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Abstract: New 6-CF3-1H-pyrazolo[3,4-b]quinolines with a methyl and/or phenyl group attached
to the pyrazole core (Molx (x = 1, 2, 3, 4)) were synthesized and characterized in terms of their
optoelectronic applications: photovoltaic and electroluminescence. The fluorescence emissions of the
investigated phenyl-decorated pyrazoloquinolines is caused by the photoinduced charge transfer p
process occurring between the phenyl substituent and the pyrazoloquinoline core, while 1,3-dimethyl-
6-CF3-1H-pyrazolo[3,4-b]quinoline exhibits an π,π*-type emission. The number of phenyls and their
substitution positions modulate both emission properties and HOMO energy levels. Next, the bulk
heterojunction BHJ solar cells based on 1H-pyrazolo[3,4-b] quinoline derivatives with architecture
ITO/PEDOT:PSS/PDT + Molx/Al were fabricated. The organic active layer was a blend of Molx and
poly(3-decylthiophene-2,5-diyl). The complex refractive index and the layer thickness of the organic
solar cells were determined using a spectroscopic ellipsometer Woollam M2000 (J.A. Woollam Co.,
Inc., Lincoln, NE, USA) and CompleteEASE software. For solar devices with the best value of power
efficiency of approximately 0.38%, the thickness of the active layer (Mol3 + PDT) was 111 nm, with a
short-circuit current density of JSC = 32.81 µA/cm2 and an open–circuit voltage of VOC = 0.78 V. Finally,
we demonstrated double-layer light-emitting diodes with an organic active layer (Molx + PVK) and an
electron transporting material layer, ETM (2-[3,5-bis(4-phenyl-2-quinolyl)phenyl]-4-phenylquinoline
(Tris-Q). Bright bluish-green light originating from the active layer was observed in the double-layer
device, ITO/PEDOT:PSS/active layer/ETM/Ca/A. The active layer was a mixture of PV-doped
1H-pyrazolo[3, 4-b]quinoline dyes. An OLED device was constructed by employing Molx as an
emitter, which gave a deep bluish-green emission with the spectra range of 481–506 nm. The best
value of the maximum brightness at approximately 1436.0 cd/m2 was achieved for a diode based on
Mol3 (1-phenyl-3-phenyl-6-CF3-1H-pyrazolo[3,4-b]quinoline) and [R1 = Ph, R3 = Ph and R6 = CF3].
The current efficiency was up to 1.26 cd/A at 506 nm with a CIE of 0.007, 0.692.

Keywords: solar cells; photovoltaic cells; PV; 1H-pyrazolo[3,4-b]quinoline; electroluminescence; OLED

1. Introduction

In recent decades, we have seen significant progress in research into the use of organic
materials such as polymers, copolymers, oligomers and small molecule compounds in
organic optoelectronics such as organic photovoltaic devices [1], organic transistors [2],
organic light emitting diodes (OLEDs) [3], sensors [4] and batteries [5]. Based on the
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achievements to date in the field of organic electronics, it can be assumed that in the fu-
ture they may completely displace their inorganic counterparts. The main advantages of
organic materials are low production costs, ease of structural modification, the possibility
of application on large surfaces and the possibility of printing on flexible substrates. One of
the disadvantages is the lower mechanical or chemical resistance compared to inorganic
materials [6,7]. There are three types of photovoltaic device: (i) inorganic photovoltaic
cells (such as crystalline-silicon (c-Si) solar cells or amorphous silicon (a-Si), CdTe and
CuInGaSe2 (CIGS), etc.) [8], (ii) plastic photovoltaic cells, and (iii) hybrid photovoltaic cells
(such as “inorganics-in-organics” or superiorities of hybrid perovskite) [8–10]. Plastic pho-
tovoltaic devices include organic solar cells based on small molecular compounds, polymer
or copolymers, dye sensitized solar cells (DSSCs) and tandem cells [8,11]. The organic
bulk heterojunction (BJH) photovoltaic cells are one of the architectures of organic solar
cells. Other structures of organic solar cells are organic single-layer solar cells, bi-layer (p-n
junction) solar cells, inverted solar cells and tandem solar cells. The active layer of the BJH
solar cell architecture most often uses conjugated polymers [10,12] as donors and different
types of acceptors such as fullerene derivatives [13,14], small molecular compounds [15]
and nanoparticles [16]. In 1995, Heeger et al. [17] first invented and described the structure
of an organic photovoltaic cell with a BJH layer as the active layer. The active layer was a
mixture of poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and
1-(3-methoxycarbonyl)propyl-1-phenyl [6,6]C61 (PCBM), where MEH-PPV was the donor
and PCBM was the acceptor [17–19]. The best conversion efficiency PCE for BHJ organic
photovoltaic (OSCs) devices was, at that time, approximately 13.1%. In these investigated
devices, the active layer was a blend of donor and acceptor materials, where the donor
was a new polymer (PBDB-T-SF) and the acceptor was a new small molecule (IT-4F) [20].
In 2018, Hang Yin et al. [21] presented the results for bulk heterojunction devices with a
binary active layer PCDTBT:PC71BM, and they achieved a power conversion efficiency of
16.5% and 20.8% for a structure with a ternary BHJ cell of PCDTBT:PDTSTPD:PC71BM. For
solar cells based on GaAs thin film, the best world conversion efficiencies were 27.6% [22],
approximately 22% for bulk single crystal Si [23] and 20% for perovskite solar cells [24],
14% for dye–sensitized cells [25] and 11.1% for organic solar cells [26]. In addition to or-
ganic photovoltaics, there is also a rapidly developing field of organic electroluminescence.
Since the first electroluminescence in organic materials based on anthracene single crystals,
reported in 1965, there has been a rapid development of research in this direction that
embraces the electroluminescence of organic materials [27]. However, the significant break-
through came over twenty years later when Tang and VanSlyke constructed a two-layer
electroluminescent cell using an aromatic amine as a hole-transporting layer and a complex
of aluminium and 8-hydroxyquinoline AlQ3 serving as the light emitting and electron
transporting layer. Luminance exceeded 1000 cd/m2 below 10 V, with a quantum efficiency
of 1% photon/electron being achieved. Their pioneering work [28] initiated further OLED
research based on small molecules and polymers [29,30]. The first OLED based on a poly-
mer was reported in 1990 by Friend et al. [31]. In recent decades, the attention on organic
light-emitting diodes has increased significantly due to their advantages, such as their
high flexibility [32,33], as well as the fact they are lightweight and super thin [34], cost and
power efficient, environment friendly [35,36] and have high luminous efficiency and great
colour contrast [37,38]. In 2002, Mao and et al. produced the three-layered EL device with the
structure ITO/CuPc/DPPhP/BDCM/Mg:Ag, where the bright luminance was approximately
582 cd/m2 at 19 V. They used a novel materials BDCM (N,N-bis{4-[2-(4-dicyanomethylene-
6-methyl-4H-pyran-2-yl)ethylenyl]phenyl}aniline) as an emitter of red light [39]. Kido et al.
successfully obtained blue-colour, green-colour and white-colour OLEDs, corresponding to a
very high PE performance of 36 lm/W, 52 lm/W and 34 lm/W, respectively. They fabricated
green phosphorescent OLEDs with a device configuration of indium tin oxide (ITO)/poly(3,4-
ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/poly(9,9-dioctyl-fluorene-alt-N-
(4-butylphenyl)-diphenylamine)(TFB)/host:12 wt% Ir(ppy)3/1,3,5-tris(N-phenylbenzimidazol-
2-yl)benzene (TPBi)/lithium 8-quinolate (Liq)/Al. In these OLED, TPBi was an ETL. In the
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blue OLEDs, Kido et al. used 4,4′-(3,3′-bi(9H-carbazole)-9,9′-diyl)bis(2,6-diphenyl)benzene
(13, BCzTPh) and 4,4′-(3,3′-bi(9H-carbazole)-9,9′-diyl)bis(N,N-diphenyl)aniline (16, BCzTPA)
as host molecules and 2-propanol soluble 1,3-bis(3-(diphenylphosphoryl)phenyl)benzene
(BPOPB)as an ETL. The device architecture was ITO/PEDOT:PSS/TFB/host:12 wt% FIr-
pic/BPOPB/Liq/Al [40]. Luszczynska et al described the electroluminescence of five bithio-
phene disubstituted 1,3,4-thiadiazole bithiophene as materials for use in organic optoelec-
tronics. The best luminance, 750 cd/m2, was achieved for 2,5-bis(5-octyl-2,2′-bithiophene-5-
yl)-1,3,4-thiadiazole, with luminous efficiency exceeding 0.4 cd/A [41]. A device showing
bluish-green light with a maximum brightness of 8264 cd/m2 and a maximum current effi-
ciency of 3.96 cd/A was fabricated by Ben Zhong Tang et. al. They manufactured multilayer
non-doped OLED with a configuration of ITO/HATCN/NPB/X 10% 20 nm/TPBi/LiF/Al.
In these structures, the dipyrazine[2,3-f:2′,3′-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile
(HATCN) serves as a hole injection layer and N,N-bis(1-naphthyl)-N,N-diphenylbenzidine
(NPB) and 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene (TPBi) work as hole-transporting
and electron-transporting layers, respectively [42]. Due to the fact that the work concerns
pyrazolo[3,4-b] quinolines, we should mention their earlier use in electroluminescent cells.
Tao et al. [43] constructed a multi-layered cell based on 1-methyl-3-phenyl-6-N,N-dimethyl-
1H-pyrazolo[3,4-b] quinoline. The device emitted a green light with a maximum luminance
of 37,000 cd/m2 and luminescent efficiency of 6.0 cd/A [43]. The same group applied ther-
mally stable spirobifluorene-based 1H-pyrazolo[3,4-b]quinoline (spiro-PQ) as a luminophore
in an OLED device with a configuration of ITO/NPB/CBP/TPBI + spiro-PQ/TPBI/Ag. The
bright blue luminance exceeded 20,000 cd/m2 with CIE coordinates (0,14; 0.17) [44]. Yanhu
Li et al. [45] presented devices based on these oligofluorenes which exhibited highly efficient
deep-blue electroluminescence. The double-layered device with PPO-TF3 as emitter shows
a maximum current efficiency of 1.88 cd/A and a maximum external quantum efficiency
of 3.39% with Commission Internationale de l′Eclairage (CIE) coordinates of (0.16, 0.09),
which are very close to the National Television Standards Committee’s blue standard [45].
A double-layer device ITO/DNCz/Alq3/LiF/Al was presented by Ki-Soo Kim et al. [46].
The devices showed a yellowish-green emission originating from Alq3 and used DNCz (9-
ethyl-3-(naphthalene-2-yl)-6-(naphthalene-3-yl)-9H-carbazole) as a hole-transporting material.
The luminance of this EL diode was approximately 18,600 cd/m2. Additionally, Ki-Soo
Kim et al. described a multilayer device with a ITO/DNTPD/NPD/TCzPB (1,3,5-tris[4-(N-
carbazolyl)phenyl]benzene) + Ir(ppy)3/BCP/Alq3/LiF/Al structure with a luminance of
27,200 cd/m2 (17.6 cd/A at 18.0 V). TCzPB is a promising host material for phosphorescent
dopants [46].

To date, many low-molecular compounds have been developed, and their useful-
ness for organic electronics has been positively confirmed. However, despite this, many
research groups still conduct research on the preparation of new compounds and check
their usefulness for organic optoelectronics. The activity of our group is in line with
this research trend.

The main goal of this paper is a description of the photophysical properties of newly
synthesized trifluoromethyl substituted low-molecular 1H-pyrazolo[3,4-b]quinolines Molx
(x = 1, 2, 3, 4). The mentioned compounds exhibit high light absorbance and electrolu-
minescent properties. We describe their optical characteristics and verify their potential
application in the fabrication of organic light emitting diodes (OLEDs) and organic photo-
voltaic devices (OPV).

The organization of the work is as follows. Section 2 outlines the procedure for the
preparation of 1H-pyrazolo[3,4-b]quinoline dyes Molx (x = 1, 2, 3, 4) compounds and
their chemical characterization. Section 3 is devoted to a presentation of the equipment
and methods used in the characterization of the materials and fabricated optoelectronic
structures. In Section 4, the architectures of the fabricated solar cells and OLED structures
are presented. In Section 5, we present the experimental results and their discussion.
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2. Materials
2.1. Synthesis

The following organic materials 1H-pyrazolo[3,4-b]quinolines derivatives (Molx),
namely 1-methyl-3-phenyl-6-CF3-1H-pyrazolo[3,4-b]quinoline (Mol1), 1-phenyl-3-methyl-6-
CF3-1H-pyrazolo[3,4-b]quinoline (Mol2), 1,3-diphenyl-6-CF3-1H-pyrazolo[3,4-b]quinoline
(Mol3) and 1,3-dimethyl-6-CF3-1H-pyrazolo[3,4-b]quinoline (Mol4), were tested for their
use in optoelectronic devices. Their chemical structures are presented in Figure 1.
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Figure 2. Synthetic procedure for CF3-substituted 1H-pyrazolo[3,4-b]quinolines.

Thus, p-trifluoromethylaniline (1) was heated with 5-chloro-4-formyl-1,3-disubstituted
pyrazoles (2) without solvent. The pyrazole derivatives (2) were prepared by Villsmeier–
Haack formylation of appropriate pyrazolones. The details of these procedures are de-
scribed in the paper published by Brack and Villsmeier/Haack, respectively [47,48].

Synthetic Procedures
1H and 13C NMR spectra were carried out by means of a Bruker Avance III 300

spectrometer (Billerica, MA, USA) operating at 300 and 75 MHz, respectively. Samples were
dissolved in CDCl3, with TMS as an internal standard. The melting points were determined
on a Stuart SMP3 melting point apparatus (capillary), and they were uncorrected. Elemental
analyses were conducted at Elementar Vario MICRO cube.

6-(Trifluoromethyl)-1-methyl-3-phenyl-1H-pyrazolo[3,4-b]quinoline (Mol1): 4-(trifluor-
omethyl)aniline (805 mg, 5 mmol) was mixed with 5-chloro-1-methyl-3-phenyl-1H-pyrazole-
4-carbaldehyde (993 mg, 5 mmol) and heated on a sand bath until the temperature reached
190 ◦C; it was then maintained in that temperature for 60 min. The mixture was then
allowed to cool to room temperature, and the resulting brown-yellow solid was dissolved
in chloroform and flushed through Aluminium Oxide 60. The resulting yellow solid was
crystallized twice from toluene to yield 1.13 g (77%) of yellow fluorescent needles, m.p.
161–161.5 ◦C. 1H NMR (CDCl3, δ, ppm): 8.95 (s, 1H, Ar-H), 8.32 (broad s, 1H, Ar-H), 8.21
(dd, J = 9.1, 0.6 Hz, 1H, Ar-H), 8.06–8.02 (m, 2H, Ar-H), 7.90 (dd, J = 9.1, 2.0 Hz, 1H, Ar-H),
7.60–7.55 (m, 2H, Ar-H), 7.51–7.45 (m, 1H, Ar-H), 4.30 (s, 3H, CH3); 13C NMR (CDCl3, δ,
ppm): 152.0, 148.8, 143.2, 132.5, 132.2, 129.5, 129.1, 128.9, 127.3 (q, JC-F = 4.7 Hz), 127.1, 126.0
(q, JC-F = 2.3 Hz), 125.5 (q, JC-F = 32.0 Hz), 122.8, 115.7, 34.1; Found: C, 66.01; H, 3.75; N,
12.90; C18H12F3N3 requires: C, 66.05; H, 3.70; N 12.84.

6-(Trifluoromethyl)-3-methyl-1-phenyl-1H-pyrazolo[3,4-b]quinoline (Mol2): 4-(trifluor-
omethyl)aniline (970 mg, 6 mmol) was mixed with 5-chloro-3-methyl-1-phenyl-1H-pyrazole-
4-carbaldehyde (1190 mg, 6 mmol) and a few drops of sulfolane and heated on a sand
bath until the temperature reached 220 ◦C; it was then maintained at that temperature
for 45 min. The mixture was then allowed to cool to room temperature, and the resulting
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brown-yellow solid was treated with methanol in an ultrasonic bath for a few minutes.
A yellow solid was filtered off, dissolved in chloroform and flashed through Aluminium
Oxide 60. The resulting solid was chromatographed on a SilicaGel 60 column with toluene
to yield 600 mg (31%) of yellow plates, m.p. 143.5–144 ◦C. 1H NMR (CDCl3, δ, ppm): 8.62
(s, 1H, Ar-H), 8.48–8.44 (m, 2H, Ar-H), 8.29 (broad s, 1H, Ar-H), 8.24 (dd, J = 9.1, 0.6 Hz,
1H, Ar-H), 7.90 (dd, J = 9.1, 2.0 Hz, 1H, Ar-H), 7.59–7.52 (m, 2H, Ar-H), 7.33–7.28 (m, 1H,
Ar-H), 2.77 (s, 3H, CH3); 13C NMR (CDCl3, δ, ppm): 151.1, 149.0, 143.6, 139.6, 130.8, 130.1,
129.1, 127.2 (q, JC-F = 4.5 Hz), 125.9 (q, JC-F = 3.0 Hz), 125.9 (q, JC-F = 32.6 Hz) 125.3, 122.6,
120.3, 119.1, 12.8; Found: C, 66.10; H, 3.80; N, 12.77; C18H12F3N3 requires: C, 66.05; H, 3.70;
N 12.84.

6-(Trifluoromethyl)-1,3-diphenyl-1H-pyrazolo[3,4-b]quinoline (Mol3): 4-(trifluoromethyl)
aniline (1.61 g, 10 mmol) was mixed with 5-chloro-1,3-diphenyl-1H-pyrazole-4-carbaldehyde
(2.83 g, 10 mmol) and heated on a sand bath until the temperature reached 180 ◦C; it was
then maintained in that temperature for 60 min. Then the mixture was allowed to cool to
room temperature, and the resulting brown solid was dissolved in chloroform and flashed
through Aluminium Oxide 60. The resulting yellow solid was crystallized from DMF to
yield 2.20 g (57%) of deep-yellow crystalline powder, m.p. 175 ◦C. 1H NMR (CDCl3, δ,
ppm): 8.97 (s, 1H, Ar-H), 8.57–8.54 (m, 2H, Ar-H), 8.33 (broad s, 1H, Ar-H), 8.26 (dd, J = 9.0,
0.5 Hz, 1H, Ar-H), 8.13–8.10 (m, 2H, Ar-H), 7.91 (dd, J = 9.1, 2.0 Hz, 1H, Ar-H), 7.62–7.49 (m,
5H, Ar-H), 7.37–7.31 (m, 1H, Ar-H); 13C NMR (CDCl3, δ, ppm): 151.5, 148.8, 144.7, 139.6,
132.2, 132.1, 130.1, 129.3, 129.2, 129.1, 127.5, 127.4 (q, JC-F = 4.7 Hz), 126.3 (q, JC-F = 32.3 Hz),
126.1 (q, JC-F = 2.6 Hz) 125.8, 124.1 (q, JC-F = 270 Hz), 123.2, 120.8, 117.3; Found: C, 70.93; H,
3.57; N, 10.85; C23H14F3N3 requires: C, 70.95; H, 3.62; N 10.79.

6-(Trifluoromethyl)-1,3-dimethyl-1H-pyrazolo[3,4-b]quinoline (Mol4): 4-(trifluoromethyl)
aniline (970 mg, 6 mmol) was mixed with 5-chloro-1,3-dimethyl-1H-pyrazole-4-carbaldehyde
(950 mg, 6 mmol) and a few drops of sulfolane and heated on a sand bath until the
temperature reached 200 ◦C; it was then maintained in that temperature for 45 min. The
mixture was then allowed to cool to room temperature, and the resulting brown-yellow
solid was treated with methanol in an ultrasonic bath for a few minutes. The resulting
yellow solid was filtered off, dissolved in chloroform and flashed through Aluminium
Oxide 60. The solid was chromatographed in a SilicaGel 60 column with toluene to yield
450 mg (28%) of yellowish crystalline powder, m.p. 140–141 ◦C. 1H NMR (CDCl3, δ, ppm):
8.60 (s, 1H, Ar-H), 8.28 (broad s, 1H, Ar-H), 8.18 (broad d, J = 9.1 Hz, 1H, Ar-H), 7.87 (dd,
J = 9.1, 2.1 Hz, 1H, Ar-H), 4.18 (s, 3H, N-CH3), 2.71 (s, 3H, Ar-CH3); 13C NMR (CDCl3, δ,
ppm): 152.5, 149.7, 142.2, 131.6, 130.0, 128.1 (q, JC-F = 4.7 Hz), 126.4 (q, JC-F = 2.6 Hz), 122.8,
118.1, 34.3, 13.4; Found: C, 58.78; H, 3.82; N, 15.92; C13H10F3N3 requires: C, 58.87; H, 3.80;
N 15.84.

3. Equipment and Methods

As part of the studies presented here, theoretical analyses and experimental research
were carried out. The theoretical analyses involved molecular conformations and determi-
nation of HOMO-LUMO levels of the Molx compound. Optical analysis of the photovoltaic
structures was carried out. Calculations of the light intensity distribution and the density
of the generated excitons in the photovoltaic cells were performed using the 2 × 2 matrix
method presented in our earlier works [49–51]. In experimental studies, the absorption
properties of the developed compounds were determined, and the complex refractive index
of the bulk heterostructure composed of the polymer-PVK blend was determined. The
apparatus and measurement methods used are presented below. The produced structures
of the photovoltaic cells and OLEDs were tested using the measurement systems presented
in our previous papers [52,53]. Optical analysis of the photovoltaic structures was carried
out. The light intensity distribution and the density of the generated excitons in the pho-
tovoltaic cells were calculated using the 2 × 2 matrix method presented in our previous
works [49–51].
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3.1. DFT Calculation

Quantum chemical calculations were performed using the PL-Grid Infrastructure
and resources provided by the ACC Cyfronet AGH (Kraków, Poland). DFT and TDFT
calculations were carried out with the Gaussian 16 package (Revision B.01, Wallingford,
CT, USA) [54], based on the computational approach that has been successfully applied
for the pyrazolo[3,4-b]quinolines and their derivatives [55–57]. The geometry optimization
was performed using density-functional theory (DFT) and the B3LYP functional [58–60],
together with a Dunning correlation-consistent, polarized valence [61], double-ζ basis set,
cc-pVDZ. The photophysical properties were calculated as vertical electronic excitations
from the minima of the ground-state, using the linear-response approach, the B3LYP/cc-
pVDZ level of theory and the first six excited states. The solvent effect was taken into
account by including the polarizable continuum model (PCM) [62] and acetonitrile as
solvent. All obtained minima were confirmed by the absence of a negative frequency in the
vibrational analysis. The simulated spectra were obtained as the sums of Gaussian functions
centred at vertical excitation energies and scaled using the calculated oscillator strengths
with a half-width at half-height parameter implemented in the GaussView 6.0.16 program.

3.2. Spectral and Time Resolved Measurements

Absorption spectra were recorded using a Shimadzu UV-2101 PC spectrometer (Markham,
ON, Canada). Room-temperature and low-temperature (at 77 K) fluorescence spectra (with
the correction for spectral sensitivity) were measured by a Hitachi F7000 fluorometer (Tokio,
Japan). Phosphorescence was measured in a dibutyl ether matrix (at 77 K) using a Hitachi
F7000 fluorometer (Tokio, Japan) with a chopping frequency 40 Hz. For time-resolved fluo-
rescence measurements (time-correlated single-photon counting technique), a picosecond
diode laser (λ = 400 nm, 70 ps pulse duration) (IBH-UK) was used as the excitation source.
The χ2 test and the distribution of residuals were the main criteria in the evaluation of the
quality of fit of the experimental decay curves. For steady-state fluorescence measurements,
a 370 line was used. The fluorescence quantum yield measurements were carried out with
quinine sulphate in 0.05 M H2SO4 (Φfl = 0.51) [63] as an actinometer. The fluorescence stud-
ies were performed on deaerated samples. The acetonitrile and dibutyl ether used for the
spectrophotometric measurements were purchased from AlfaAesar (HPLC grade, Gdańsk,
Poland). Both absorption and steady state emission measurements were done with the
aid of instruments collected at University of Agriculture, Kraków, Poland. Time-resolved
fluorescence studies were measured at Jagiellonian University, Kraków, Poland.

3.3. Electrochemical Measurements

Cyclic voltammetry measurements were performed on a potentiostat (PalmSens3). A plat-
inum wire (ø = 0.5 mm) and a platinum coil (ø = 1.6 mm) were used as a counter and working
electrodes, respectively. A non-aqueous electrode (Ag/Ag+), designed and provided by ALS,
was used as a quasi-reference electrode. The potential of the quasi-reference electrode was cali-
brated using ferrocene as an internal standard. A 0.1 M solution of Bu4NPF6 (Aldrich ≥ 99.0%)
in acetonitrile (AlfaAesar HPLC grade was additionally dried with a molecular sieves 4 Å and
distilled prior to use) was used as the electrolyte. The obtained potentials were additionally
confirmed by independent differential pulse voltammetry measurements (DPV). Prior to the
measurements, the solutions were purged with argon to remove residual oxygen.

3.4. Ellipsometry

The optical functions and thicknesses of the constituent layers of the solar cells pro-
duced were determined using the spectroscopic ellipsometry method. In this measurement
technique, the ratio, ρ, of the Fresnel reflection coefficients for s- and p-polarized compo-
nents is described by the following equation [52,64,65]:

ρ =
rp

rs
= tan ψei∆ (1)
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where ψ and ∆ are the ellipsometric angles, named amplitude ratio and phase shift, respec-
tively. The spectral characteristics of the ellipsometric angles ψ and ∆ were recorded using
an ellipsometer. The theoretical characteristics of the ellipsometric angles, calculated from
the assumed model of the examined structure, were then fitted to the experimental ones.
The structure parameters assumed for the calculations, for which the best matching of
theoretical and measurement characteristics were obtained, were taken as those which char-
acterized the investigated structure. In our studies, we used a spectroscopic ellipsometer
Woollam M2000 (J.A. Woollam Co., Inc., Lincoln, NE, USA) and CompleteEASE Software.

Examples of the spectral characteristics of the ellipsometric angles, appropriately
measured and calculated for the active layer of the sample (glass/ITO/PEDOT:PSS/active
layer), are shown in Figure 8 Measurements were made for angles θ sample lighting 60◦,
65◦ and 70◦, respectively. In all calculations for the active layers, we used the Tauc–Lorentz
model with Gaussian oscillators, described as follows:

ε2_NG = ANGe−(
E−E0_N

B fN
)

2

− ANGe−(
E + E0_N

B fN
)

2

(2)

where fN = 1
2
√

ln2
and the fitting parameters are ANG—amplitude, B—boarding, E0_N—oscillator

energy, N—oscillators (N = 6, fitting for four Gaussian oscillators) [54,55,63,64,66].

4. Solar Cells and OLEDs Fabrications

In our work, we present fabricated bulk heterojunction (BHJ) photovoltaic cells
based on organic materials. The structure of the investigated sample was as follows:
glass/ITO/PEDOT:PSS/organic active layer/aluminum (Al) (see Figure 3). The organic
active layer was a blend of Molx + PDT, (where PDT is poly(3-decylotiofen2,5-diyl) and
x = Mol1, Mol2, Mol3, Mol4—see Figure 1) dissolved in tetrahydrofurane THF (anhydrous,
99.9% Sigma-Aldrich). The ITO (indium oxide solid solution (II) oxide and tin (IV)), coated
on glass, was the substrate in the structure of the BHJ photovoltaic cells. The sheet resistance
of ITO was approximately 15 Ω/sq. The ITO underwent a cleaning in an ultrasonic cleaner
using isopropanol, acetone, detergent and distilled water. A thin layer of PEDOT:PSS
[poly(3,4-ethylenedioxythiophene): polystyrenesulfonic acid]—was then applied to the
prepared substrate by the spin coating method. The thin layer PEDOT:PSS (1.3 wt% dis-
persion in H2O, conductive grade) was heated in a vacuum at 100 ◦C for 30 min. The
organic active layer Molx + PDT was sandwiched between PEDOT:PSS and an aluminium
electrode. Finally, an aluminium (Al) anode (100 nm) was deposited by evaporation in a
high vacuum (10−6 bar). The resulting photovoltaic (BHJ) cells had an area of 15 × 15 mm2.
PDT, THF, acetone, isopropanol and ITO was purchased from Sigma-Aldrich. The effect of
the organic active layer on the performance of PDT + Molx cells were investigated using
a current source Keithley 2400 SourceMeter in the dark and under illumination with a
tungsten lamp with a fixed power density of 1.3 mW/cm2.
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The structure of the prepared organic light-emitting diodes (OLEDs) is shown in
Figure 4. These structures had the following configuration—glass/ITO/PEDOT:PSS/active
layer/ETM/Ca/Al. On the glass/ITO sample was a spin-coated PEDOT:PSS layer. The
thin PEDOT:PSS layer was dried at 100 ◦C for 45 min to remove the remains of water. In
the next step, the emission layer, PVK + Molx (where x was 1, 2, 3, 4), was applied using
a spin-coater on a glass/ITO substrate. The active layer (Molx + PVK) was a mixture of
luminophores (Molx) in a poly(N-vinylcarbazole)PVK matrix. Luminophores (Mol1, Mol2,
Mol3, Mol4) and PVK were dissolved in tetrahydrofurane (THF). Then, on top of this
sample, a 2-[3,5-bis(4-phenyl-2-quinolyl)phenyl]-4-phenylquinoline (Tris-Q)) layer, as an
electron transparent material (ETM) was spin–coated. The Ca/Al electrode was evaporated
in a high vacuum (10−6 bar) on the organic active layer. In the studied structures, the ITO
is a positive electrode and the Ca/Al is a negative electrode.
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5. Results and Discussion
5.1. Photophysical Properties

Room-temperature absorption and fluorescence spectra of the investigated compounds
are presented in Figure 5.

Absorption and emission data are shown in Table 1. Similarly to 1,3-dimethyl-
pyrazolo[3,4-b]quinoline [67], Mol4 exhibits a vibronic structure of the lowest absorption
band, with a maximum located at 375 nm. This slight vibrational structure (occurring even
in polar acetonitrile), along with a moderate extinction coefficient (ε = 4600 M−1 cm−1),
may indicate the presence of π,π*←S0 transition. The low energy band of the phenyl-
decorated compounds shows clear red shift compared to the 1,3-dimethyl counterpart
(Mol4). The shift depends on both the number of phenyl substituents attached to the
pyrazole part and their location. Hence, the most pronounced bathochromic shift was
observed for Mol3 (with two phenyl groups). Moreover, the phenyl attached to the 3rd
position of the pyrazole part induces a larger bathochromic shift of absorption maximum
than in the 1st position. Although the absorption maxima significantly differ from one
another (381 nm and 390 for Mol2 and Mol1, respectively), the HOMO/LUMO energy
gaps are practically the same (Figure 5). This is in line with quantum chemical calcula-
tions predicting the absorption maximum at 411 nm (ε = 7850 M−1 cm−1) for Mol1 and
at 413 nm (ε = 2450 M−1 cm−1) for Mol2. Therefore, the difference in absorption maxima
can be justified in terms of the presence of two rotamers in solution: with phenyl in or
out of the pyrazoloquinoline plane. To verify this hypothesis, 2D relaxed potential energy
surfaces were built by varying the dihedral angle between the phenyl attached to the
1st or 3rd position of the pyrazole and the pyrazoloquinoline core (Figure S2). Based on
those results and available thermal energy at 295 K (3RT = 0.077 eV), two conformations
were chosen for each mono-phenyl functionalized molecule under study (see Figure S3).
Next, the lowest energy excitation, along with molar absorptivity, were predicted, and
the results are listed in Table S1. The photophysical behaviour of Mol2 with the phenyl
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twisted out of plane (Mol2t, λabs,cal = 388 nm, εcal = 3450 M−1 cm−1) resembles the optical
properties of the parent molecule (Mol4, λabs,cal = 388 nm, εcal = 4100 M−1 cm−1). Although
a full perpendicular twist of 1-phenyl substituent is rather unlikely due to a large energy
barrier (Mol2 0.149 eV), the presence of a sixty degree twist is highly probable. Such a
wide range of torsional angles makes feasible the existence of two opposite conforma-
tions (planar Mol2p and twisted rotamer Mol2t). Bearing in mind that the predicted
molar absorptivity of Mol2p is significantly lower than that for Mol2t, it is evident that
the superposition of these two bands may lead to the formation of a new band with an
absorption maximum located close to that of Mol4. The simulated averaged absorption
spectra, presented in Figure S4 in the Supplementary Materials, well reproduce the ex-
perimental one in terms of the relative energetic positions and intensity of the absorption
bands. The same reasoning may be applied in the context of Mol1 (energy barrier 0.153 eV).
In this case, a red-shifted absorption is related to the high absorptivity of global energy
conformation (Mol1p, 3-phenyl twisted by 24◦ with respect to the pyrazoloquinoline plane,
λabs,cal = 411 nm, εcal = 7850 M−1 cm−1), which makes the UV band of a more distorted
rotamer Mol1t less visible (λabs,cal = 387 nm, εcal = 6000 M−1 cm−1, see Figure S4). Finally,
the observed absorption maximum of Mol3 results from the additive effect of two phenyl
substituents attached to the pyrazoloquinoline core.

Figure 5. UV–Vis absorption (top) and emission (bottom) spectra of the compounds under study in
acetonitrile: Mol1 (red); Mol2 (green); Mol3 (blue); Mol4 (black).
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Table 1. Absorption and Emission Parameters of the Investigated Dyes Dissolved in Acetonitrile.

Compound Solvent λabs
(nm)

ε
(M−1 cm−1)

λfl
(nm) Φfl

τfl
(ns)

knr
(×107 s−1)

kr
(×107 s−1)

Mol1 ACN 390 7500 476 0.41 31.62 1.87 1.30
Mol2 ACN 381 3300 495 0.14 20.57 4.18 0.68
Mol3 ACN 397 6700 500 0.27 28.97 2.52 0.93
Mol4 ACN 375 4600 433 0.73 34.66 0.78 2.11

The Gaussian shape of the absorption band, along with the observed red shift, may
point to the partial charge transfer character of the first singlet excited state in Mol2 and
Mol3 [68]. It seems that the phenyl at the 1st position plays a crucial role in the formation of
charge transfer state due to a strong electronic conjugation between this substituent and the
CF3 group (see HOMO/LUMO contours of orbitals for Mol2). Moreover, the attachment
of phenyl to the nitrogen atom of pyrazole (stronger electronegativity than the carbon
atom), along with the close vicinity of a positively charged centre (located at the carbon
atom connecting the nitrogen of the quinoline and that of pyrazole) (Figure S6) may favour
charge migration in this compound. As a consequence, a full electron density shift from
phenyl at the 1st position to the pyrazoloquinoline skeleton occurs upon excitation to the
first singlet excited state, while in Mol1 residual charge density is still noticeable at the
3-phenyl substituent (see LUMO contours of orbitals, Figure 6). This behaviour is also
reflected in emission properties. Mol2 exhibits the weakest fluorescence and the shortest
fluorescence lifetime from all the studied compounds, which may indeed indicate the
existence of the photoinduced electron transfer process being responsible for fluorescence
quenching. It is very likely that this process is partially suppressed in Mol3 due to the
presence of additional phenyl at the 3rd position. Finally, some distortions of Mol1 from
planarity may result in a smaller electronic conjugation and then weaker fluorescence
quenching caused by the photoinduced electron transfer process, as compared to Mol2. The
lack of an electron-rich phenyl substituent and the small Stokes shift of Mol4 point to the fact
that the first singlet excited state is most probably of the π,π* character. Summing up, the
energy of the singlet excited state is modulated both by the number of phenyl substituents
and their location. In addition, the character of the singlet excited state changes from 1(π,π*)
to 1CT with the presence of the phenyl group.
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Depending on the mechanism of the singlet energy deactivation, electroluminescent
materials can be divided into three categories: fluorescent emitters, phosphorescent emitters
and thermally activated delayed fluorescence (TADF) emitters. In order to classify the
investigated dyes to one of the above-mentioned groups, low-temperature phosphorescence
measurements were performed.
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As depicted in Figure S7 in the Supplementary data, the studied dyes exhibit only low-
temperature fluorescence. With the course of the experiment, no signal of phosphorescence
was detected, confirming that the emission occurs only from the first singlet excited state.
Hence, a competitive deactivation pathway via an intersystem crossing process can be
ruled out. Taking into account the above-mentioned considerations, one can classify the
studied dyes as the first generation of OLED materials (fluorescent materials).

5.2. Electrochemistry

In order to prepare the electroluminescent cell, it is required to know the HOMO/LUMO
energy levels of the emissive material tested for OLEDs. The knowledge of these parameters
enables one to choose and apply such hole/electron transporting materials, which will
be efficient in the recombination of the injected hole/electron pair. One of the methods
commonly used for determination of HOMO/LUMO energy levels is cyclic voltammetry.
It is a simple and useful technique to compare the relative energy levels for the series of
derivatives in the same class. HOMO energy levels were calculated using this well-known
equation: EHOMO = −(1.4± 0.1)·qEox − (4.6± 0.08) eV [69]. (Eox—The onset oxidation
potential taken from the cyclic voltammogram; q—Electric charge). The LUMO levels have
been deduced from the optical band gap values [70]. Optical band gap was evaluated
from the absorption spectra using the Tauc method [70]. The obtained values of oxidation
potentials, HOMO/LUMO energy levels and energy band gaps are presented in Figure 6.

All the investigated pyrazoloquinolines exhibit a weakly reversible oxidation peak
at the platinum electrode with reference to the non-aqueous reference electrode Ag/Ag+

(Figure 7). Both Mol4 (Eox = 1.268 V) and Mol1 (Eox = 1.196 V) display a clear single oxidation
peak, while Mol3 exhibits dual oxidation peaks at 1.093 V and 1.198 V, appearing during an
anodic scan. In the case of the Mol2 derivative, the oxidation profile may resemble a dual
character (1.104 V, 1.239 V); however, the second peak is hardly visible and is irreversible.
Therefore, it was not taken into consideration during further analysis. The analysis of the
values of oxidation potentials confirmed that the CV profile of Mol3 is a superposition of
two oxidation peaks: one related to the oxidation of 1-phenyl-N-pyrazol and the second
associated with phenyl oxidation at the third position.
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Figure 7. Cyclic voltammetry plots of compounds under the study referenced to the fer-
rocene/ferrocenium couple: Mol1, Mol2, Mol3 and Mol4.

In each phenyl derivative under study, the presence of phenyl leads to an increase of
electron density on the core, which results in an easier oxidation process of the compound
(higher HOMO energy). It is worth noting that the different locations of phenyl in the
Mol1 and Mol2 compounds can modulate the HOMO energy level in various ways. Due
to a strong interaction between 1-phenyl and CF3, the charge density of the PQ core is
significantly enriched, resulting in the increase of HOMO energy level. This increase is
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smaller in Mol1 due to less effective charge/electron injection to the core by 3-phenyl,
twisted with respect to the PQ skeleton. Finally, the value of HOMO/LUMO of Mol3 is the
net result of the Mol1 and Mol2 physicochemical properties.

5.3. Complex Refractive Index and Film Thickness

The complex refractive index of the active layer Mol3 + PDT over the PEDOT:PSS/ITO/glass
substrate was determined using the spectroscopy ellipsometry method described in the
previous section. In Figure 8, the spectral characteristics of the ellipsometric angles Ψ and
∆ for three different illumination angles of the structure (θ = 60◦, 65◦ and 70◦), registered
for Mol3 + poly (3-decylthiophene-2,5-diyl), are presented. The registered (experimental)
characteristics are plotted with individual continuous coloured lines, and theoretical ap-
proximations corresponding to the best fit are plotted with continuous black lines. For each
illumination angle, θ, a perfect agreement of the theoretical characteristics with the exper-
imental characteristics is visible. The determined complex refractive index Mol3 + poly
(3-decylthiophen-2,5-diyl) is presented in Figure 9. The dispersion characteristic of the
refractive index, N(λ), is drawn in black and the dispersion characteristic of the extinc-
tion coefficient, κ(λ), is drawn in blue. The characteristic κ(λ) shows a wide absorption
peak which, for the wavelength λ = 550 nm, reaches the maximum value of κmax = 0.6.
The ellipsometric measurements also determined the thickness of the active layers in the
photovoltaic structures made. The determined values are listed in the second column in
Table 2.
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Figure 8. Spectral dependence of ellipsometric angles Ψ and ∆ for the Mol3 + poly(3-decylotiofen-
2,5-diyl) layer over the PEDOT:PSS layer of the ITO film on the glass substrate.

Figure 9. Dispersion relations of refractive index n and extinction coefficient k for the Mol3 + poly(3-
decylotiofen-2,5-diyl)layer over the PEDOT:PSS layer of the ITO film on the glass substrate.
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Table 2. Principal parameters obtained for the manufactured organic photovoltaic devices:
VOC—Open Circuit Voltage, JSC—Current Density, FF—Fill Factor, η —Power Efficiency.

Photovoltaic Cell
Thickness

Molx + PDT
(nm)

JSC (µA/cm2) VOC (V) FF η (%)

ITO/PEDOT:PSS/Mol1 + PDT/Al 102.9 30.88 0.70 0.20 0.32
ITO/PEDOT:PSS/Mol2 + PDT/Al 105.6 24.71 0.85 0.21 0.33
ITO/PEDOT:PSS/Mol3 + PDT/Al 111.0 32.81 0.78 0.19 0.38
ITO/PEDOT:PSS/Mol4 + PDT/Al 98.5 19.70 0.64 0.21 0.21

Figure 10a shows the light intensity distribution in the structure of the photovoltaic
cell ITO/PEDOT:PSS/PDT + Mol3/Al. Figure 10b shows the density distribution of the
generated excitons, G, in this photovoltaic cell. The complex refractive index presented
in Figure 9 was taken for the calculations. The refractive indices of the materials of the
remaining layers were taken from the literature [49,50].
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Figure 10. Distribution of light intensity (a) and distribution of generated excitons density (b) in solar
cell ITO/PEDOT:PSS/PDT + Mol3/Al λ = 560 nm.

Figure 10a shows the maximums and minimums of the interference, which are the result
of the formation of an optical standing wave in the structure of a photovoltaic cell. The standing
wave node is formed near the Ac_L/Al surface, where the largest antinode in the ITO layer
is formed. This situation is not optimal and has a negative impact on the efficiency of the
solar cell. The optimal situation is when the maximal antinode is in the area of the active layer.
However, this requires the use of a TCE layer, which will move the antinode away from the
surface of the aluminium electrode. Figure 10b shows the density distribution of the generated
excitons, G, as a function of the distance from the surface of the substrate glass. As can be seen,
the highest densities of generated excitons occur in the area of the active layer.

5.4. OPV Devices

Comparisons of the dark and under illumination current density–voltage (J–V) charac-
teristics of ITO/PEDOT:PSS/PDT + Molx/Al are shown in Figure 11.

For whole fabricated photovoltaic cells, the fill factor, FF, current density, JSC, in the
short circuit obtained without any external applied voltage or potential and open-circuit
voltage, VOC, were determined from current–voltage characteristics. For device 3, with
the configuration ITO/PEDOT:PSS/Mol3 + PDT/Al, the thickness of the active layer
(Mol3 + PDT) was equal 111.0 nm. In this architecture, the mixture of 1-phenyl-3-phenyl-6-
CF3-1H-pyrazolo[3,4-b]quinoline (Mol3) and poly(3-butylthiophene-2,5-diyl)—PDT—was
used as the active layer, and the power conversion efficiency, η, was approximately 0.38%
for a current density JSC = 32.81 µA/cm2 and open-circuit voltage VOC = 0.78 V. Higher VOC
values equal to 0.85 V were achieved for cells based on a blend of Mol2 and PDT, where
Mol2 was a pyrazoloqiunoline derivative called 1-phenyl-3-methyl-6-CF3-1H-pyrazolo[3,4-
b]quinoline. Device 2, with the configuration ITO/PEDOT:PSS/Mol2 + PDT/Al, exhib-
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ited power conversion efficiency of approximately 0.33%, with a short-circuit density of
24.71 µA/cm2 and fill factor equal 0.21. The thickness of the active layers (Mol2 + PDT)
was equal 105.6 nm.

Figure 11. The dark and under illumination current density–voltage (J–V) characteristics of
ITO/PEDOT:PSS/PDT + Molx/Al.

A comparable power efficiency 0.32 % was obtained for BHJ photovoltaic device 1,
with structure of ITO/PEDOT:PSS/Mol1 + PDT/Al (Figure 11, Table 2), where the current
density, JSC, was 30.88 µA/cm2 and the open-circuit voltage, VOC, was approximately
0.7 V with a fill factor of 0.20. The thickness of the active layer (Mol1 + PDT) was equal
to 102.9 nm (see Table 2). Photovoltaic device 4, based on Mol4 + PDT, exhibited a power
conversion efficiency of approximately 0.21%. Molecule Mol4 (1,3-dimethyl-6-CF3-1H-
pyrazolo[3,4-b]quinoline) was studied for its application in photovoltaic structures; the
obtained results were presented at ICTON 2016 [71].

From the comparison of the thickness of the active layers and the efficiency of the
photovoltaic cells, listed in Table 2, it can be seen that the greater thicknesses of the
active layer correspond to greater efficiencies. However, the detailed optical analysis
performed by us, based on the determined density distributions of the generated excitons,
the absorption characteristics of Molx compounds and the spectral characteristics of the
solar radiation simulator, showed that an increase in the thickness of the active layer
should cause a decrease in efficiency. On the other hand, the factors causing the increase
in efficiency are shifts in the absorption characteristics of individual compounds towards
longer wavelengths. In the spectral range of the absorption of these compounds, the photon
flux density of the simulator’s radiation increases with the wavelength. Thus, the observed
increase in efficiency is not an effect of increasingly thicker active layers but is an effect of
the location of the absorption characteristics of individual compounds.

5.5. OLED Characterization

We also measured the electroluminescence spectra of prepared light-emitting diodes
based on pyrazoloquinoline derivatives Molx (x = 1, 2, 3, 4)-doped PVK. These measure-
ments were made using a Shimadzu UVVIS 2101 scanning spectrophotometer. OLEDs
based on pyrazoloquinolines derivatives and polymer (PVK) exhibit strong electrolumines-
cence emission with a spectra range of 481–506 nm.

The EL spectra of all fabricated organic blue-light emitting devices are shown in
Figure 12. For OLED 1, with active layer (Mol1 + PVK), the bluish-green emission peak is
at a wavelength of 489 nm (see Table 3), where Mol1 is the luminophore-doped PVK. This
peak is spectrally shifted to a lower wavelength with respect to other luminophores. The
electroluminescence (EL) spectrum of OLED 2, with active layer (Mol2 + PVK), and OLED 3,
with (Mol3 + PVK), showed bluish-green emission maximum peaks, λElmax, at wavelengths
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492 nm and 506 nm, respectively, whereas OLED 4, with active layer (Mol4 + PVK), had an
emission maximum peak, λElmax, at 481 nm (see Table 3).

Figure 12. The normalized electroluminescence spectra emission of investigated OLEDs with
configuration ITO/PEDOT:PSS/ETM/active layer/Ca/Al. Active layer was a blend of PVK
and luminophore—Molx (where x = 1; 2; 3; 4). Additionally: (Mol1)—1-methyl-3-phenyl-6-
CF3-1H-pyrazolo[3,4-b]quinoline; (Mol2)—1-phenyl-3-methyl-6-CF3-1H-pyrazolo[3,4-b]quinoline;
(Mol3)—1-phenyl-3-phenyl-6-CF3-1H-pyrazolo[3,4-b]quinoline; (Mol4)—1-methyl-3-methyl-6-CF3-
1H-pyrazolo[3,4-b]quinoline.

Table 3. Selected Properties of the Fabricated OLED Devices.

Molecule λELmax
(nm)

UT
(V)

Brightnessmax
(cd/m2)

Max CE
(cd/A)

CIExy Colour
Coordinates

Mol1 493 8.66 1090.5 1.21 (0.032, 0.364)
Mol2 487 8.98 1030.6 1.10 (0.059, 0.235)
Mol3 506 10.32 1436.0 1.26 (0.007, 0.692)
Mol4 481 9.06 755.9 0.91 (0.087, 0.144)

We characterized the emission colour in the Commission International de l’Eclairage
CIE-chromaticity (1931) using the EL spectra shown in Figure 12. The colour changes of
the prepared double layer organic light emitting diodes are plotted in the CIE XYZ colour
space (see (X,Y)-coordinates in Table 3, Z = 1 − X − Y) diagram, as presented in Figure 13.
We can see that, for OLEDs based on 1-phenyl-3-phenyl-6-CF3-1H-pyrazolo[3,4-b]quinoline,
the CIE colour-coordinates (x,y) are 0.032, 0.364 (see Table 3).
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Figure 13. CIE colour-coordinates of prepared double-layer light emitting diodes (OLED 1, OLED 2,
OLED 3, OLED 4).
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Figures 14 and 15 show the luminance–voltage (L–V) and the current density–voltage
(J–V) curves recorded for organic EL devices, respectively.
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Figure 14. The luminance–voltage (L–V) curves for OLED1 with ITO/PEDOT:PSS/PVK +
Mol1/ETM/Ca/Al.; OLED2 with ITO/PEDOT:PSS/PVK + Mol2/ETM/Ca/Al; OLED3 with
ITO/PEDOT:PSS/PVK + Mol3/ETM/Ca/Al; OLED4 with ITO/PEDOT:PSS/PVK + Mol4/ETM/Ca/Al.
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Figure 15. The current density–voltage curves for the prepared OLEDs ITO/PEDOT:PSS/PVK + lu-
minophore/ETM/Ca/Al (luminophore Mol1, Mol2, Mol3, Mol4) configurations: Characteristics are
labelled according to type of EL diodes active layer.

OLED 1, with the configuration ITO/PEDOT:PSS/active layer/ETM/Ca/Al, exhibited
the maximal values of the brightness of approximately 1090.5 cd/m2, with a current efficiency
of 1.21 cd/A and CIE coordinates of 0.032, 0.364. In this device, the active layer was a mixture
of 1-methyl-3-phenyl-6-CF3-1H-pyrazolo[3,4-b]quinoline [R1 = Me, R3 = Ph and R6 = CF3]
doped PVK. The best value of the maximum brightness around 1436.0 cd/m2 was achieved
for device OLED 3 with configuration ITO/PEDOT:PSS/PVK + Mol3/ETM/Ca/Al. OLED
3 was based on 1-phenyl-3-phenyl-6-CF3-1H-pyrazolo[3,4-b]quinoline [R1 = Ph, R3 = Ph
and R6 = CF3]. The current efficiency of the device based on Mol3 was up to 1.26 cd/A. As
shown in Figure 14, a lower brightness Smax of approximately 1030.6 cd/m2 was received
for OLED 2, with the structure ITO/PEDOT:PSS/PVK + Mol2/ETM/Ca/Al. In this
double-layer architecture, the active layer was a blend of PVK and 1-phenyl-3-methyl-6-
CF3-1H-pyrazolo[3,4-b]quinoline [R1 = Ph, R3 = Me and R6 = CF3]. OLED 2 showed current
efficiencies of approximately 1.10 cd/A, with CIE coordinates of 0.059, 0.235. For OLED 4,
based on 1,3-dimethyl-6-CF3-1H-pyrazolo[3,4-b]quinoline [R1 = Me, R3 = Me and R6 = CF3],
the maximal value of the brightness was approximately 755,9 cd/m2, with CIE coordinates
of 0.087, 0.144.

The recorded current-density–voltage (J–V) characteristics for the prepared polymeric
double layer EL diodes are shown in Figure 15. All J–V curves presented complimentary
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features and a typical character of obtained double layer OLEDs based on pyrazoloquino-
line derivatives Molx (where x = 1, 2, 3, 4). The threshold voltages, UT, designated as a
result of measurement, are listed in the Table 3. All diodes showed a threshold voltage in
the range of 8–10 V.

6. Conclusions

This paper presents synthesized pyrazoloquinoline derivatives and their physicochem-
ical characterization. The photophysical studies showed that the photoinduced charge
transfer phenomenon is responsible for energy deactivation of the first singlet excited state
in the investigated phenyl-substituted pyrazoloquinolines. Our experiments revealed that
phenyl at the 1st position plays a crucial role in the enhancement of charge transfer emission
and in elevating the HOMO energy levels.

The produced compounds were used to produce active layers that were used in
the structures of photovoltaic cells and OLEDs. For the produced photovoltaic cells, we
obtained efficiencies below 0.4% and fill factors not exceeding 21%. Low efficiencies
are primarily the result of too-high energy gaps of the compounds used and too-large
thicknesses of the active layer. The developed compounds gave much better results in
OLED diodes. We found a maximum brightness of 1436.0 (cd/m2) for OLED 3, based
on 1H-pyrazolo [3,4-b] quinoline Mol3, with a maximum current efficiency of 1.26 cd/A.
For all OLEDs, we obtained CIExy colour coordinates. These results demonstrate that
1H-pyrazolo[3,4-b]quinoline Mol3 is a promising host material for fluorescent dopants.
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