annealed at the temperatures of 400 to 750 ◦C for
1 h. The 2θ positions for bulk Y2Ti2O7 are shown on the plot for the reference.

Figure 2 represents top-view SEM images of the Y2Ti2O7 thin layers annealed at 400,
500, 600, 700, and 750 ◦C for 1 h. No crystal facets or signs of grain boundaries were
detected when samples were annealed below 750 ◦C. This absence is expected from our
XRD analysis, as the grain size of these films is below the resolution of the SEM. Conversely,
crystal structures and grain boundaries can be observed at 750 ◦C annealing. As the surface
of sol–gel spin coating thin films is very smooth, SEM images are not very clear.
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Figure 2. Top-view SEM imagines of the Y2Ti2O7 thin layers annealed at 400, 500, 600, 700, and
750 ◦C for 1 h (magnification: 200 K—400–750 ◦C, 300 K—750 ◦C).

3.2. Optoelectronic Properties

Figure 3 shows the effect of annealing temperatures on the transmittance spectra of the
Y2Ti2O7 thin layers annealed at 400, 500, 600, 700, and 750 ◦C for 1 h. The small fluctuation
at high transmittances is due to the Fabry–Perot interference phenomenon of multiple
reflected beams.
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For Y2Ti2O7 thin layers annealed at 400, 500, 600, and 700 ◦C, the regular interference
fringes indicate that all of the Y2Ti2O7 thin layers have smooth interfaces and surfaces.
The transmittance peaks of difference annealing temperatures slightly shift. Thin layers
with different refractive indices result in the different optical path lengths for the construc-
tive/destructive interference. However, Y2Ti2O7 thin layers annealed at 750 ◦C exhibit
more random interference. This effect originates from the surface melting of the glass
substrate and other optical properties (transmittance, optical bandgap, and refractive index)
of Y2Ti2O7 thin layers annealed at 750 ◦C cannot be calculated.

The maximum transmittances in the wavelength ranging 200–1100 nm of the Y2Ti2O7
thin layers annealed at 400–700 ◦C/1 h are approximately 92.3%. These amorphous thin
layers have small grain size and low surface roughness resulting in the weak scattering
and high transmittance.

The refractive index (n) of the Y2Ti2O7 thin layer can be obtained from the trans-
mittance spectra by fit to the Swanepoel and Cauchy equation [42]. Figure 4 shows the
wavelength dependence of refractive indices for Y2Ti2O7 thin layer annealed at 400, 500,
600, and 700 ◦C for 1 h. As the annealing temperature increases, the refractive index of the
thin layer increases. The refractive indices are 1.931, 1.936, 1.941, and 1.954 at λ = 550 nm
for Y2Ti2O7 thin layers annealed at 400, 500, 600, and 700 ◦C for 1 h, respectively. At higher
temperatures, the crystallinity and densification of Y2Ti2O7 thin layers are also improved,
which leads the higher refractive indices of Y2Ti2O7 thin layers. On the other hand, the
refractive index of the amorphous phase is usually lower than that of high crystalline phase
(e.g., the refractive index of bulk Y2Ti2O7 is 2.34) [43].
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In addition, we calculate the degree of porosity in Y2Ti2O7 thin layers. By follow-
ing the Bragg–Pippard formula [44], the packing density (P) can be calculated using the
following equation:

n f
2 =

(1− P)nv
4 + (1 + P)np

2nb
2

(1 + P)nv2 + (1− P)nb
2 (2)

where nv, nb and nf are the refractive indices of voids (nv = 1 for empty voids), bulk materials,
and porous layers, respectively. The packing densities of the Y2Ti2O7 thin layers annealed
at 400, 500, 600, and 700 ◦C for 1 h are 0.835, 0.837, 0.84, and 0.846, respectively. The packing
density increases with annealing temperature, which is attributed to the significant increase
in the crystallinity and reduction in the porosity.
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Figure 5 plots the relationship of (αhν)2 versus photon energy (E) of the Y2Ti2O7 thin
layers annealed at 400–700 ◦C/1 h, and the extrapolated optical bandgap energies of thin
layers were determined. 
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 Figure 5. (a) (αhν)2 as a function of photon energy (E) of the Y2Ti2O7 thin layers annealed at

400–700 ◦C/1 h. (b) Enlarged diagram of (a). (c) Optical bandgap as a function of annealing
temperatures. The error bars represent the statistical deviation among five samples.

The optical bandgap energy (Eg) of thin layer can be related to absorption coefficient (α)
by Equation (3)

αhν = const. (hν−Eg)m (3)
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where m = 1/2, 3/2, 2 or 3 indicates allowed direct, forbidden direct, allowed indirect, and
forbidden indirect electronic transitions, respectively [45]. A better linear dependence can
be found in the (αhν)1/m versus E plots at m = 1/2 for all thin layers, which means the
Y2Ti2O7 thin layer belongs to direct-transition-type material.

As shown in Figure 5, the optical bandgap energy decrements from 4.356 to 4.319 eV
were observed when the Y2Ti2O7 thin layers annealing temperatures increase from 400 to
700 ◦C. These optical bandgap energies are higher than that of the crystallized Y2Ti2O7 thin
films [14]. There are several causes or aspects, such as grain size [46,47], thickness [46,48],
stress [49], and defects [50,51] could affect or shift the bandgap energy of thin layer materials.
For the amorphous Y2Ti2O7 thin layers annealed from 400 to 700 ◦C, however, this red shift
of bandgap energy could be mainly attributed to defects.

Many defects such as unsaturated bonds, dangling bonds, interstitial atoms, and vacan-
cies can exist in amorphous structure. In general, oxygen vacancies can be observed in many
transition metal oxide thin layers such as ZnO [52], BaxSr1-xTiO3 [53,54], CdIn2O4 [55,56],
WO3 [57,58], and TiO2 [59]. Moreover, enormous oxygen vacancies can exist in the Y2Ti2O7
lattice because the large unit cell of Y2Ti2O7 allows some of the oxygen ions to move
relatively freely, which results in the formation of small polarons [57]. Therefore, oxygen
vacancies could be the dominant vacancy defects in amorphous Y2Ti2O7 thin layers.

According to the defect reaction equation, two free charge carriers can be generated
from the creation of one oxygen vacancy [60]. Like the Moss–Burstein effect, the lowest state
of the conduction band is blocked by these free charge carriers, resulting in an increase in
the optical bandgap energy [61,62]. After higher temperature annealing, the crystallization
of amorphous Y2Ti2O7 thin layers was improved with the annihilation of oxygen vacancies,
which is associated with the reduction in free charge carriers and the decrease in the optical
bandgap energy, as shown in Figure 6.
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annealed at 400 and 700 ◦C for 1 h.

4. Conclusions

Y2Ti2O7 thin layers with a thickness of ~400 nm thin layers were fabricated by the
sol–gel technique. At annealing temperatures below 700 ◦C, all thin layers maintain an
amorphous structure. The maximum transmittance of amorphous thin layers is approxi-
mately 92.3%. The transmittance is high because of small grain size, low surface roughness,
and weak scattering. The refractive indices and optical bandgap energies of Y2Ti2O7 thin
layers are strongly related to the annealing temperatures. The enlarged refractive indices
with the increase in annealing temperatures are attributed to thin layers with the improved
densification and crystallinity. The refractive indices (n at λ = 550 nm) of Y2Ti2O7 thin layers
can be altered from 1.931 to 1.954 as the annealing temperature raises from 400 to 700 ◦C/1 h.
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The amorphous Y2Ti2O7 thin layers annealed at higher temperatures possess smaller optical
bandgap energy (4.319 eV), which could be attributed to the Burstein–Moss shift.
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