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Abstract: This study reports the characteristics of water in channels of blue-green beryl and its
effect on color. An industrial camera was used to measure color in the CIELAB color space. X-ray
fluorescence (XRF), X-ray diffraction (XRD), infrared spectroscopy (IR), ultraviolet-visible (UV–vis)
spectroscopy, and silicate rock chemical analysis method were used for analysis. The peaks at
5105 cm−1 and 5269 cm−1 were the combination tone of type II water, which were negatively corre-
lated with b*, and positively correlated with the peak area at 3162 cm−1 (Na–H) and cell parameter
a0. The peaks at 7097 cm−1 and 7142 cm−1 were related to the metal ions types in the channels. Part
of the water in the channel combined with Fe3+ to form [Fe2(OH)4]2+ and cause a yellow tone, and
when the yellow tone combined with the blue tone caused by Fe2+, the beryl has a blue-green colour.

Keywords: channel-water; X-ray fluorescence; X-ray diffraction; infrared spectroscopy; UV–vis
spectroscopy; transition metal ions

1. Introduction

Beryl (Be3Al2Si6O18) is a ring silicate mineral, mainly occurring in pegmatites. Pure
beryl is colorless and transparent, but when it contains chromophores (Figure 1), it will
show different colors and form different varieties. Many varieties of beryl, such as emerald,
aquamarine, morganite, and heliodor occupy a large market share. However, high quality
beryl is still in short supply, in recent years, it has been the hot issues to optimize the poor
colour of beryl and achieve the desired colour. Therefore, it has become an urgent problem
to study the chromaticity mechanism of beryl and guide the chromaticity experiments.
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Figure 1. The crystal structure of beryl. Al3+ can be replaced by Fe2+, Fe3+, and Mn2+; Be2+ can be
replaced by Li+ and Cu2+; H2O, CO2, alkali ions, and M–OH are present in channels.
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Blue-green beryl is mainly colored by iron ions. By heating and irradiation, high-
quality aquamarine can be obtained [1–3], so it has an important research value. The
chromaticity mechanism has also been studied by many scholars. Goldman et al. [4]
concluded that the Fe2+ channel occupancy in beryl caused a light-blue color, the Fe2+–Fe3+

charge transfer caused a blue-green color, the coexistence of the Fe3+ charge transfer and
the Fe2+ channel occupancy caused a blue-green color, and the Fe3+ in channel caused a
yellow-orange color [4,5]. Hu [6] speculated that [Fe2(OH)4]2+ in the channel was the cause
of the yellow tone of beryl. Zhong et al. [7] concluded that the blue-green color of the
paraiba-color beryl was influenced by Cu2+, Fe2+, Fe3+, and Ni2+ in the crystal structure.
Wang et al. [8] concluded that the d–d electron transition of Fe3+ and the charge transition of
the binuclear metal M–M complexes formed by [Fe2(OH)4]2+ in the channel would produce
a yellow tone, and when combined with the blue color caused by the Fe2+/Fe3+ charge
transfer, the beryl would produce a yellow-green color. The lightness value would decrease
with the total amount of transition metal ions increasing, and the chroma would decrease
when Cs+ and Mn2+ exist.

In addition to the influence of transition metal ions on the color of beryl, some scholars
believed that the channel-water also had an effect. It is well known that water exists
in minerals in the following five main forms: hydroscopic water, crystallization water,
constitution water, interlayer water, and zeolitic water. Beryl mainly contains constitution
water [9], which can exist in the form of H2O molecules, or be polymerized with cations in
channels, such as [Fe2(OH)4]2+. Zou [10] found that the color of beryl was closely related
to the content ratio of type I and type II water. From golden beryl–cat’s-eye beryl–green-
beryl–aquamarine, the content of type I water gradually decreased. Especially in the bright
color aquamarine, the value of type I water/type II water was close to 1:1, which was
speculated as the best condition to promote the combination of Fe2+ and channel H2O to
form hydration ions. However, most scholars [9,11–16] concluded that the substitution of
isomorphism in beryl was the root cause. When Al3+ and Be2+ were replaced by different
valence ions, alkaline ions entered the channel to compensate for the charge difference
and caused the transition from type I water to type II water in the channel. Therefore, the
beryl color showed a correlation with the type and content of channel-water; although the
quantitative relationship has not been obtained so far. The purpose of this study was to
use rigorous data to explore the effect of channel-water on the color of blue-green beryl,
so that in the future, the characteristics of channel-water can be obtained through simple
spectral testing to help predict the chromaticity mechanism of blue-green beryl. This will
greatly simplify the experimental process and make a great contribution to the study of
chromaticity mechanism and the color optimization of beryl.

A CIE standard color system by the International Commission on Illumination was
introduced. Scholars have used this system to quantitatively describe color gems. For
example, Jiang et al. [17] classified Australian chalcedony in a CIE 1976 LAB uniform color
space. Tang et al. [18] studied the influence of illumination on the color of magnesium
olivine in a CIE 1976 LAB uniform color space. Wang [8] explored the influence of transition
metal ions on the color of blue-green beryl in a CIE 1976 LAB uniform color space.

2. Materials and Methods
2.1. Materials

Twenty-three pieces of hexagonal prism beryl with diameters of 6–12 mm were selected
as the experimental samples, which were cut and ground into plate shapes perpendicular to
the c-axis and polished on both sides. The samples were blue-green, glassy, and translucent
to nontranslucent (Figure 2).
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Figure 2. Top view photo of 23 samples, hexagonal short columns.

2.2. Colour Collection

The CIE 1976 LAB uniform color space was adopted, which was the latest and most
widely used uniform color space.

L* is the lightness component and ranged from 0 to 100 (from black to white). A* and
B* are the chromaticity components. A* ranges from −128 to +127 (from negative green to
positive red) and B* ranges from −128 to +127 (from negative blue to positive yellow). In
addition, the C*ab (chroma value) and hab (hue angle) can be calculated according to L*, a*,
and b* values:

C*ab = [(a*)2 + (b*)2]1/2 (1)

hab = arctan
(

b∗
a∗

)
(2)

The color measuring instrument used was the industrial camera Mako G-507C (manu-
factured by Allied Vision Technologies, Stadtroda, Germany), with the following specifi-
cations: resolution: 2464 × 2056; frame rate: 23.7; sensitive chip: Sony IMX264; chip type:
CMOS; target surface: 2/3′′; pixel: 3.45 × 3.45; exposure mode: global, color; and digital
interface: GigE.

The light source was standard D65 and the test background was a PANTONE Cool
Gray 1C colorless background.

2.3. Structure and Composition Testing

Absorption spectra in the ultraviolet to visible (UV–vis) range were recorded with
a UV-3600 UV–vis spectrophotometer (SHIMADZU, Kyoto, Japan). The samples were
ground into transparent slices with a thickness of 1 mm. The transmission method was
used to test the absorption value. The wavelength range for the test was 300–900 nm, the
scanning speed was set to ‘high’, the sampling interval was 1.0s and the scanning mode
was ‘single’.

Absorption spectra in the infrared (IR) range were recorded with a Brooke Ten-
sor 27 Fourier transform infrared spectrometer. The test method was transmission for
2000–8000 cm−1. The resolution was 4 cm−1 and the scans were set to ‘32’.

Composition semiquantitative results were obtained with an EDX 700 X-ray fluores-
cence (XRF) spectrometer (SHIMADZU, Kyoto, Japan). The samples were cut and ground
into plate shapes perpendicular to the c-axis and polished, and one of the planes perpendic-
ular to the c-axis were selected as the test plane. The collimator diameter was 5 mm. The
testing atmosphere was air. The element test conditions in the Al–U range were 50 kV and
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272 µA, the analysis was set to ‘0.00–40.00’, the time was set to ‘live-100’, and the DT% was
set to ‘29’. The element test conditions in the Na–Sc range were 15 kV and 1000 µA, the
analysis was set to ‘0.00–4.40’, the time was set to ‘live-100’, and the DT% was set to ‘17’.

Samples were grounded to 400 mesh powder and placed in a silicon glass recess,
and measured using an Ultima IV polycrystalline powder X-ray diffractometer (XRD). A
nickel filter was used and the copper target was used as the detector. The wavelength was
0.15406 nm, the current was 50 mA, and the voltage was 40 kV. The continuous scanning
was set to ‘5◦/min’. The scanning range was 5–90◦, and the step was 0.02. X-ray scan
samples were at a different θ angle and detector was at 2θ angle position. The standard
PDF card ‘09-4310’ for beryl was used as a reference.

Ferrous oxide was determined for 10 samples, using the silicate rock chemical analysis
method. The samples were grounded to 400 mesh powder and decomposed with HF
(ρ = 1.15 g/mL) and H2SO4 (ρ = 1.84 g/mL), and the remaining F− in the solution was
added to saturated H3BO3 for complexation. The C12H10NNaO3S (ρ = 5 g/L) was used as
indicator, and the solution was titrated with K2Cr2O7 (c = 0.002319 mol/L) to calculate the
amount of ferrous oxide. The electronic analytical balance BSA 124S-CW was used. The
ambient temperature was 21 ◦C and the humidity was 42%.

The K-means clustering method was adopted to simplify the data processing. When
using this method, samples were classified to several clusters according to a certain variable
within the cluster of similarity, and the difference between clusters. SPSS software was used
to classfy. Other variables of different samples were also divided into the corresponding
clusters. To make the figure clearer, box diagrams were used to represent different clusters,
and the change rule of these box diagrams could represent the whole data.

3. Results
3.1. Colour Parameters

According to the test results, the color parameters of the experimental samples
L* ∈ (41.7, 68.05), a* ∈ (−10.8, −5.3), b* ∈ (−0.85, 7.84), C* ∈ (7.55, 12.78), and
h ∈ (134.2◦, 185.2◦), belonged to a blue-green tone interval, medium lightness, and low
chroma (Figure 3). The test data can be found in Table S1 (see Supplementary Materials).
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 Figure 3. Colour distribution of samples in the CIELAB space. Hab ranges from 134◦ to 185◦.
L* ranges from 41 to 68 (from Wang H. [8]).

3.2. Characteristics of IR Spectroscopy

The IR spectra of 23 samples in the range of 2000–8000 cm−1 were obtained as follows
(Figure 4), and the test data can be found in Table S2 (see Supplementary Materials).
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Figure 4. IR spectrum of 2000–8000 cm−1 and characteristic peaks. Schematic diagram of the vibration
model of the H2O molecule is in the lower right.

The 3111 cm−1 was the absorption peak of M–OH, 3162 cm−1 was the absorption peak
of Na–H, and 3234 cm−1 was the absorption peak of [Fe2(OH)4]2+. Some peaks for type I
and type II water (Box 1) were valuable for this study. The fundamental frequency vibration
zone of H2O was 3400–3800 cm−1, which including symmetric stretching vibration (ν1)
and asymmetric stretching vibration (ν3) (the bending vibration (ν2) was below 2000 cm−1,
and it was not tested and would not be discussed this time (Figure 4). 4000–8000 cm−1 was
the combination and overtone zone of H2O.

Among the samples, absorption peaks of No. 2-3, 3-2, and 3-6 were slightly different
from others, showing strong absorption at 3234 cm−1, 3520 cm−1, 4645 cm−1, 5269 cm−1,
7142 cm−1, and 3550–3650 cm−1, as shown by the blue curve in Figure 4. Other samples
of spectra were similar with No. 3-8, shown by the green curve in Figure 4. There were
several wavenumbers shift of absorption peaks, which were caused by different types of
alkali ions in the channels [19].

Box 1. Type I and type II water in beryl channel.

There are two types of H2O molecules in the beryl channel: (1) type I water, whose symmetry
axis is parallel to the c-axis; (2) type II water, whose symmetry axis is perpendicular to the c-axis.
Standard beryl contains only type I water. When there are alkali ions in the channel, the type I water
will be rotated 90◦ to type II water due to the charge attraction between the alkali cation and the
O2− [1–3,13,14,20,21]. The H–H axis of type I water is bound to Be and Al, respectively, to form
chemical bonds such as Be–HOH–Al. The O–H vibration is mainly controlled by Be, Al, and the
longitudinal crystal field. The O2− of type II water is bound to the alkali ion, and the O–H vibration
is mainly controlled by the alkali ion and the transverse crystal field. So, the vibration frequencies
of the two types of water are different [14].

Furthermore, D. G. et al. and K. B. et al. [20,22,23] found that in most beryl, each alkali ion
combined with two type II water (Figure 5, left), but in the water-poor samples, each alkali ion only
combined with one type II water (Figure 5, middle). This resulted in a vibration frequency shift of
type II water. D. G. et al. [20] also explained this in terms of bond length and bond angle (Figure 5,
right): in the latter case, the M–O bond length was shortened because of the inductive effect, the
O–H bond length increased, and bond angle decreased, so the bending vibration (ν2) increased and
the symmetric stretching vibration (ν1) and asymmetric stretching vibration (ν3) decreased.
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Figure 5. Schematic diagram of type II water in water-rich and water-poor condition (from G. Della
Ventura [20], redrawn).

After a comprehensive analysis of previous research, the assignment of characteristic
spectrum peaks is shown in Table 1.

Table 1. Characteristic absorption peaks and assignment within 2000–8000 cm−1.

Wavenumber (cm−1) Assignment Reference

2291 CO2 [24]
2358 CO2 [11,13,15]
3111 M–OH [14]
3162 Na–H [14]
3234 [Fe2(OH)4]2+ [1,14]
3558 ν1

I [13]
3590 ν1

IIs [15,19,20]
3605 ν1

IId [15,19,20]
3661 ν3

IId [13,15,19,20]
3694 ν3

I [13]
5105 Need to be discussed
5269 ν2

II + ν3
II [14,25]

7098 Need to be discussed
7142 Need to be discussed

3.3. Total Iron and Fe2+ Content

The relative total Fe content of 23 samples was tested by XRF and the test data was
shown in Table S3 (see Supplementary Materials). The relative content of Fe2+ in 10 samples
was obtained by a chemical analysis of silicate rocks and the test data was shown in Table S4
(see Supplementary Materials). The relative content of Fe3+ is the difference between total
Fe and Fe2+. The relative content of Al3+ was also determined by XRF. The above data are
listed in Table 2.
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Table 2. Different ion content and cell parameters in 23 samples.

No. Al3+ Total Fe Ions Fe2+ a0 c0 No. Al3+ Total Fe Ions Fe2+ a0 c0

1-3 17.04 1.81 0.60 9.21 9.20 2-10 15.24 3.32 9.22 9.19
1-4 17.17 3.02 9.22 9.20 3-1 17.35 3.05 9.22 9.21
1-6 17.95 2.15 0.42 9.22 9.20 3-2 16.16 2.77 0.48 9.21 9.19
2-1 16.54 3.41 9.23 9.20 3-3 16.57 3.41 0.71 9.23 9.21
2-2 16.87 3.22 9.23 9.20 3-4 14.18 2.14 9.22 9.21
2-3 14.40 3.67 9.23 9.20 3-5 16.35 3.40 0.86 9.22 9.21
2-4 15.82 3.44 0.92 9.22 9.18 3-6 15.37 3.53 0.96 9.23 9.20
2-5 15.58 3.12 9.23 9.20 3-7 16.66 2.71 9.22 9.21
2-6 15.04 4.00 9.22 9.19 3-8 16.36 2.25 0.57 9.22 9.20
2-7 15.48 3.08 9.21 9.19 3-9 16.66 2.75 9.22 9.19
2-8 15.46 3.36 9.23 9.20 3-10 15.93 3.58 0.79 9.23 9.21
2-9 15.86 3.16 9.23 9.20

3.4. Characteristics of XRD

The samples were multiphase beryl and other diffraction lines could be detected
besides the standard beryl diffraction lines (Figure 6).
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Beryl’s symmetry is P6/mcc (D6h
2). The crystal cell parameters can be obtained by

XRD and refinement. In standard beryl samples (PDF card: 09-4310), a0 = 9.217 Å and
c0 = 9.192 Å. When the octahedral Al3+ is replaced by transition metal ions, a0 increases
due to the increase of the ion radius, whereas when the tetrahedral Be2+ is replaced by Li+

or Cu2+, c0 increases. Beryl can be divided into two types according to the c/a value [26]:
Octahedral substitution of Al3+ is dominant: c/a = 0.991–0.998;
Tetrahedral substitution of Be2+ is dominant: c/a = 0.999–1.003.

XRD was carried out on the samples, and JADE 6.5 was used to refine the diffraction
lines. With reference to the standard beryl PDF card 09-4310, the crystal cell parameters were
obtained (Table 2). Both tetrahedral and octahedral substitutions can be found because
the a0 and c0 of the samples were higher than the standard beryl, and the octahedral
substitutions were the main one.
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4. Discussion
4.1. The Relative Content of Water in the Channel Deduced by IR

Although Li [21] concluded that the peak at about 5105 cm−1 was the combination peak
of type I water, through the study of IR spectrum, it was found that the peak at 5105 cm−1

was positively correlated with the sum of the peak areas of 3111 cm−1 (M–OH) and
3162 cm−1 (Na–H), and with the peak at 5269 cm−1 (type II water, Figure 7). Furthermore,
ν1

I + ν2
I = 1542 cm−1 (this data from D.L. [13]) + 3558 cm−1 = 5100 cm−1 was slightly less

than 5105 cm−1, whereas ν1
II + ν2

II = 1628 cm−1 (this data from D.L. [13]) + 3605 cm−1 =
5233 cm−1, as according to Weng [27], the combined frequency must be less than the sum
of fundamental frequency, so the peak here was concluded to be ν1

II + ν2
II more likely.
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Figure 7. (1) The peak areas at 5105 cm−1 were positively correlated with the sum of peak areas at
3111 cm−1 and 3162 cm−1, which are represented by blue boxes. The samples were divided into five
groups by K-means clustering. (2) The peak areas at 5105 cm−1 were positively correlated with the
peak areas at 5269 cm−1, which are represented by green boxes. The samples were divided into five
groups by K-means clustering.

In addition, Li [21] assigned 7098 cm−1 as the first-order overtone peak of type I water,
and Mashkovtsev et al. [19] assigned 7142 cm−1 as the combined peak of type I water.
Theoretically, with the change of type I water, the two peaks in different samples should
show the same trend of change. However, as can be seen from Figure 8, the two peaks in
different samples differed greatly. Furthermore, it was found that the peaks at 7097 cm−1

and 7142 cm−1 were controlled by the types of metal ions in the channel. When the sum of
peak areas at 3111 cm−1 + 3234 cm−1 was large (representing large radius cation content),
the peak area at 7097 cm−1 was large. When the peak area at 3162 cm−1 (representing Na+,
small radius cation content) was large, the peak area at 7142 cm−1 was large. Therefore,
it was speculated that these two peaks were not the overtone and combination peaks of
type I water, but probably related to the overtone or combination peaks of metal cation in
the channel.
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at 3111 cm−1 + 3234 cm−1, as shown by the green boxes. The upper left corner was the IR absorption
spectrum within the range of 7000–7200 cm−1. The blue shaded part represented the absorption peak
at 7097 cm−1, and the green shaded part represented the absorption peak at 7142 cm−1.

4.2. Relationship between Type II Water Content and Colour

The strong absorption peak at 5269 cm−1 was selected as the characteristic peak of
type II water.

With the increase of the peak area at 5269 cm−1, the value of the cell parameter a0 and
the peak area at 3162 cm−1 increased, whereas the color parameter b* decreased; that is,
with the increase of type II water, the beryl color transitioned from yellow to blue (Figure 9).
The increase of the cell parameter a0 value indicated that the different charge substitution
in the octahedral position (mainly Fe2+ replacing Al3+) increased, which led to the increase
of Na+ in the channel to compensate for the charge difference. Thus, the peak area at
3162 cm−1 increased, and the amount of type II water increased with the increase of alkali
ions in the channel.

4.3. Characteristics of Channel-Water in the Form of Hydration Ions and Its Influence on Colour

Wang [8] found that iron ions mainly replaced the Al3+ in the octahedral position,
but the specific valence state could not be determined. Through the analysis of IR spectra
and UV–vis spectra, it was speculated that the charge transfer of Fe2+ and Fe3+ in the
octahedral position would produce absorption in the red region of UV–vis spectra. The
d–d transition of the octahedral Fe3+ and the charge transfer between it and O2− and the
[Fe2(OH)4]2+ in the channel would produce absorption in the blue–violet region. The
absorptions in the two regions produced blue-green color. This conclusion could also be
proven in the two illustrations at the bottom of Figure 10. With the increase of Fe2+/Fe3+,
the absorption area ratio of the red region to the purple region in the UV–vis spectrum
increased, as well as the hue angle (h). The test data of UV-vis can be found in Table S5 (see
Supplementary Materials).
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Figure 9. The IR peak area at 5269 cm−1 was negatively correlated with the color parameter b*, and
positively correlated with the Na–H absorption peak at 3162 cm−1, and positively correlated with
cell parameter a0.

In this study, the total iron content tested by XRF and the Fe2+ tested by titration
method were combined to further study the valence state of iron ions at different positions
and their influence on color. Qi et al. [2] concluded that Fe3+ would enter the hexagonal
ring channel in the form of filler impurity ions and hydrolyses with water molecules. Under
the polymerization of alkali ions, [Fe2(OH)4]2+ copolymer and ion are generated:

2Fe3+ + 4H2O = [Fe2(OH)4]2+ + 4H+ k = 10−291 (3)

It can be seen from Figure 11 that with the increase of Fe3+ content, the peak area
at 3234 cm−1 (representing the content of [Fe2(OH)4]2+) also increased, proving that Fe3+

mainly exists in the channel in the form of hydration ions. However, Fe2+ didn’t completely
exist in the octahedral position. It can be seen from Figure 10 that a0 showed an upward
trend at the beginning with the increase of Fe2+, but when the Fe2+ increased to a certain
extent, a0 did not increase, indicating that Fe2+ existed in other positions at this time, such
as the channel and tetrahedron [28]. No matter what position it existed in, it would produce
absorption in the red region of the UV–vis spectrum and produce blue tone. As shown
in Figure 10, the three samples had the highest Fe2+ content but not the maximum cell
parameter a0 value. In addition, in their UV–vis spectrum, the ratio of absorption area of
the red region to that of the purple region is the largest, and the hue angle (h) is the largest.
It indicated that the presence of Fe2+ in other positions except the octahedral position was
also responsible for the blue tone. Absorptions in blue–violet region caused by [Fe2(OH)4]2+

and in red region caused by Fe2+ combined and produced the blue-green color of beryl.
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Figure 10. Fe2+/Al3+ content was positively correlated with the cell parameter a0 at first, but no
longer correlated when Fe2+ reached a certain content. Fe2+ content was the highest in the 2–4, 3–2,
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(h) was the largest. The illustration on the left shows a positive correlation between the Fe2+/Fe3+

content and the red region absorption area/purple region absorption area in the UV–vis spectrum.
On the right illustration, Fe2+/Fe3+ content was positively correlated with h.
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Figure 11. Fe3+ was positively correlated with the area of the IR absorption peak area at 3234 cm−1.
The samples were divided into four groups by K-means clustering method, and each group of data
was represented by a box.
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5. Conclusions

Through the analysis of infrared spectrum, 5105 cm−1 and 5269 cm−1 were determined
as the combined peaks of type II water, and the areas of these two peaks were used as
the basis to infer the relative content of type II water. However, the absorption peaks at
7097 cm−1 and 7142 cm−1 were unlikely to be the combination and the overtone peak of
type I water. It was found that the absorption peak at 7097 cm−1 was positively correlated
with the absorption peak at 3162 cm−1 caused by Na–H, the absorption peak at 7142 cm−1

was positively correlated with the absorption peak at 3111 cm−1 caused by M–OH, and the
absorption peak at 3234 cm−1 was caused by [Fe2(OH)4]2+.

With the different charge substitution of Fe2+ → Al3+ in the octahedral position, the
blue-green beryl transition from yellow to blue and the increase of Na+ in the channel led
to the increase of type II water content. In the IR spectrum, the absorption peak area at
5269 cm−1 was negatively correlated with b*, and positively correlated with the area at
3162 cm−1 and a0.

Fe3+ mainly existed in the channel as hydrated ions, but Fe2+ did not only exist in the
octahedral position. [Fe2(OH)4]2+ produced a yellow tone, which, when combined with
the blue tone produced by Fe2+, made beryl blue-green.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12030435/s1. Table S1: The test data of colour parameters of
23 samples; Table S2: The test data of IR; Table S3: The main elements content of 23 samples tested by
XRF; Table S4: The Fe2+ content of 10 samples; Table S5: The test data of UV-vis.
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