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Abstract: Recently, a two-dimensional (2D) heterostructure has been widely investigated as a pho-
tocatalyst to decompose water using the extraordinary type-II band structure. In this work, the
MoTe2/PtS2 van der Waals heterostructure (vdWH) is constructed with different stacking structures.
Based on density functional calculations, the stacking-dependent electronic characteristic is explored,
so that the MoTe2/PtS2 vdWH possesses type-I and type-II band structures for the light-emitting
device and photocatalyst, respectively, with decent stacking configurations. The band alignment of
the MoTe2/PtS2 vdWH is also addressed to obtain suitable band edge positions for water-splitting
at pH 0. Furthermore, the potential drop is investigated, resulting from charge transfer between
the MoTe2 and PtS2, which is another critical promotion to prevent the recombination of the photo-
generated charges. Additionally, the MoTe2/PtS2 vdWH also demonstrates a novel and excellent
optical absorption capacity in the visible wavelength range. Our work suggests a theoretical guide to
designing and tuning the 2D heterostructure using photocatalytic and photovoltaic devices.

Keywords: MoTe2/PtS2; heterostructure; stacking-dependent; photocatalyst

1. Introduction

Hydrogen (H2) is regarded as an important energy source to alleviate environmental
pollution and energy shortage, because the combustion productions are almost water. Com-
paring the bulk photocatalysts, its use of two-dimensional (2D) materials as a photocatalyst
to decompose the water is advantageous characteristic [1–3]. Since the graphene was
proposed to have novel performances [4], tremendous efforts were made to develop other
2D materials [5–8]. 2D semiconductors show a broad specific surface area [9], suggesting ex-
traordinary electronic [10,11], thermal [12,13] and optical [14,15] performances. Especially,
the large surface area can provide more active sites in the photocatalytic process, which
also contributes to the photoexcited carrier motion [16]. Furthermore, some 2D materials
have been proved to be potential photocatalysts [17–20].

At the same time, when the single semiconductor is used as a photocatalyst to de-
compose water, the photogenerated charges move to the surface of the 2D materials. Even
if the larger specific surface area of the 2D materials provides a shorter path, the rapid
recombination between the photogenerated electrons and holes also hinders photocatalytic
efficiency. Thus, the 2D heterostructure constructed by two different semiconductors is
adopted to separate the photogenerated electrons and holes using an extraordinary type-II
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band structure. More importantly, some strategies are further conducted to modulate
the novel properties of the heterostructure, such as external electric field [21], external
strain [22] and imperfection [23]. When the 2D heterostructure is constructed, there are
possible stacking configurations. These stacking structures possess a similar binding energy
(Eb) but different properties. For example, the charge transfer of the MoS2/WS2 heterostruc-
ture is strongly dependent on the interlayer stacking configurations using optical, two-color,
ultrafast pump−probe spectroscopy [24]. The valence band-splitting is remarkable. It is
induced in a multilayer heterostructure based on transition-metal dichalcogenide (TMD)
using stacking engineering in spintronics [25]. Additionally, the different stacking styles
of the WSe2/WS2 heterostructure can be prepared by vapor growth, which also affects
the optical properties [26]. These results suggest that the stacking configurations of the
heterostructure have a promising impact on the electronic and optical performances of the
2D heterostructure when used as a photocatalyst.

Recently, a novel transition metal dichalcogenides (TMDs) material, 2D MoTe2, was
prepared with a chemical vapor deposition synthesis method using promising nanoelec-
tronics [27]. MoTe2 also possesses excellent electronic [28], carrier transport [29] and
thermoelectric [30] properties. Another TMDs, 2D PtS2 was also investigated as a het-
erostructure, such as PtS2/InSe [31], HfS2/PtS2 [32] and PtS2/arsenene [33], which are
potential photocatalysts for water-splitting. The synthesized MoTe2 and PtS2 provide the
possibility of preparing the MoTe2/PtS2 heterostructure using potential photocatalytic,
photovoltaic, and optical devices. The stacking tuning of the electronic performances of the
2D materials is also a popular method. Therefore, in this report, we aim to study these novel
TMDs materials, using first-principles simulations, to explore the response of the structural,
electronic and optical performances to the stacking configuration of the MoTe2/PtS2 het-
erostructure as a latent further nano-device, which could provide theoretical guidance for
the design of the 2D heterostructure.

2. Computing Method

Using the Vienna ab initio simulation package, the first-principles simulations were
employed using the density functional theory [34,35]. The core electrons were considered
using the projector augmented wave potentials (PAW) [36], which were explored using
the Perdew–Burke–Ernzerhof (PBE) functional together with the generalized gradient
approximation (GGA) [37]. In all calculations, the Grimme was conducted using a DFT-
D3 method to describe the weak dispersion forces [38]. The Heyd–Scuseria–Ernzerhof
(HSE06) hybrid functional was utilized [39]. Energy cut-off was set at 550 eV; Monkhorst–
Pack k-point grids were15 × 15 × 1. The vacuum space was selected to be 25 Å to hold
back the forces between the nearby slabs. The convergence force in the simulations was
0.01 eV·Å−1; at the same time, the energy converged to 0.01 meV. The binding energy (Eb)
of the MoTe2/PtS2 heterostructure was decided by:

Eb = EMoTe2/PtS2 − EMoTe2 − EPtS2, (1)

where the EMoTe2/PtS2, EMoTe2 and EPtS2 are the total energy of the MoTe2/PtS2 heterostruc-
ture, pristine MoTe2 and PtS2 monolayers, respectively. The charge density difference (∆ρ)
was calculated by:

∆ρ = ρMoTe2/PtS2 − ρMoTe2 − ρPtS2, (2)

where the ρMoTe2/PtS2, ρMoTe2 and ρPtS2 are total charge density of the MoTe2/PtS2 het-
erostructure, pristine MoTe2 and PtS2 monolayers, respectively. The optical absorption
property of the monolayered was obtained as follows:

α(ω) =

√
2ω

c

{[
ε2

1(ω) + ε2
2(ω)

]1/2
− ε1(ω)

}1/2
(3)
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where the angular frequency, absorption coefficient and speed of light are used by
ω, α and c, respectively. ε1(ω) and ε2(ω) were used as real and imaginary elements
in the dielectric constant.

3. Results and Discussion

Before constructing the MoTe2/PtS2 heterostructure, the structure of MoTe2 and PtS2
monolayers were optimized by the 3.529 Å and 3.564 Å, respectively. The obtained band
energy of the MoTe2 and PtS2 monolayers are exhibited in Figure S1 in the Supporting
Information, with bandgaps of 1.22 eV and 2.60 eV, respectively. Then, the MoTe2/PtS2
heterostructure was formed by six different representative structures, shown in Figure S2,
named from P1 to P6. For example, the P1 configuration was formed by putting the Mo
atoms and the Te atoms on top of the Pt atoms and the upper S atoms. P2 was built so that
the Mo atoms are on top of the Pt atoms, while the Te atoms were located on top of the
lower S atoms. The following investigations are all based on these six configurations.

The binding energy of these MoTe2/PtS2 heterostructures is summarized in Table 1,
which suggests the van der Waals interactions in these interfaces [40]. The bond lengths
of Mo–Te and Pt–S are almost small changes compared with those in pristine MoTe2
(2.74 Å) and PtS2 (2.40 Å) monolayers, which further demonstrates the MoTe2/PtS2 vdW
heterostructures (vdWH). In addition, the interface across the interface of these MoTe2/PtS2
vdWH is also calculated by Table 1.

Table 1. The obtained binding energy (Eb, eV), bond length (B, Å), the interface across the interface
(H, Å), the bandgap (Eg, eV), the charge transfer (∆ρ, electron) and potential drop (∆V, eV) in the
optimized MoTe2/PtS2 heterostructure constructed with different stacking styles.

Eb BMo–Te LPt–S H Eg ∆ρ ∆V

P1 Type-II −17.08 2.73 2.40 3.79 1.27 0.047 4.416
P2 Type-II −26.39 2.73 2.39 2.85 1.20 0.051 4.578
P3 Type-II −17.40 2.73 2.40 3.77 0.95 0.017 4.417
P4 Type-I −25.98 2.73 2.40 3.10 1.35 0.033 4.584
P5 Type-I −26.39 2.73 2.40 3.06 1.31 0.035 4.558
P6 Type-II −28.10 2.73 2.39 2.87 1.44 0.047 4.672

The projected band energy of the MoTe2/PtS2 vdWH with different stacking con-
figurations is calculated in Figure 1. One can see that P1-, P2-, P3- and P6-MoTe2/PtS2
vdWHs possess a type-II band structure, with the conduction-band minimum (CBM) re-
sulting from PtS2 and the valence-band maximum (VBM) from MoTe2. While the P4- and
P5-MoTe2/PtS2 vdWHs have a type-I band alignment by the CBM and VBM located at the
MoTe2 monolayer. Furthermore, the bandgap obtained with these MoTe2/PtS2 vdWHs is
explained in Table 1. P3-MoTe2/PtS2 vdWH has a narrow bandgap of about 0.95 eV. It is
worth noting that the direct bandgaps in the MoTe2/PtS2 vdWH from the MoTe2 are 1.33
eV, 1.30 eV, 1.34 eV, 1.34 eV, 1.31 eV and 1.35 eV for from P1 to P6, respectively.

The type-II band alignment in P1-, P2-, P3- and P6-MoTe2/PtS2 vdWHs provides the
ability to separate the photoexcited charges, as shown in Figure 2a. With the assistance
from the conduction-band offset (CBO), the photoexcited electrons at the conduction-band
(CB) of the MoTe2 continue to flow to the CB of the PtS2, while the photoexcited holes at
the valence-band (VB) of the PtS2 migrate to the VB of the MoTe2 under the valence-band
offset (VBO). Thus, the photoexcited electrons and the holes induce the hydrogen evolution
reaction (HER) and oxygen evolution reaction (OER) at PtS2 and MoTe2, respectively, which
can be used as a potential photocatalyst. In addition, the intrinsic type-I band structure of
P4- and P5-MoTe2/PtS2 vdWHs results in a unidirectional flow mode for excited charges,
which is a promising light-emitting device.
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Figure 2. The photoexcited charge flow path in (a) type-II and (b) type-II band alignment of the
MoTe2/PtS2 vdWH.

Furthermore, the band edge positions of these MoTe2/PtS2 vdWHs are obtained by
HSE06 calculations in Figure 3, and compared with the HER and OER potential energy
for the water-splitting at pH 0. One can see that the P-4 and P-6 MoTe2/PtS2 vdWHs
possess a decent band alignment, which can promote the HER and OER for water-splitting
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at pH 0. Additionally, together with a type-II band structure, the P-6 MoTe2/PtS2 vdWH
can be considered as an advantageous photocatalyst to decompose water. Although the
P-4 MoTe2/PtS2 vdWH has a type-II band alignment to separate the photogenerated
electrons and holes, the suitable band edge positions still have the ability to induce redox
for water-splitting. Furthermore, the type-I heterostructure is also reported to show a novel
photocatalytic performance [41,42].
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Figure 3. The band edge positions of the MoTe2/PtS2 vdWH with different stacking structures
against the redox potential energy of the water-splitting at pH 0.

The interfacial characteristics of the MoTe2/PtS2 vdWHs are investigated using the
charge density difference and potential drop across the interface. Using Equation (2), the
charge density difference in these MoTe2/PtS2 vdWHs is calculated, showing that the PtS2
layer obtained the electrons from the MoTe2 layer (Figure 4). Additionally, the charge
transfer between the MoTe2 and PtS2 was investigated by Bader charge analysis [43], as
shown in Table 1, which suggests a maximum charge transfer in P6-MoTe2/PtS2 vdWH of
about 0.047 electrons. Furthermore, the potential drop (shown by Figure 5) in the interface
for MoTe2/PtS2 vdWHs is addressed in Table 1. One can see that MoTe2/PtS2 vdWHs
possesses a pronounced potential drop across the interface, ranging from 4.41 eV to 4.67 eV,
which is larger than that in the WSSe/BSe vdW heterostructure [44]. Importantly, this
potential drop can act as a significant motivating force to separate the photogenerated
electrons and holes in type-I and type-II heterostructures [45,46].

The visible-light absorption capacity of these MoTe2/PtS2 vdWHs is further inves-
tigated, as in Figure 6, which is also a crucial performance using a photocatalyst. The
calculated visible-light absorption ability demonstrates that the maximum absorption
peaks of the P1-, P2-, P3- and P6-MoTe2/PtS2 vdWHs are obtained by 6.40 × 105 cm−1,
7.10× 105 cm−1, 6.26 × 105 cm−1, 6.28 × 105 cm−1, 6.57 × 105 cm−1 and 6.85 × 105 cm−1,
which are located at 369 nm, 379 nm, 369 nm, 378 nm, 380 nm and 376 nm, respec-
tively. Importantly, some absorption peaks also exist, in the range 500−600 nm, for
these MoTe2/PtS2 vdWHs. The calculated light absorption peak in these MoTe2/PtS2
vdWH is also larger than that of other heterostructures that are used as photocatalysts,
such as CdO/Arsenene (8.47 × 104 cm−1) [47], AlN/Zr2CO2 (3.97× 105 cm−1) [48] and
Hf2CO2/AlN (3.63× 105 cm−1) [49]. It is worth noting that the strongest absorption peak
in these MoTe2/PtS2 vdWHs is 8.12 × 105 cm−1 at 333 nm, for P5-MoTe2/PtS2 vdWH.
The results show that the MoTe2/PtS2 vdWHs possesses a fantastic and tunable optical
performance using the stacking configuration.
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4. Conclusions

Using first-principles simulations, the structural electronic natures of the 2D MoTe2/PtS2
vdWHs are addressed. These are formed by different stacking configurations. P-4 and P-5
MoTe2/PtS2 vdWHs possess a type-I band structure for a light-emitting device, while others
have type-II band alignment to separate the photogenerated electrons and holes. Furthermore,
the band edge positions of these MoTe2/PtS2 vdWHs are investigated, and the P-6 MoTe2/PtS2
vdWHs have suitable potential to induce the redox reactions for water-splitting at pH 0 when
used as a promising photocatalyst. The MoTe2/PtS2 vdWHs also show stacking-dependent
interfacial and excellent optical properties. All these results suggest a theoretical method that
could be used to design and tune the performances of a 2D heterostructure.
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www.mdpi.com/article/10.3390/cryst12030425/s1, Figure S1: The HSE06 calculated band structure
of the (a) MoTe2 and (b) PtS2 monolayers. The Fermi level is set as 0 eV; Figure S2: The MoTe2/PtS2
heterostructure constructed by (a) P1, (b) P2, (c) P3, (d) P4, (e) P5 and (f) P6 stacking configurations.
The yellow, gray, red, and blue balls represent S, Pt, Mo, and Te atoms, respectively.
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