
Citation: Cheng, X.; Ziwen, P.; Chao,

S. Microstructure Representation

Knowledge Graph to Explore the

Twinning Formation. Crystals 2022,

12, 466. https://doi.org/10.3390/

cryst12040466

Academic Editor: Pavel Lukáč
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Abstract: Deformation twinning is an important mechanism of the plastic deformation of materials.
The density of twins also affects the properties of the material. At present, the research methods
of deformation twinning mainly depend on in situ EBSD, numerically investigated analysis and
the finite element method. The application of machine learning methods to material microstructure
research can shorten the time taken for material analysis. Machine learning methods are faced with
the problem of the effective representation of the microstructure. We present a deformation twinning
research method based on the representation of grain morphology features in a knowledge graph. We
construct an autoencoder to extract grain morphology characteristics for building a grain knowledge
graph. Then, a graph convolutional network (GCN) and fully connected network are developed
to extract grain knowledge graph features and predict the twin density of materials subjected to
specific tensile deformation. We use Mg-2Zn-3Li alloy as an experimental example to predict the twin
density on three indexes of average grain size, twin boundaries density and average grain surface.
The R2 score of the prediction result on the twin boundaries density is up to 0.510, and the R2 score of
the average grain size and average grain surface is over 0.750. Therefore, the proposed method for
deformation twinning research is effective and feasible.

Keywords: deformation twinning; knowledge graph; autoencoder; material genome; representation
learning

1. Introduction

Researching the microstructure of materials is of great significance to modern materials
science [1,2]. Twinning deformation is one of the main forms of microstructure change
in materials [3]. The level of critical stress is responsible for deformation initiation by
twinning. The conditions under which twins are produced are also complex. Not all grains
with similar orientation and grain size will form twins [4]. The deformation twinning of
the microstructure of materials can affect the tensile strength, yield strength and other
important physical properties of materials [5,6]. Some studies induce deformation twinning
in the material to obtain fine grains, in order to improve the strength properties of the
material [7,8].

At present, there are three main methods for analyzing twinning deformation: artificial
experimental analysis based on in situ EBSD (Electron Back-Scattered Diffraction) [9–12],
numerically investigated analysis [13,14] and finite element method (FEM) analysis [15–18].
The artificial experimental method based on in situ EBSD can effectively analyze the
twinning deformation process of a local microstructure and obtain a reasonable analysis [19].
However, this method not only requires the support of precision instruments, but also
requires the experimentalists to have rich physical knowledge and experimental experience.
The numerical investigated analysis is based on the analysis of experimental data and
mathematical modeling to analyze the behavior of material deformation twinning. The
finite element method is a more accurate twinning deformation simulation method than

Crystals 2022, 12, 466. https://doi.org/10.3390/cryst12040466 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst12040466
https://doi.org/10.3390/cryst12040466
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0002-4484-7428
https://orcid.org/0000-0003-3451-9241
https://orcid.org/0000-0002-4239-5990
https://doi.org/10.3390/cryst12040466
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst12040466?type=check_update&version=2


Crystals 2022, 12, 466 2 of 13

numerical investigated analysis. However, both involve a high degree of knowledge of
material science, physics and so on. The finite element method also needs a great deal of
computing resources and a long simulation time.

Considering that the finite element method is slow to simulate the microstructure with
a mass of grains, and the potential knowledge of material microstructure is not fully studied
at present, the application of machine learning in material microstructure research is feasible.
This method first requires the effective representation and learning of the microstructure.
There are three mainstream methods of material microstructure representation, and this
research also predicts the properties of materials to prove the effectiveness of the methods.
1. Material representation methods based on numerical statistics use various statistical
properties of the microstructure as inputs to machine learning models to obtain material
properties [20–24]. This method can only use the features of a single dimension as input,
but the information contained in the microscopic organization is multi-dimensional, so the
representation of this method is not comprehensive enough. 2. The representation method
based on image features can directly take the scanning data of the microstructure as input to
find the characteristics of the microstructure [25–32], for example, using the convolutional
neural network (CNN) [33,34] to extract features. However, the defect of this method is
that the extracted features lack the structural information of the microstructure. 3. Dai
et al. [35] and Shu et al. [36] used the knowledge graph representation learning [37,38]
method to represent 3D EBSD and 2D EBSD, respectively, and both showed better results
than other methods in the prediction of material physical properties. The morphology of
each grain is an important part of the microstructure information. The machine learning
method also shows high efficiency and accuracy in morphology information representation.
The CNN can be used to extract the morphology features of images [39], but this method
requires a large number of labeled images for training. As a kind of unsupervised machine
learning model, autoencoder can effectively perform self-supervised training and extract
the morphology features of graphics [40–43]. Similarly, in the field of materials science,
autoencoder is also used for the representation of material microstructure [44] and the
feature extraction of material morphology [45]. However, the present knowledge graph
methods only focus on the representation of the structural information of the microstructure
and ignore the morphology information of grains. This results in the microstructure
information producing an insufficient representation of the model, which leads to the drift
of the prediction results. Furthermore, previous research only applied machine learning
methods to the prediction of static material properties, and did not apply them to the
prediction of dynamic microstructure changes.

In this work, we propose an EBSD knowledge graph representation learning method
based on grain morphology features to explore the twin density change in Mg-2Zn-3Li
alloy after applying a specified tensile deformation. We first extract the grain adjacency
relationship from EBSD data to construct an EBSD knowledge graph. Secondly, we con-
struct an autoencoder to extract the morphology features of each grain. Then, the grain
morphology features, grain orientation codes and grain size codes together constitute the
node embedding of the EBSD knowledge graph. Finally, a graph convolution network
(GCN) is constructed to extract the graph features of the EBSD knowledge graph, and
a fully connected network is used to predict the twin density of materials by adding a
specified tensile deformation factor to the graph features.

2. Materials and Methods
2.1. Dataset
2.1.1. Polycrystal Sample Preparation

We prepare Mg-2Zn-3Li alloy as an experimental sample. The composition of the alloy
is shown in Table 1. Using pure Mg (99.99%), pure Zn (99.99%) and Mg-30Li intermediate
alloy as raw materials, a Mg-2Zn-3Li alloy ingot with a diameter no less than 85 mm was
prepared by vacuum melting (heated to 750 ◦C in a vacuum furnace protected by argon
and kept for 20 min) and the semi-automatic casting process. The ingot was homogenized
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by annealing (350 ◦C for 12 h), followed by a large plastic deformation extrusion (extrusion
temperature of 350 ◦C) to obtain a thin plate with a thickness of 2–3 mm and stable
microstructure. The thin plates were divided into the training group and test group.
The two combinations of Mg-2Zn-3Li alloy ingot were produced by vacuum melting,
homogenization heat treatment and large plastic deformation hot extrusion. Both the
training group samples and the test group samples contained 11 thin plates. We cut each
thin plate to prepare a dog-bone-shaped tensile specimen. Tensile deformation tests were
carried out at room temperature, 20 ◦C. Each prestretching and stretching sample was
60 mm in length and the gauge length was 26 mm. The tensile deformation experiment was
carried out along the TD direction, and the direction was perpendicular to the extrusion
direction of the thin plates. After that, tensile deformation was applied to the specified
tensile specimen, and the microstructure of the sample was characterized by the EBSD
technique. The acceleration voltage of the EBSD data acquisition procedure is 20.00 kV. The
sample tilt angle is 70◦. Experiments were carried out at room temperature. We select the
scanning area on the TD-ED surface. The final EBSD scanning data had a step size of 1 µm
and the scanning area size was 500 × 500 µm2.

Table 1. The composition of the alloy used in the experiment (wt%).

Alloy Mg Zn Li

Mg-2Zn-3Li Bal 1.82 3.08

Figure 1 shows the inverse pole figure and the pole figure of the initial microstructure
prior to deformation. The inverse pole figure on the left was drawn by Channel 5 software,
and the inverse pole figure on the right was smoothed by MTEX. The extrusion direction
is the ED direction. The TD-ED surface was selected for EBSD data acquisition, which is
perpendicular to the extrusion direction of the plates, and IPF Z was selected for observation.
Twins were not observed in the inverse pole figure of the initial microstructure prior to
deformation. In this work, we predict the twin density of plates ranging from the initial
microstructure to 20% tensile deformation, so we draw the pre-tensile stress–strain curve
of plates reaching 20% tensile deformation, as shown in Figure 1.

Figure 1. The inverse pole figure and the pole figure of the initial microstructure prior to deformation.
Furthermore, the pre-tensile stress–strain curve under 20% tensile deformation.
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Figure 2 shows the inverse pole figures of the sample under 2%, 6% and 10% tensile
deformations. The inverse pole figures at the top were drawn by Channel 5 software
and the figures at the bottom were smoothed using MTEX. We used the MTEX smooth
inverse pole figures for twin statistics. It can be seen that a few twins appeared in the
microstructure after 2% tensile deformation. Under 6% tensile deformation, a large number
of twins appeared on the right and upper left side of the inverse pole figure. After 10%
tensile deformation was applied, deformation twinning occurred almost everywhere in the
microstructure and the grains tended to be finer.

Figure 2. Inverse pole figures of microstructure under 2%, 6%, and 10% tensile deformation.

2.1.2. Dataset Generation

The sample was divided into two groups, and each group was subjected to tensile
deformation at a gradient of 2%. Starting from 0% deformation, the sample was stretched to
20% deformation. EBSD scanning was performed on the sample after each stretch. Finally,
we obtained 2 sets of data, each of which contained 11 points of EBSD scanning data. The
first set of scanning data was used for the training model and the other set of data was used
for testing the model.

The training data set and test data set contained 22 EBSD points of scanning data,
including a total of 47,418 grains. The number of grains contained in each EBSD scanning
data ranged from 410 to 3448. All EBSD scanning data were represented using our proposed
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knowledge graph method for material microstructure representation, and the obtained
graph contained 47,418 nodes and 219,472 edges in total.

We used a variety of machine learning and CNN (Convolutional Neural Network)
models to compare with our proposed model on three twin density indexes. The tradi-
tional machine learning model can only accept one-dimensional inputs, so we spliced the
attributes of grain angle, boundary length, ellipticity and orientation and added the tensile
deformation as the inputs of the traditional machine learning model. The CNN model
accepts input in the form of images. Therefore, the inverse pole figure map generated by
EBSD scanning data was used as the input of the convolutional neural networks. After
extracting image features in the convolutional networks, tensile deformation was added
and a fully connected network was used to predict twin density. See “Methods” for the
specific parameter settings of the traditional machine learning models and CNN model.

2.2. Grain Knowledge Graphs Predict Twin Density

In this work, a isomorphism graph is proposed to represent the grains and the ad-
jacency relationship between grains in EBSD scanning data. Each node in the graph
corresponds to a grain segmented from the EBSD scanning data. The embedding of each
grain node consists of the state information of the grain itself. The edges in the graph
represent the adjacency between grains, and the edges are undirected. Then, a graph convo-
lutional network (GCN) is constructed to extract the graph features of the grain knowledge
graph. The tensile deformation is one-hot coded and added to the graph features extracted
by GCN. Finally, the spliced eigenvectors are input into a fully connected network to obtain
the twin density of the sample in the current state after the specified tensile deformation is
applied. Figure 3 shows the framework of our proposed method.

Figure 3. Firstly, each grain is numbered, and the adjacency relationship of each grain is detected
to construct the grain knowledge graph. Secondly, an autoencoder is constructed to extract the
morphology features of each grain. After that, the grain size and orientation are One-hot coded,
which together with the morphology features of the grain is used as the embedding features of
the grain. Then, the embedded grain knowledge graph is input into GCN network to extract the
graph features. Finally, the tensile deformation One-hot coding applied to the material is input into
the prediction network together with graph features, and the twin density of the material after the
specified tensile deformation is obtained.

2.2.1. Constructing a Grain Knowledge Graph

Each grain node in the graph is embedded with the morphology features of the grain,
Euler angle coding and grain size coding. The edge between each node represents the
adjacency between grains. The node embedding features of the grain knowledge graph
are composed of the morphology features of the grain, the grain size coding and the
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grain orientation coding. The morphology features of the grain were extracted by the
constructed autoencoder with 40 dimensions. The grain size features of the grains were
one-hot coded. We discretized the grain size using the method shown in Equation (1),
where Cgrain represents the category to which the grain size belongs, and Sgrain represents
the real size of the grain. Smax and Smin, respectively, represent the maximum and minimum
grain size. Nc represents the total number of categories, and we set this value to 11 in our
method. Similarly, we divided the three Euler angles Φ1, Φ, and Φ2 into 3 categories of
grain orientation. Therefore, the total embedding features of grain nodes in the knowledge
graph have 60 dimensions.

Cgrain =

⌈ Sgrain

d(Smax − Smin)/Nce

⌉
(1)

2.2.2. Autoencoder Design

An autoencoder is constructed to extract the morphology features of each grain. The
autoencoder consists of an encoder and a decoder. The encoder is composed of a multi-layer
convolutional neural network (CNN), which can extract the morphology features of each
grain image. The decoder is composed of multiple deconvolutional layers, which receives
the morphology features extracted by the encoder to restore the grain image. The closer the
grain image restored by decoder is to the original image, the more effectively the encoder
extracts the grain morphology features. The input image is a single-channel 8-bit deep
binary image of each grain. Each grain image has a size of 128× 128 pixels. The grain image
is input into the encoder and the morphology feature vector of 40 dimension is obtained.
The decoder receives the morphology features extracted by the encoder and restores the
grain image. Equation (2) describes the process of convolutional layer updating, where xl

j

represents the feature map on the jth filter of the lth convolutional layer. kl+1
j represents

the jth filter of the l + 1th convolutional layer. The symbol ? represents the convolution
operation. The bias is bl+1

j , and ReLU() is the activation function ReLU. The MSE loss is
calculated by comparing the difference in each pixel between the restored image and the
original grain image. The objective function of the autoencoder is shown in Equation (3),
where Xi,j is the (i, j) pixel of grain image X, h and w are the height and width of the grain
image, respectively, E(X) represents the morphology features of the grain image extracted
by the encoder and D(E(X)) represents the grain image restored by the decoder.

xl+1
j = ReLU( ∑

i∈Mj

xl
i ? kl+1

ij + bl+1
j ) (2)

lae
min

=
h−1

∑
i=0

w−1

∑
j=0

(D(E(X))i,j − Xi,j)
2

h · w (3)

2.2.3. GCN Build upon Grain Knowledge Graph

The features of the embedded grain knowledge graph are extracted by GCN layers.
Let the grain knowledge graph be G(V, E), where V represents the set of grain nodes and
E represents the set of adjacency relationships between grains. Let the output graph feature
matrix of the nth GCN layer be Xn, then the output feature matrix of the next GCN layer is
Xn+1. The transformation from Xn to Xn+1 can be obtained by Equation (4).

Xn+1 = σ(D̂−
1
2 ÂD̂−

1
2 XnWn + bn) (4)

where σ() is the nonlinear transformation, Wn is the weight of the nth layer, and bn is the
intercept of the nth layer. A is the adjacency matrix of G. Â is the summation of matrix A
and identity matrix I, meaning to add the self-loop to the graph. D̂ is the degree matrix
of Â.
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The amount of tensile deformation applied to the sample is coded. The features
extracted from the grain knowledge graph are connected with the code of the amount of
tensile deformation, and both are input into the multi-layer fully connected neural network.
The output of these multiple fully connected layers is the predicted twin density of the
material in its current state with a specified tensile deformation applied.

3. Results
3.1. Model Performance

The prediction target of the model is the twin density of the sample under the specified
tensile deformation applied to the current state. We chose three indexes to measure the twin
density, namely the average grain size, the average grain surface and the twin boundary
density. The first two measurement indexes were obtained from the average grain size and
average surface in the EBSD scanning data of the sample under each tensile deformation.
The twin boundary density is the ratio of twin boundary length to total grain boundary
length in EBSD scanning data. These three measurement indexes can reflect the density of
twins in the sample to a certain extent.

Traditional machine learning methods such as Ridge (Ridge Regression), SVR (Support
Vector Regression), KNN (K-Nearest Neighbor), ExtraTree, RF (Random Forest), GBDT
(Gradient-Boosting Decision Tree), XGBoost, and MLP (Multi-layer Perceptron) are used
as comparison methods. The CNN model in the field of deep learning is also used as
a comparison method for our proposed methods. In addition, the knowledge graph
representation method for EBSD data proposed by Shu et al. [36] is also the method we
need to compare. The comparison results are shown in Table 2.

Table 2. The results of the models are compared in terms of average grain size, twin boundaries
density and average grain surface.

Average Grain Size Twin Boundaries Density Average Grain Surface

MSE MAE R2 MSE MAE R2 MSE MAE R2

Ridge 0.548+60.8 0.489+40.1 0.452+73.7 0.558+31.0 0.591+16.4 0.442+39.1 0.545+54.5 0.490+39.0 0.455+65.3

SVR 0.580+62.9 0.518+43.4 0.420+86.9 0.660+41.7 0.614+19.5 0.340+80.9 0.577+57.0 0.523+42.8 0.423+77.8

KNN 0.688+68.8 0.507+42.2 0.312+151.6 0.724+46.8 0.651+24.1 0.276+122.8 0.687+63.9 0.514+41.8 0.313+140.3

ExtraTree 0.470+54.3 0.410+28.5 0.530+48.1 0.518+25.7 0.569+13.2 0.482+27.6 0.468+47.0 0.411+27.3 0.532+41.4

RF 0.545+60.6 0.420+30.2 0.455+72.5 0.608+36.7 0.601+17.8 0.392+56.9 0.539+54.0 0.423+29.3 0.461+63.1

GBDT 0.631+65.9 0.462+36.6 0.369+112.7 0.614+37.3 0.599+17.5 0.386+59.3 0.615+59.7 0.461+35.1 0.385+95.3

XGBoost 0.463+53.6 0.389+24.7 0.537+46.2 0.538+28.4 0.561+11.9 0.462+33.1 0.461+46.2 0.387+22.7 0.539+39.5

MLP 0.592+63.7 0.463+36.7 0.408+92.4 0.685+43.8 0.631+21.7 0.315+95.2 0.592+58.1 0.463+35.4 0.408+84.3

CNN 1.060 0.659 −0.060 0.748 0.682 0.252 1.015 0.643 −0.015
HGGAT [36] 0.314+31.5 0.359+18.4 0.686+14.4 0.490+21.4 0.552+10.5 0.510+20.6 0.329+24.6 0.405+26.2 0.671+12.1

Our 0.215 0.293 0.785 0.385 0.494 0.615 0.248 0.299 0.752
The closer the MSE (Mean Squared Error) and MAE (Mean Absolute Error) scores are to 0, the better the prediction
results are. The closer the R2 score is to 1, the better the prediction effect of the model will be.

As shown in Table 2, our proposed method achieves optimal results in most indexes.
In terms of average grain size and average grain surface, our proposed method achieves
the best improvement, with more than 68% improvement in R2 score excluding the CNN
model. The CNN model achieved poor effects. The proposed method also achieves a
significant improvement in the twin boundaries density index. Compared with other
methods, our proposed method improves the R2 score of this index by 59% on average.
However, the effect of our method on this index is slightly inferior to that on the other
two indexes. In our analysis, errors occur in the process of twin labeling and the statistics
of twin boundary length, leading to the deviation of prediction results. Other methods
also performed differently on each measure. The HGGAT method achieves sub-optimal
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prediction results. Compared with the HGGAT method, the R2 score of our method in
terms of average grain size and average grain surface is improved by more than 10%, and
the twin boundary density is improved by 20%. The R2 score of our proposed method on
average grain size and average grain surface are 46.2% and 39.5% higher than those of
XGBoost, respectively. The R2 score of the predicted result of twin boundary density by
our method is 27.6% higher than that of ExtraTree. XGBoost and ExtraTree methods have
achieved excellent results in traditional machine learning methods, but there is still a gap
in the effectiveness of HGGAT and our method based on knowledge graph representation
learning.

As shown in Figure 4, the predicted twin density curve obtained by our proposed
method is basically consistent with the actual material under different tensile deformation.
Our method can better fit the change in the twin density of materials under different tensile
deformation. The method proposed by us can achieve better results because the knowledge
graph representation with multi-dimensional features and spatial relations can better reflect
the microstructure of materials compared with one-dimensional features. In addition, the
grain morphology extracted by the autoencoder can effectively reflect the physical features
of grain shape, grain boundary and so on.

(a) (b) (c)

Figure 4. The line charts of the comparison between the prediction results obtained by our proposed
method and the actual twin density of the material under different tensile deformations. (a) is the
prediction result on average grain size. (b) is the prediction result on the twin boundaries density.
(c) is the prediction result on average grain surface.

3.2. Model Analysis

It can be seen from the scatter diagram and the best fit regression line of the scatter
diagram that our method achieves the best prediction result. Figure 5 is the best fit
regression line of the scatter diagram of the prediction results.

As shown in Figure 5, the results of our proposed method in a best fit regression
line most closely approximate the Label–Prediction x = y curves. The second is the best
fit regression line of the results obtained by the HGGAT method. Other models have
different effects on different indicators. In general, except for the method proposed by us,
the prediction results of other models all have large deviation. The prediction result of the
CNN model is poor, precisely because the CNN model only learned the image features of
the inverse pole figure map, and did not understand the structural relationship features of
the microstructure presented by the EBSD scanning data.

As shown in Figure 6, the PCA (Principal Component Analysis) method was used
to reduce the dimensions of the grain morphology features extracted from the trained
autoencoder to obtain the one-dimensional distribution of grain morphology features.
The morphology features distribution after dimensionality reduction was compared with
the grain size distribution of EBSD scanning data. Figure 6 clearly shows that the two
distributions are similar. This result indicates that the proposed autoencoder can extract
the grain features effectively, and the extracted features can reflect the original size, shape
and other physical information of the grain to a certain extent.
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(a)

(b)

(c)

Figure 5. Image structure and graph structure. (a) The best fit regression line of the prediction results
under the average grain size index. (b) The best fit regression line of the prediction results under
the twin boundaries density index. (c) The best fit regression line of the prediction results under the
average surface index.

The model was trained in training rounds, and the loss curve of the three indicators is
shown in Figure 7. It can be seen that our proposed method can achieve convergence after
limited epochs of training. In the training of the three indexes, the declining trend of loss
became slow after 100 epochs of training. After 300 epochs of training, the training loss
of the model tended to be stable. From the performance of the model in the test set, the
model after 100 epochs of training can achieve better results. This is because the increase in
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training epochs leads to the over-fitting of the model, which leads to the deterioration of
the prediction effect of the model on the test set. Even though the model after 300 epochs of
training had a lower loss on the training set, the generalization of the model became worse.

Figure 6. The distribution of grain morphology features and average grain size at each tensile deformation.

(a) (b) (c)

Figure 7. Curve of doss during model training and R2 changing on test set. (a) The changes in the
loss of the model on average grain size. (b) The changes in the loss of the model on twin boundaries
density. (c) The loss curve of the model on an average surface. The blue curve in the figure represents
the loss curve on the training data set and the orange curve represents the loss curve on the validation
data set.

4. Discussion and Conclusions

Deformation twinning is one of the main forms of the microstructure deformation
of materials. The twin density also has a certain effect on the macroscopic properties of
materials. Artificial experimental analysis based on in situ EBSD, numerically investigated
analysis and FEM analysis are the main methods for analyzing deformation twinning.
These methods are based on polycrystalline physics and can effectively observe, analyze
and simulate deformation twinning. However, these methods are slow and costly.

In this work, the proposed method can represent the structure information and mor-
phology information contained in the microstructure of materials through a knowledge
graph, and directly predict the change in the material’s microscopic twin density through
the EBSD data of the material and the tensile deformation applied to the material. The
experimental results show that the proposed method is efficient and feasible. In terms of
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time consumption, our method can predict the twin density after deformation twinning on
EBSD data with an average grain number of 2100 with only a few hours of training.

We compare other machine learning methods and the recently proposed knowledge
graph method to represent the microstructure of materials. The experimental results
show that the proposed method achieves better results. Compared with other methods of
representing material microstructure by knowledge graph, the amount of microstructure
information contained in the knowledge graph is different, and the structure of the graph is
also different. We use an autoencoder to extract the morphology features of the grains and
embed them as part of the grain nodes. The experimental results show that this method
can improve the prediction more effectively, and the morphology features extracted can
reflect the physical characteristics of grains to a certain extent. This indicates that to more
effectively characterize the microstructure and construct a more rational EBSD knowledge
graph are necessary tasks.

Despite the successful results of this work, there are still areas for research and improve-
ment. Firstly, although the machine learning method can learn material microstructure
information quickly, the hidden structure inside the model is still not explicable. If the
hidden layer interpretation of the model is connected with the real polycrystalline physics,
the study of polycrystalline physics will be further advanced. Secondly, approaches to
represent the microstructure of materials more effectively is the key link in the application
of machine learning methods in materials science research, such as describing the adjacency
relationship between grains in more detail, and taking the position of grains in EBSD into
account in the grain features. This is an issue for future research to explore.
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