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Abstract: The monoclinic YCOB crystal still maintains good piezoelectric properties at 800 ◦C; thus,
it has a good application prospect in high-temperature piezoelectric acoustic wave sensors. How-
ever, due to the lower symmetry compared crystals in trigonal and tetragonal systems, the exciting
characteristics of piezoelectric plates based on monoclinic YCOB crystals are more complicated.
The vibration analysis model of lateral-field-excitation (LFE) devices based on monoclinic crystals
is scarce; thus, the coupling relationships between different vibration modes and energy-trapping
characteristics of the devices are unclear, which hinders the optimal design of devices. In this paper,
by using Mindlin plate theory, the high-frequency vibrations of piezoelectric resonators based on mon-
oclinic YCOB crystal plates excited by a lateral electric field are modeled and analyzed. The coupling
relationships between the vibration modes of the device are clarified. The influences of the electrode
width, electrode/plate mass ratio and electrode gap value on resonances and energy-trapping charac-
teristics of the device are achieved. In addition, the effects of the structure parameters on the mass
sensitivity of the monoclinic YCOB LFE devices are investigated, which are further verified by FEM
simulations. The results are crucial to obtaining good resonance and sensing characteristics for LFE
high-temperature piezoelectric sensors based on crystals with monoclinic symmetry.

Keywords: bulk acoustic wave; lateral field excitation; monoclinic crystals; energy trapping

1. Introduction

Piezoelectric bulk acoustic wave devices have been extensively utilized in gas and
liquid-phase sensing applications in recent years. Conventional piezoelectric bulk acous-
tic wave sensors usually employ quartz crystal plate stimulated by thickness electric
field (containing electrodes on the upper and lower surfaces) [1–8]. Compared with the
thickness-field-excitation (TFE), the lateral-field-excitation (LFE) (with electrodes on the
same surface) has the advantages of higher quality factors and frequency stabilities, and
lower crystal aging rates [9–13]. Sensors applied in high-temperature occasions are in
increasing demand, such as gas detection, solid state particle detection and film thickness
monitoring in coating systems, etc. [14,15]. Quartz crystals have been used in previous
LFE piezoelectric sensors. However, when the temperature exceeds 300 ◦C, the devices
fail to work due to the phase transition of quartz crystals. Besides, due to the low piezo-
electric coupling coefficient, the frequency stability and sensitivity of LFE sensors based
on quartz crystals are not enough [16]. Monoclinic YCa4O(BO3)3 (YCOB) crystals do not
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have any phase transition below 1000 ◦C. Moreover, below 800 ◦C, it has a high resistivity
of 2 × 108 Ohm · cm [17]. In the temperature range of 20–800 ◦C, the variations of the
piezoelectric constants and dielectric loss of YCOB crystals are both less than 0.3%, in other
words, the dielectric and piezoelectric characteristics of YCOB crystals are almost indepen-
dent of the temperature [18–20]. Thus, LFE piezoelectric bulk acoustic wave devices using
YCOB crystals have good application perspectives in the field of high-temperature sensing.

For vibration analysis of AT-cut quartz crystals excited by lateral electric fields, J. S.
Yang obtained some useful conclusions [21,22] regarding the lateral electric fields which
were generated through a couple of side electrodes at the plate edges. However, due to the
limitation of processing techniques, it is difficult to fabricate this kind of ideal electrode due
to the thinness of the crystal plates. It is feasible to adopt a couple of electrodes at the plate’s
top surface to produce lateral electric fields [23]. YCOB crystals belong to the monoclinic
system with space group Cm; due to the lower symmetry compared crystals in trigonal and
tetragonal systems, the exciting characteristics of piezoelectric plates based on monoclinic
YCOB crystals are more complicated. Until now, the LFE devices’ vibration analysis model
using monoclinic crystals has been scarce [24]; thus, the coupling relationships between
different vibration modes are unclear, and energy-trapping characteristics of the devices
are unknown, which hinders the optimal design of devices.

The current work models and analyzes the high-frequency resonances of bulk acous-
tic devices based on monoclinic YCOB crystals stimulated through lateral electric fields
generated by surface electrodes. The coupling relationships between different vibration
modes and energy-trapping characteristics of the LFE device are clarified. Based on those,
the influences of structure parameters on mass sensitivities are revealed, which are further
verified through finite element-based numerical simulations.

2. Governing Equations

Figure 1 presents a rectangular (zxw) −90◦ YCOB crystal plate; 2h, 2c, and ρ represent
the crystal plate’s thickness, length, and mass density, respectively. Coordinate axes x1 and
x2 are shown in Figure 1, and x3 axis is determined from x1 and x2 axes by the right-hand
rule. The crystal plate is symmetric about x1 = 0, and unbounded in the x3 orientation.
In the areas of a <|x1|< b , the plate is electroded at the top surface, while the electrode’s
thickness and mass density are denoted by 2h′ and ρ′, respectively. A time-harmonic
voltage ±V exp(iωt) is exerted across the electrodes, generating an electric field with a
dominating part E1(x1, t) in the unelectroded central area.
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Figure 1. A monoclinic YCOB crystal plate with a lateral-field-excitation.

The distributions of dielectric (ε), piezoelectric (e), and elastic (c) constants of z-cut
monoclinic crystals with Cm space group are as below, respectively:
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ε =

 ε11 0 ε13
0 ε22 0

ε31 = ε13 0 ε33

,

e =

 e11 e12 e13 0 e15 0
0 0 0 e24 0 e26

e31 e32 e33 0 e35 0

,

c =



c11 c12 c13 0 c15 0
c21 = c12 c22 c23 0 c25 0
c31 = c13 c32 = c23 c33 0 c35 0

0 0 0 c44 0 c46
c51 = c15 c52 = c25 c53 = c35 0 c55 0

0 0 0 c64 = c46 0 c66

.

The Mindlin plate equations for monoclinic crystals are different for the unelectroded
and electroded plates, given separately in the following. In the unelectroded area, for
coupled thickness-shear, thickness-twist, and flexure motions, the displacement and electric
potential fields can be calculated approximately by using Mindlin’s plate theory [23,25]:

u1
∼= x2u(1)

1 (x1, t), u2 ∼= u(0)
2 (x1, t), u3 ∼= x2u(1)

3 (x1, t),
φ ∼= φ(1)(x1, t),

(1)

where u(1)
1 (x1, t) represents the thickness-shear (TSh1) displacement, coupled to the flexural

(F1) displacement u(0)
2 (x1, t) and the thickness-twist (TT1) displacement u(1)

3 (x1, t).φ(1) is

the electric potential. The governing equations for u(1)
1 ,u(0)

2 ,u(1)
3 ,φ(1) are as follows:

T(1)
1,1 − T(0)

6 = 2h3

3 ρ
..
u(1)

1 ,

T(0)
6,1 = 2hρ

..
u(0)

2 ,

T(1)
5,1 − T(0)

4 = 2h3

3 ρ
..
u(1)

3 ,

D(1)
1,1 − D(0)

2 = 0.

(2)

The following constitutive equations express T(0)
6 , T(1)

5 , T(0)
4 , T(1)

1 , D(1)
1 , D(0)

2 , (T(j)
i ) is

stress, D(j)
i is electric displacement)with respect to the plate displacements u(1)

1 ,u(0)
2 ,u(1)

3 ,
and the plate’s electric potential φ(1):

T(0)
6 = 2h[k1k3c64u(1)

3 + k2
1c66(u

(1)
2,1 + u(1)

1 )+k1e26φ(1)],

T(1)
5 = 2h3

3 [c51u(1)
1,1 + c55u(1)

3,1 + e15φ
(1)
,1 ],

T(0)
4 = 2h[k2

3c44u(1)
3 + k1k3c46(u

(1)
2,1 + u(1)

1 ) + k3e24φ(1)],

T(1)
1 = 2h3

3 [c11u(1)
1,1 + c15u(1)

3,1 + e11φ
(1)
,1 ],

D(1)
1 = 2h3

3 [e11u(1)
1,1 − ε11φ

(1)
,1 + e15u(1)

3,1 ],

D(0)
2 = 2h[−ε22φ(1) + k3e24u(1)

3 + k1e26(u
(1)
2,1 + u(1)

1 )],

(3)

where

k1 =

√
π2

12
, k3 =

√
π2 · c3

12 · c44
, c3 = (c22 + c44 −

√
(c22 − c44)

2 + 4 · c24
2)/2.
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Substitution (3) into (2), the motion control equations can be obtained as follows:

c11u(1)
1,11 + c15u(1)

3,11 + e11,(1)φ11−
3
h2 [k1k3c64u(1)

3 + k2
1c66(u

(0)
2,1 + u(1)

1 ) + k1e26φ(1)] = ρ
..
u(1)

1 ,

k1k3c64u(1)
3,1 + k2

1c66(u
(0)
2,11 + u(1)

1,1 ) + k1e26φ
(1)
,1 = ρ

..
u(0)

2 ,

c51u(1)
1,11 + c55u(1)

3,11 + e15φ
(1)
,11 −

3
h2 [k2

3c44u(1)
3 + k1k3c46(u

(0)
2,1 + u(1)

1 ) + k3e24φ(1)] = ρ
..
u(1)

3 ,

e11u(1)
1,11 + ε11φ

(1)
,11 + e15u(1)

3,11 −
3
h2 [−ε22φ(1) + k3e24u(1)

3 + k1e26(u
(0)
2,1 + u(1)

1 )] = 0.

(4)

For the electroded area, spatially, the electric potential φ(1) is a constant (which can still
be time-varying). Considering the mass impact of the electrodes, the governing equations
take the following form:

T(1)
1,1 − T(0)

6 = 2h3

3 (1 + 3R)ρ
..
u(1)

1 ,

T(0)
6,1 = 2h(1 + R)ρ

..
u(0)

2 ,

T(1)
5,1 − T(0)

4 = 2h3

3 (1 + 3R)ρ
..
u(1)

3 ,

D(1)
1,1 − D(0)

2 = 0,

(5)

where R = ρ′h′/(ρh) << 1 represents the electrode/plate mass ratio, and the relevant
constitutive equations are:

T(0)
6 = 2h · [k1k3c64u(1)

3 + k1c66(u
(0)
2,1 + u(1)

1 )+k1e26φ(1)],

T(1)
5 = 2h3

3 [c51u(1)
1,1 + c55u(1)

3,1 + e15φ
(1)
,1 ],

T(0)
4 = 2h

3 [k3
2
c44u(1)

3 + k1k3c46(u
(0)
2,1 + u(1)

1 ) + k3e24φ(1)],

T(1)
1 = 2h3

3 [c11u(1)
1,1 + c15u(1)

3,1 + e11φ
(1)
,1 ],

D(1)
1 = 2h3

3 [e11u(1)
1,1 − ε11φ

(1)
,1 + e15u(1)

3,1 ],

D(0)
2 = 2h[−ε22φ(1) + k3e24u(1)

3 + k1e26(u
(0)
2,1 + u(1)

1 )],

(6)

where k
2
1 = k2

1(1 + R), k
2
3 = k2

3(1 + R). Substitution Equation (6) into Equation (5) results in
the motion equations of the electroded region:

c11u(1)
1,11 + c15u(1)

3,11 + e11φ
(1)
,11 −

3
h2 [k1k3c64u(1)

3

+k1
2
c66(u

(0)
2,1 + u(1)

1 ) + k3e26φ(1)] = ρ(1 + 3R)
..
u(1)

1 ,

k1k3c64u(1)
3,1 + k1

2
c66(u

(0)
2,11 + u(1)

1,1 ) + k1e26φ
(1)
,1 = ρ(1 + R)

..
u(0)

2 ,

c51u(1)
1,11 + c55u(1)

3,11 + e15φ
(1)
,11 −

3
h2 [k3

2
c44u(1)

3

+k1k3c46(u
(0)
2,1 + u(1)

1 ) + k3e24φ(1)] = ρ(1 + 3R)
..
u(1)

3 ,

e11u(1)
1,11 − ε11φ

(1)
,11 + e15u(1)

3,11 −
3
h2 [−ε22φ(1) + k3e24u(1)

3

+k1e26(u
(0)
2,1 + u(1)

1 )] = 0.

(7)

3. Dispersion Property and Frequency Spectra

To understand the resonance behaviors of the YCOB piezoelectric plate, it is necessary
to evaluate the dispersion equations of waves in unbounded plates. The wave frequency
and the wave number along x1 are denoted by ω and ξ, respectively. According to the
straight wave hypothesis, assuming that the potential and displacements are functions
related to coordinates x1 and time t, then in both the unelectroded and electroded regions:

u(0)
2 = A1 sin(ξx1 −ωt), u(1)

3 = A2 cos(ξx1 −ωt),
u(1)

1 = A3 cos(ξx1 −ωt), φ(1) = A4 cos(ξx1 −ωt),
(8)

where A1 − A4 represent unknown parameters, ω describes the vibration frequency, ξ is
the wave number. Substituting (8) into (4) results in four linear homogeneous relations for
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A1 − A4. The determinant of the coefficient matrix should be zero for nontrivial solutions,
resulting in a relation between ω and ξ. Now, the dimensionless frequency Ω and wave
number X are defined:

Ω =
ω

ω0
, X = ξ/

π

2h
, ω0 = (π/2h)

√
c66/ρ, (9)

where ω0 represents the main frequency of TT1 mode of an unelectroded plate and is
utilized as a normalizing frequency. h, ρ and c66 are half the thickness, mass density and
elastic constant of the YCOB crystal plate, respectively.

In the dispersion diagram shown in Figure 2, the horizontal and vertical axes describe
the normalized wave number (Z) and frequency (Ω), respectively. Due to the electrodes’
mass influence, the frequency of the electroded area is always a little smaller than that
of the unelectroded region. The branches for the TT1 and TSh1 waves have a limited
cutoff with the middle vertical axis, which is the cutoff frequency below which the wave
cannot transmit. For TT1 and TSh1 vibrations in the electroded region, when the vibration
frequency is between the blue and black lines’ cutoff frequencies, the wave number is real;
namely, the wave can propagate normally, while the wave number for the unelectroded
region is purely imaginary, namely the wave decays exponentially. This phenomenon is
the energy-trapping.
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Figure 2. Dispersion relationships of (zxw)− 90◦ YCOB plate under LFE.

For the finite plate’s free vibrations within −c < x1 < c, the boundary conditions are:

T(0)
6 = 0, T(1)

5 = 0, T(1)
1 = 0, D(1)

1 = 0, x1 = c (10)

The substitution of (8) into (10) results in four linear homogeneous equations for
A1 − A4. For nontrivial solutions, the determinant of the coefficient matrix of the equa-
tions should be zero. The frequency equations determine relations between the resonant
frequency Ω and the length/thickness ratio c/h of the plate; namely, the frequency spectra
curve can be obtained. The waves’ frequency spectra (TT1, TSh1, F1) are shown in Figure 3.
The horizontal straight lines in the figure represent TT1 modes, the slanted curved lines
in the upper part represent F1 modes, and the slanted straight lines in the lower part
represent TSh1 modes. The intersection of the two lines is with the strongest coupling. The
weakest coupling occurs at the midpoint between two intersections, such as the red point
in Figure 3.
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4. Electrically Forced Vibrations of Finite Crystal Plates

Due to the crystal plate’s symmetry and the applied voltage’s asymmetry, the cor-
responding piezoelectric coupling fields can be symmetric or asymmetric. The current
work only considers the right side of the crystal plate. The corresponding solutions for the
electroded and unelectroded regions can be obtained by applying boundary conditions at
the edge and continuity conditions at the junctions between various regions.

4.1. Central Unelectroded Area with 0 < x1 < a

Based on the standing wave hypothesis of the finite plate, the displacements and
potential are assumed to be

u(0)
2 = A1 sin(ξx1 −ωt),

u(1)
3 = A2 cos(ξx1 −ωt),

u(1)
1 = A3 cos(ξx1 −ωt),

φ(1) = A4 cos(ξx1 −ωt).

(11)

Substituting (11) into (4) gives four linear relations for A1− A4. The determinant of the
coefficient matrix must be zero for nontrivial solutions, which yields a polynomial equation
of degree four of ξ2. Four roots can be obtained by solving the equation, which can be

expressed as (ξ(m))
2
, m = 1–4. The nontrivial solution of the linear relations corresponding

to a typical ξ(m) is denoted by β
(m)
p with p = 1–4. β

(m)
p represents the ratios between A1–A4.

Now, the following symmetric solution can be built:
u(0)

2

u(1)
3

u(1)
1

φ(1)

 =
4

∑
m=1

C(m)


β
(m)
1 sin(ξ(m)x1 −ωt)

β
(m)
2 cos(ξ(m)x1 −ωt)

β
(m)
3 cos(ξ(m)x1 −ωt)

β
(m)
4 cos(ξ(m)x1 −ωt)

, (12)

where C(1) − C(4) are undetermined constants.

4.2. Electroded Area with a < x1 < b

Equation (7)(1,3) is inhomogeneous; the solutions of u(1)
1 , u(1)

3 can be written as the
sum of the general solution of the corresponding homogeneous equation and a particular
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solution. Equation (7)(2) is homogeneous; thus, the solution of u(0)
2 can be written as the

general solution of the corresponding homogeneous equation [26].

u(0)
2 = A1eiξx1 eiwt,

u(1)
3 = A2eiξx1 eiwt + ũ(1)

3 ,

u(1)
1 = A3eiξx1 eiwt + ũ(1)

1 ,

φ(1) = A4eiξx1 eiwt + φ̃(1).

(13)

Substitution (13) into (7) gives four linear equations for A1 − A4. The determinant
of the coefficient matrix must be zero for nontrivial solutions, which yields a polynomial
equation of degree four of ξ

2
. Eight roots can be obtained by solving the equation, which

can be expressed as ξ
(m)

, m = 1–8. The specific solution of electric potential here is given

by φ̃(1) = V/2c. When Equation (13) is substituted into the governing equations of the
displacements u(1)

3 and u(1)
1 , the specific solutions of displacements TT1 and TSh1 can

be obtained, denoted by ũ(1)
3 and ũ(1)

1 , respectively. The nontrivial solution of the linear

equations is denoted by β
(m)
p with p = 1–4 for a typical ξ

(m)
. β̃

(m)
p indicates the ratios

between A1 − A4. Now, the following general symmetric solutions can be built:


u(0)

2

u(1)
3

u(1)
1

φ(1)

 =
8

∑
m=1

C(m)


β1

(m)eiξ(m)x1 eiwt

β2
(m)eiξ(m)x1 eiwt

β3
(m)eiξ(m)x1 eiwt

β4
(m)eiξ(m)x1 eiwt


+


0

ũ(1)
3

ũ(1)
1

φ̃(1)

, (14)

where C(1) − C(8) describe unknown parameters, ũ(1)
3 , ũ(1)

1 and φ̃(1) satisfy the following
equations:

ũ(1)
3 =

12·k3 ·e24 ·V
π2 ·L

+
e26 ·V·[12·(k3)

2 ·c44−c66 ·Ω2 ·(1+3R)]
(k3)·L·c64

[
−12·(k3)

2 ·c44
π2 +c66·Ω2·(1+3R)]·−12·(k1)

2 ·c66+π2 ·c66 ·Ω2 ·(1+3R)

12·(k1)
2 ·(k3)

2 ·c64

,

ũ(1)
1 =

12·k3 ·e24 ·V
πL +

e26 ·V·[12·(k3)
2 ·c44−c66 ·Ω2 ·(1+3R)]

(k3)
2 ·L·c64

[
−12·(k3)

2 ·c44
π2 +c66·Ω2·(1+3R)]·−12·(k1)

2 ·c66+π2 ·c66 ·Ω2 ·(1+3R)

12·(k1)
2 ·(k3)

2 ·C64

[ −c66
k3·c64

+ π2·c66·Ω2·(1+3R)
12·k1·k3·c64

]− e26·V
k3·L·c64

,

φ̃(1) = V/(2c).

(15)

4.3. Outer Unelectroded Area with b < x1 < c

Based on the standing wave hypothesis, the displacement and potential forms are
given:

u(0)
2 = A1eiξx1 eiwt,

u(1)
3 = A2eiξx1 eiwt,

u(1)
1 = A3eiξx1 eiwt,

φ(1) = A4eiξx1 eiwt.

(16)

Substituting (16) into (4) gives rise to four linear equations for ξ̃2. The determinant of
the coefficient matrix should be zero for nontrivial solutions, which yields a polynomial
equation of degree four of ξ̃2. Eight roots can be obtained by solving the equation, which
can be expressed as ξ̃(m), m = 1–8. Assume that the linear equations’ nontrivial solution is
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indicated by β̃
(m)
p with p = 1–4 for a typical ξ̃(m). β̃

(m)
p indicates the ratios between A1 − A4.

Now, the equation’s general symmetric solution is derived as
u(0)

2

u(1)
3

u(1)
1

φ(1)

 =
8

∑
m=1

C̃(m)


β̃
(m)
1 eiξx1 eiwt

β̃
(m)
2 eiξx1 eiwt

β̃
(m)
3 eiξx1 eiwt

β̃
(m)
4 eiξx1 eiwt

, (17)

where C̃(1) − C̃(8) represent unknown parameters.

4.4. Boundary and Continuity Conditions

For the right half of the plate shown in Figure 1, the boundary and continuous condi-
tions are shown below:

At x1 = a, the continuity conditions are:

u(0)
2 (x1 = a−) = u(0)

2 (x1 = a+)
u(1)

3 (x1 = a−) = u(1)
3 (x1 = a+)

u(1)
1 (x1 = a−) = u(1)

1 (x1 = a+)
T(0)

6 (x1 = a−) = T(0)
6 (x1 = a+)

T(1)
5 (x1 = a−) = T(1)

5 (x1 = a+)
T(1)

1 (x1 = a−) = T(1)
1 (x1 = a+)

D(1)
1 (x1 = a−) = D(1)

1 (x1 = a+)
φ(1)(x1 = a−) = φ(1)(x1 = a+)

(18)

The continuity conditions at x1 = b can be written as:

u(0)
2 (x1 = b−) = u(0)

2 (x1 = b+)
u(1)

3 (x1 = b−) = u(1)
3 (x1 = b+)

u(1)
1 (x1 = b−) = u(1)

1 (x1 = b+)
T(0)

6 (x1 = b−) = T(0)
6 (x1 = b+)

T(1)
5 (x1 = b−) = T(1)

5 (x1 = b+)
T(1)

1 (x1 = b−) = T(1)
1 (x1 = b+)

D(1)
1 (x1 = b−) = D(1)

1 (x1 = b+)
φ(1)(x1 = b−) = φ(1)(x1 = b+)

(19)

At x1 = c, the boundary conditions are:

T(0)
6 (x1 = c−) = 0

T(1)
5 (x1 = c−) = 0

T(1)
1 (x1 = c−) = 0

D(1)
1 (x1 = c−) = 0

(20)

Substituting (12), (14), and (17) into (18)–(20), results in twenty linear, non-homogeneous

expressions for twenty unknown parameters of C(1) − C(4),C(1) − C(8), and C̃(1) − C̃(8).
After determining the mentioned parameters, the resonators’ displacements and electric
potentials can be obtained for a crystal plate with a width of 2p in the x3 orientation. Now,
the free charge Qe, motional capacitance C, and static capacitance C0 are given by:

Qe = −D(1)
1 (x = a) · 2p, C = Qe

2V ,
C0 = 4ε11hp

2c .
(21)
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5. Results and Discussion
5.1. Mode-Coupling Analysis

As an example, consider a plate with a typical thickness of 2h = 0.0592 mm, a = 0.148 mm,
b = 1.2728 mm, c = 2.40056 mm, p = 2.368 mm, R = 0.008. (zxw)− 90◦ YCOB is used as
the crystal plate material. The electrode material is gold. Material parameters for YCOB
crystals can be found in [17]. The fundamental frequency of the device is 25 MHz. In
the performed computations, the material parameters are multiplied by a complex term
(1+ iQ−1), where “i” describes an imaginary number and “Q” describes a real number. The
viscous damping in the material can be represented with a complex elastic parameter. For
YCOB crystals, Q = 103 is utilized in the performed computations considering dampings
from material, air, and mounting.

Figure 4 depicts the resonance capacitance with respect to the driving frequency.
Resonance capacitance C is normalized by C0 = 4ε11hp/(2c), and ω0 is calculated from (9).
Three main resonance frequencies Modes 1-3 in Figure 4 can be observed, namely 0.9938
ω0, 1.008 ω0 and 1.031 ω0. In order to evaluate the three fundamental resonances in
Figure 4 in detail, the corresponding thickness-twist strain distribution u(1)

3,1 and flexure

strain distribution u(0)
2,1 are plotted in Figure 5a,b, respectively. In this case, since the lateral

electric field cannot stimulate the thickness-shear mode u(1)
1 , the thickness-shear strain

distribution is not considered here.
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In Figure 5a, it is shown that the intensity of thickness-twist strain u(1)
3,1 of Mode 1

is largest, and those of Modes 2 and 3 are both very weak. For Mode 1, although the
distribution of u(1)

3,1 is considerable in the electroded area, it rapidly declines to zero around
the plate edge. The mentioned phenomenon is the so-called energy-trapping effect, in which
the resonance characteristics can hardly be affected when mounting the device near the
plate edge. As presented in Figure 5b, the intensity of flexure strain u(0)

2,1 of Mode 1 is very
weak. Thus, the influences of flexure vibrations on thickness-twist vibration are negligible.
Therefore, there exists a good energy-trapping effect for vibrations of thickness-twist, and
Mode 1 is ideal for device applications.

In addition, the vibration mode shape for Mode 1 is simulated by using COMSOL
Multiphysics, which is shown in Figure 6. It is shown that the main vibration energy is
concentrated in the electroded area, vibrations in the unelectroded area are very weak;
namely, the energy-trapping effect is obvious. The resonance frequency obtained by the
simulation is 24.894 MHz, which is close to that obtained by the theoretical calculation
(24.845 MHz).
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5.2. Effects of Electrode Parameters on the Device’s Vibration Performances

The influences of electrode parameters on the resonator’s vibration performances are
examined. In Figure 7a, the electrode/plate mass ratio R is changed while maintaining the
other parameters same to those for Figure 5a. It is shown that the vibration intensity is
largest when R = 0.008. When R is smaller than 0.008, the vibration intensity increases while
increasing the electrode mass ratio R which leads to the resonator’s decreasing impedance
value. When R increases to be large enough, the mass effect of the electrode plays a
dominant role, which leads to the decreasing of the vibration intensity. Thus, in Figure 7a,
when R is larger than 0.008, the vibration intensity decreases with the increasing R.
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In Figure 7b, the electrode width b1 is changed while maintaining the other parameters
same to those for Figure 5a. It is shown that the vibration intensity increases monotonically
with the increase of the electrode width. The reason for this phenomenon lies in that as the
electrode width increases, the impedance value (Reciprocal of conductance) of the resonator
decreases, which leads to the larger vibration intensity. However, considering the actual
installation of the device, a certain installation area should be left, so the electrode width is
not be too large.

In Figure 7c, the electrode gap value a (the width of the central unelectroded region) is
varied while all other parameters are kept the same as those for Figure 5a. It is shown that
the vibration intensity decreases monotonically with the increase of the electrode gap value.
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When the two electrodes are closer to each other, the attenuation degree of the vibration
from energy-trapping is smaller, which results in the larger vibration intensity.

5.3. Frequency Shifts Caused by the Added Mass and Effects of Electrode Parameters on the
Mass Sensitivity

The theoretical model is employed to obtain the mass induced normalized frequency
shifts ∆ω/ω. In order to evaluate the changing trends of the frequency shift versus
the added mass, finite element-based simulations via COMSOL Multiphysics are also
accomplished to achieve the frequencies shifts of the devices’ thickness-twist mode. The
device parameters are set as below: the thickness is 2h = 0.0592 mm, the electrode/plate
mass ratio is R = 0.008, the dimension of crystal plate along x1 and x3 are 2c = 4.8 mm and
2p = 4.736 mm, respectively.

As presented in Figure 8, for the theoretical results, the normalized frequency shift
declines by 7.989 × 10−3 when the added mass increases from 0 to 1.17 × 10−5 g. The
added mass causes a approximately linear decline in the frequency shift. The calculation
results obtained by FEM are slightly lower than the theoretical ones. The observed errors
may be due to the differences between the Mindlin plate theory with two-dimensional
approximations and the three-dimensional model in the FEM method.
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Figure 8. The influences of the added mass on the YCOB LFE device’s frequency shift.

Figure 9 show the relationships between the frequency sensitivity on added mass
vs. the electrode width b1 and the electrode gap width a, respectively. The frequency
sensitivity is described by the ratio of the normalized frequency shift to the mass variation.
As depicted in Figure 9a, for the theoretical results, when b1 grows from 28 h to 38 h, the
device’s frequency sensitivity increases from 585 to 680 (1/g). With the increase of the
electrode width b1, since the device’s vibration strength grows, the frequency sensitivity
becomes higher. As shown in Figure 9b, for the theoretical results, while increasing the
electrode gap a from 6 h to 10 h, the device’s frequency sensitivity decreases from 726 to
680 (1/g). With the increase of the electrode gap a, the intensity of the lateral electric field
declines, while the vibration strength reduces. Accordingly, the frequency sensitivity on the
added mass becomes smaller. Similar conclusions are obtained from the simulation results.
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6. Conclusions

In the current work, the high-frequency resonances of LFE devices based on monoclinic
YCOB crystals stimulated through a lateral electric field are investigated. The coupling
relationships between the vibration modes of the device are clarified. It is shown that the ca-
pacitance presents maxima at some resonances around the main thickness-twist frequency.
The mentioned maxima are associated with thickness-twist, thickness-shear, and flexure
modes. The thickness-twist vibration is trapped in the electroded and unelectroded central
areas, and thus is appropriate to be the device’s working mode. Moreover, the influences
of the electrode parameters on the resonance characteristics are revealed. It is shown that
vibrations in the central area are sensitive to the values of the electrode/plate mass ratio,
the electrode width, and the electrode gap. Trapped modes with sufficient thickness-twist
vibration intensity in the central area can be attained through proper parameter designs.
In addition, the influences of the added mass on the LFE devices’ frequency shift using
monoclinic YCOB crystals are examined and the effects of the structure parameters on the
mass sensitivity are analyzed. It is demonstrated that the mass sensitivity of the device
grows while increasing the electrode width b1 and declines while increasing the electrode
gap value a. As the monoclinic YCOB crystals can still maintain good piezoelectric proper-
ties until 800 ◦C, LFE devices based on that have great potentialities in high-temperature
piezoelectric acoustic wave sensors. The results obtained in this work give an essential
theoretical basis for the parameter designs of high-temperature LFE bulk acoustic wave
sensors using crystals with a monoclinic system.
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