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Abstract: The new 30-substituted triazole derivative of 3,28-O,O′-diacetylbetulin was obtained in
the copper(I) catalyzed azide-alkyne cycloaddition (CuAAC). The title compound was characterized
by NMR, IR, HR-MS, and X-ray diffraction techniques. The X-ray diffraction study showed that the
1,2,3-triazole derivative crystallizes in the orthorhombic space group P212121, Z = 4, and unit cell
parameters are as follows a = 9.4860(10) Å, b = 13.9440(2) Å, and c = 30.2347(4) Å. The molecular
packing is stabilized by intermolecular hydrogen interactions C-H . . . O. The Hirshfeld surface
analysis showed the presence of the O . . . H interactions with a percentage of the 16.5% in the total
Hirshfeld area. The MEP analysis showed that the nucleophilic regions are located near the oxygen
atoms of the acyl and carbonyl groups of betulin moiety and the sulfur atom in the triazole linker.
The HOMO and LUMO orbitals are located near the triazole moiety. The obtained results indicated
that this new betulin derivative is more reactive with electrophilic than nucleophilic molecules.

Keywords: pentacyclic triterpenes; X-ray structure; Hirshfeld analysis

1. Introduction

Pentacyclic triterpenes are bioactive secondary metabolites found widely distributed
throughout the plant kingdom. Betulin belongs to the lupane-type triterpenoids and is ob-
tained in significant amounts from bark of white birch species (Betula spp.). This naturally
derived product contains the 30-carbon skeleton consisting of four six-membered rings and
one five-membered ring (Figure 1). Transformation of functional groups of betulin, such
as isopropenyl moiety or C-3/C-28 hydroxyl group, gives the opportunity to design new
derivatives [1,2]. Naturally occurring betulin and its semi-synthetic derivatives possess a
broad range of pharmacological properties such as anticancer, antiviral, antimalarial, an-
timicrobial, antidiabetic, hepatoprotective, and anti-inflammatory activities. The different
biological activities of pentacyclic triterpenoids may be due to the presence of following
functional groups: ketone, ester, amino, oxime, sulfonate, and alkyne attached to the lupane
skeleton. Unfortunately, the use of betulin as a potential therapeutic substance is limited by
its poor solubility in water and low bioavailability [1,3–12].

It was observed that linking the parent structure of pentacyclic triterpenes with the
1,2,3-triazole ring makes it possible to improve their pharmacokinetic properties. Com-
pounds containing a triazole ring exhibit a broad spectrum of biological activity. This is
due to the possibility of binding to various enzymes and receptors by creating non-covalent
interactions [13].

The triazole ring, one of the most important heterocyclic scaffolds, can be used as
the bioisostere group of an amide, ester, or carboxyl group. Copper catalyzed azide-
alkyne cycloaddition (CuAAC) leading to 1,2,3-triazole occurs under mild conditions
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with high yield and allows simple product isolation. It should be mentioned that some
compounds containing the 1,2,3-triazole system have been used in medicine as antibacterial
(tazobactam) and anticancer (cefatrizine) drugs [12,14–17].

In 2009 the cycloaddition reaction was used for the first time in the synthesis of triazole
derivatives of triterpenes. The triazole ring as an element connecting the basic triterpene
skeleton with various types of substituents has been introduced at the positions C-3,
C-28, and C-30. The solubility-increasing effect was observed for the triazole derivatives
converted to conjugates with α- and β-cyclodextrin [17].
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Figure 1. Chemical structure of betulin and 1,2,3-triazole derivative of 3,28-O,O′-diacetylbetulin.

In the present work, we described synthesis of new 30-substituted triazole derivative of 3,28-
O,O′-diacetylbetulin. The chemical structure of 3,28-O,O′-diacetyl-30-(1-phenylthiomethyl-
1H-1,2,3-triazol-4-yl)carbonylbetulin (Figure 1) was confirmed by NMR, IR, HR-MS, and
X-ray analyze. Moreover, Hirshfeld and DFT calculations were used to obtain the electronic
parameters of the new 1,2,3-triazole derivative.

2. Materials and Methods
2.1. General Methods

All commercial reagents were purchased from the Sigma-Aldrich (Sigma-Aldrich, Saint
Louis, MO, USA). Melting point was measured with the Electrothermal IA 9300 melting
point apparatus (Bibby Scientific Limited, Stone, Southhampton, GB). The NMR spectra
were measured in deuterated chloroform as solvent using the Bruker Avance III 600 spec-
trometer (Bruker, Billerica, MA, USA). The chemical shifts are given in ppm (δ) and the
coupling constants (J) in Hz. Multiplicities are indicated by the following abbreviations:
singlet (s), doublet (d), and multiplet (m). The high-resolution mass spectral analysis
was performed on a Bruker Impact II instrument (Bruker) using an atmospheric pressure
chemical ionization APCI method (negative mode). The IR spectrum (KBr, pellet) was
recorded using the IRAffinity-1 Shimadzu spectrometer (Shimadzu Corporation, Kyoto,
Japan).The progress of reactions was monitored by TLC method (silica gel 60 254F plates,
Merck). The spots were visualized by spraying with solution of 5% sulfuric (VI) acid and
then heating to 100 ◦C. Triazole derivative was purified by a flash chromatography (Grace
Reveleris Prep, Buchi, Flawil, Switzerland) using an ethyl acetate (A) and hexane (B) as
mobile phase (40% A).

2.2. Synthesis of 3,28-O,O′-diacetyl-30-(1-phenylthiomethyl-1H-1,2,3-triazol-4-yl)carbonylbetulin 4

Synthesis of the intermediate compounds 1–3 (3,28-O,O′-diacetylbetulin 1, 3,28-O,O′-
diacetyl-30-hydroxybetulin 2, 3,28-O,O′-diacetyl-30-propynoylbetulin 3) was performed
according to the methods described previously [18–20].

Synthesis of 4: Azidomethyl phenyl sulfide (0.20 mmol) was added to the mixture
of alkyne derivative 3 (0.11 g, 0.19 mmol) and copper(I) iodide (0.003 g, 0.001 mmol) in
toluene (3.6 mL). The mixture was stirred under reflux for 72 h. The solvent was removed
under reduced pressure and the residue was purified by flash chromatography using an
ethyl acetate (A) and hexane (B) as mobile phase (40% A).
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3,28-O,O′-diacetyl-30-(1-phenylthiomethyl-1H-1,2,3-triazol-4-yl)carbonylbetulin 4.
Yield: 67%; m.p. 216–218 ◦C; Rf 0.46 (heksane/ethyl acetate, 3:2, v/v); 1H NMR

(600 MHz, CDCl3) δ ppm: 0.85 (3H, s, CH3), 0.86 (s, 3H, CH3), 0.87 (s, 3H, CH3), 0.96 (s, 3H,
CH3), 1.05 (s, 3H, CH3), 2.07 (s, 3H, CH3C=O), 2.09 (s, 3H, CH3C=O), 2.43 (m, 1H, H-19),
3.83 (d, 1H, J = 10.8 Hz, H-28), 4.26 (d, 1H, J = 10.8 Hz, H-28), 4.47 (m, 1H, H-3), 4.84 (m, 2H,
CH2, C-30), 5.03 (s, 1H, H-29), 5.05 (s, 1H, H-29), 5.69 (2H, s, CH2), 7.33–7.53 (5H, m, HAr),
8.11 (1H, s, CH-triazole) (Figure S1-Supplementary materials); 13C NMR (150 MHz, CDCl3)
δ ppm: 13.73, 15.02, 15.14, 15.48, 17.12, 19.87, 20.02, 22.65, 25.60, 25.98, 26.91, 28.71, 30.16,
33.09, 33.34, 36.02, 36.47, 36.77, 37.34, 39.88, 41.65, 42.81, 45.30, 48.54, 49.18, 53.32, 54.30,
54.95, 61.42, 79.86, 109.85, 126.78, 128.10, 128.25, 130.12, 130.16, 139.30, 147.14, 159.09, 169.99,
170.56. (Figure S2-Supplementary materials); IR (νmax cm−1 KBr): 2954, 1735, 1448, 1242
(Figure S3-Supplementary materials); HR-MS (APCI) m/z: C44H61N3O6S [M–H]−, Calcd.
758.4203; Found 758.4196 (Figure S4-Supplementary materials).

2.3. Determination of Crystal Structure
2.3.1. X-ray Diffraction Experiment

Colorless single crystals of good quality were preselected under a polarized light
microscope. The single-crystal X-ray experiment was performed at 100 K. The data for com-
pound 4 were collected using a SuperNova diffractometer (Agilent Technologies currently
Rigaku Oxford Diffraction) with Atlas CCD detector. The controlling of the measurement
and data reduction was performed by CrysAlisPro software [20]. The same program was
used to determine and refine the lattice parameters [21].

2.3.2. Refinement

The crystal structure was determined using the direct methods with SHELXS-2013
program and then the solution was refined using SHELXL-2014/6 program [22]. H atoms
were treated as riding atoms in geometrically idealized positions, fixing the C-H bond
lengths at 1.00, 0.99, 0.95, and 0.98 Å for methine CH, methylene CH2, terminal methylene
CH2, and methyl CH3 atoms, respectively, and with Uiso(H) 1

4 = 1.5Ueq(C) for methyl H
atoms or 1.2Ueq(C) otherwise.

Crystal structure of compound 4 was deposited at the Cambridge Crystallographic
Data Center, with deposit number CCDC 2153148 and is available free of charge via
www.ccdc.cam.ac.uk/data_request/cif (accessed date: 10 March 2022).

2.4. Hirshfeld Surface Analysis

The percentages of the intermolecular contacts in crystal structure of 4 were designated
using the Hirshfeld surface analyses. The colors of 3D dnorm indicate different regions on
this surface, i.e., red regions represent the closer contacts and negative dnorm value, blue
regions correspond to longer contacts and positive dnorm values. The 3D and 2D plots
were performed by Crystal-Explorer v.3.1 program [23]. Both de and di parameters are
responsible for the normalized contact distance (dnorm).

2.5. Computational Details

Calculations of the electronic structure of 4 were performed in silico using the DFT
method implemented in the Gaussian 09 program package [24]. The initial molecular
geometry of 4 was taken from the X-ray crystallographic data. Geometry optimization was
performed using the B3LYP exchange-correlation functional with the 6-311G+(d,p) basis
set. All obtained results were visualized in the GaussView, Version 5 software package [25].
The superposition of both structures, i.e. experimental obtained by single crystal X-ray
diffraction and optimized is shown in Figure S5 (Supplementary materials).

www.ccdc.cam.ac.uk/data_request/cif
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3. Results and Discussion
3.1. Synthesis of Compound 4

Triterpenes 1–3 were prepared according to the procedures previously described
in the literature [17–19]. The allylic oxidation of the isopropenyl group in
3,28-O,O′-diacetylbetulin 1 using m-chloroperbenzoic acid (m-CPBA) in refluxing
chloroform provided the 3,28-O,O′-diacetyl-30-hydroxybetulin 2. The esterification of the
C-30 hydroxy group of compound 2 was accomplished using propynoic acid, DCC
(N,N′-dicyclohexylcabodiimide) and DMAP (4-dimethylaminopyridine) in dichloromethane
to provide 30-propynoylated derivative 3. The resulting alkyne derivative 3 was fur-
ther functionalized to triazole 4 via click reaction in refluxed toluene in the presence
of azidomethyl phenyl sulfide and copper(I) iodide [26,27]. Synthesis of 30-substituted
triazolyl derivative 4 is depicted in Scheme 1.
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Scheme 1. Reagents and conditions: (a) m-CPBA (m-chloroperbenzoic acid), CHCl3 (chloro-
form), reflux, 8 h; (b) HC≡CCOOH (propynoic acid), CH2Cl2 (dichloromethane), DCC (N,N′-
dicyclohexylcarbodiimide), DMAP (4-dimethylaminopyridine), from −10 ◦C to room temperature,
24 h (c) PhSCH2N3, (azidomethyl phenyl sulfide), CuI [copper(I) iodide], toluene, reflux, 72 h.

3.2. Crystal Structure of Compound 4

The single crystal of 4 was grown by slow evaporation at room temperature from
acetonitrile solution. Molecular structure with atom numbering for the crystal is presented
in Figure 2.The crystallographic data for 4 are summarized in Table 1.
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The unit cell of 4 contains four molecules (Z = 4) and is presented in Figure 3.
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The six-membered rings of betulin scaffold adopt chair conformation. The cyclopen-
tane ring assumes conformation of the twisted envelope. The torsion angle C19-C20-C29-
C30 describing the orientation of the isopropenyl group arrangement in relation to the
five-membered ring of 4 is equal to −176.50◦. The introduction of large substituent at the
C-30 position in 4 caused a significant change in the arrangement of this group compared
with the 3,28-O,O′-diacetylbetulin (C19-C20-C29-C30 = 177.69◦, [28]). The selected geo-
metric parameters (e.g., bond length, bond angles, and torsion angles) are presented in
Tables S1 and S2 (Supplementary materials).

Table 1. Crystal data and structure refinement for 4.

Compound 4

CCDC deposition number 2,153,148
Chemical formula C44H61N3O6S
Mr 760.01
Solvent CH3CN
Crystal system, space group orthorhombic; P212121
Temperature (K) 100
a, b, c (Å) 9.4860(10); 13.9440(2); 30.2347(4)
α, β, γ [◦] 90; 90; 90
V(Å)3 3999.23(9)
Z 4
Z′ 1
Dcalc (g/cm3) 1.262
Radiation type Cu Kα
µ (mm−1) 1.13
Crystal size (mm3) 0.02 × 0.04 × 0.32
Rint 0.0304
Rsigma 0.0226
No. reflns. (5.8◦ ≤ 2θ ≤ 145.0◦) 19,516
Unigue reflns. 7268
λ (Å) 1.5418
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Table 1. Cont.

Compound 4

GOOF (F2) 1.053
θ range for data collection (◦) 2.9 to 72.5
R1 0.0383
wR2 0.1038

Molecules of 4 are linked to each other by weak C-H . . . O hydrogen bonds. The
hydrogen bond parameters are shown in Table 2. All intermolecular hydrogen interactions
C-H . . . O determining molecular packing are presented in Figure 4.
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The molecular structure of compound 4 is stabilized by weak intermolecular hydrogen
bonds (Table 2; Figure 4). The basic betulin structures are linked to each other in a “head
to tail” system through C-H–O bonds formed between atoms C34 and O4 from the next
molecule. Molecules connected in this way form a spring-like structure along the a-axis
(Figure 5A). Additional stabilization of the crystal structure is provided by the C38-H38–O2,
C44-H44–O6, C34-H34C–S1, and C43-H43–N2 bonds (Figure 5B) as well as π–π interactions
between the triazole ring and the phenyl substituent (Figure S6, Supplementary Materials).

Table 2. Selected weak C-H . . . O hydrogen bonds in 4.

Nr D-H . . . A D-H [Å] H . . . A [Å] D . . . A [Å] <(DHA) Symmetry Codes

1 C34-H34B . . . O4 0.98 2.39 3.305(4) 155.5 −x + 1, y + 1/2, −z + 1/2
2 C34-H34C . . . S1 0.98 2.98 3.517(3) 116.0 x − 3/2, −y + 5/2, −z
3 C38-H38A . . . O2 0.99 2.59 3.299(4) 128.6 x + 3/2, −y + 5/2, −z
4 C44-H44 . . . O6 0.95 2.65 3.460(4) 143.2 x − 1/2, −y + 5/2, −z
5 C43-H43 . . . N2 0.95 2.63 3.450(4) 144.7 −1 + x,y,z

D: donor, A: acceptor. Distances DH, HA, DA, are in Å and DHA angles are in degrees.
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Figure 5. The intermolecular (A) hydrogen C34-H34B . . . O4 bonds and (B) the other hydrogen
bonds and π–π interactions.

3.3. Hirshfeld Surface

Analysis of the short and long interactions in crystal structure is possible through
the Hirshfeld surface analysis. The 3D surface is characterized by different colors, which
indicate different norm values. The negative value of dnorm relating to close contacts is
represented by red color, while its positive value meaning longer interaction is represented
by blue color. The white region means that the dnorm is zero (Figure 6) [29].
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Comparing Figures 4 and 6 shows that the red regions are localized near the acyl
groups at positions C-3 and C-28 containing carbonyl oxygen atoms, which create the
hydrogen bond. The triazole ring involving in long distance interaction, is visualized by
blue color. Figure 7a–d presents the quantitative analysis of intermolecular contacts using
2D fingerprint plots for compound 4. The 2D fingerprint plots show that the intermolecular
interactions are dominated by the O–H interaction. The sharp spike in Figure 7c indicates
the presence of the O . . . H hydrogen bonds. The N . . . H and C . . . H interactions comprise
7.5% and 8.0% of the total Hirshfeld surface, respectively. The full 2D fingerprint plot for 4
is presented in Supplementary Materials (Figure S7). All interactions observed for 4 are
summarized in Table 3 with their percentage contributions to the surface.

Crystals 2022, 12, x FOR PEER REVIEW 9 of 13 
 

 

  
(c) O…H (d) S…H 

Figure 7. Fingerprint plots of (a) C…H, (b) N…H, (c) O…H, (d) S…H for 4. 

Table 3. Percentage contributions of interatomic contacts to the Hirshfeld surface for 4. 

Contacts Contribution (%) 
C…H 8.0 
N…H 7.5 
O…H 16.5 
S…H 3.9 
S…O 0.3 
N…C 0.8 
C…C 0.2 

3.4. Molecular Electrostatic Potential Analysis 
The charge arrangement in molecules is usually analyzed by determining the molec-

ular electrostatic potential (MEP) map. The different colors on the MEP mean different 
values of the electrostatic potential. The red and blue colors represent the nucleophilic and 
electrophilic regions, respectively, while the light green color represents the charge-neu-
tral region [30]. The negative potential regions are located in four main areas. The first and 
second areas contain an acyl group at the C-3 and C-28 positions, respectively. The third 
area includes the carbonyl group at the C-30 position and the triazole ring. The fourth area 
contains a sulfur atom. The positive potential region is located near the phenyl ring. The 
charge neutral region contains the betulin scaffold (Figure 8). 

 
Figure 8. Molecular electrostatic potential (MEP) map for 4. 

Crystals 2022, 12, x FOR PEER REVIEW 8 of 13 
 

 

3.3. Hirshfeld Surface 
Analysis of the short and long interactions in crystal structure is possible through the 

Hirshfeld surface analysis. The 3D surface is characterized by different colors, which in-
dicate different norm values. The negative value of dnorm relating to close contacts is rep-
resented by red color, while its positive value meaning longer interaction is represented 
by blue color. The white region means that the dnorm is zero (Figure 6) [29]. 

 
Figure 6. The Hirshfeld surface for 4. The dnorm is viewed from the c-axis. 

Comparing Figures 4 and 6 shows that the red regions are localized near the acyl 
groups at positions C-3 and C-28 containing carbonyl oxygen atoms, which create the hy-
drogen bond. The triazole ring involving in long distance interaction, is visualized by blue 
color. Figure 7a–d presents the quantitative analysis of intermolecular contacts using 2D 
fingerprint plots for compound 4. The 2D fingerprint plots show that the intermolecular 
interactions are dominated by the O–H interaction. The sharp spike in Figure 7c indicates 
the presence of the O…H hydrogen bonds. The N…H and C…H interactions comprise 
7.5% and 8.0% of the total Hirshfeld surface, respectively. The full 2D fingerprint plot for 
4 is presented in Supplementary Materials (Figure S7). All interactions observed for 4 are 
summarized in Table 3 with their percentage contributions to the surface. 

  
(a) C…H (b) N…H 

Figure 7. Fingerprint plots of (a) C . . . H, (b) N . . . H, (c) O . . . H, (d) S . . . H for 4.

Table 3. Percentage contributions of interatomic contacts to the Hirshfeld surface for 4.

Contacts Contribution (%)

C . . . H 8.0
N . . . H 7.5
O . . . H 16.5
S . . . H 3.9
S . . . O 0.3
N . . . C 0.8
C . . . C 0.2



Crystals 2022, 12, 422 9 of 12

3.4. Molecular Electrostatic Potential Analysis

The charge arrangement in molecules is usually analyzed by determining the molec-
ular electrostatic potential (MEP) map. The different colors on the MEP mean different
values of the electrostatic potential. The red and blue colors represent the nucleophilic and
electrophilic regions, respectively, while the light green color represents the charge-neutral
region [30]. The negative potential regions are located in four main areas. The first and
second areas contain an acyl group at the C-3 and C-28 positions, respectively. The third
area includes the carbonyl group at the C-30 position and the triazole ring. The fourth area
contains a sulfur atom. The positive potential region is located near the phenyl ring. The
charge neutral region contains the betulin scaffold (Figure 8).
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In the first and second areas, two potential minima are observed (−1.09, −2.07) eV
and (−0.98, −1.96) eV, respectively. In the third area four potential minima can be observed,
two near the carbonyl group at the C-30 position (−0.54 eV and −1.96 eV) and the next two
near the triazole ring (−2.79 eV and −2.07 eV). The potential minimum in the fourth area
is −2.94 eV. The MEP surface of betulin described by Kazachenko shows two nucleophilic
areas at the oxygen atoms in the C-3 and C-28 positions [31]. Comparing results for
molecules 4 and betulin it can be seen, that introduction of the triazole ring at the C-30
position leads to formation of an additional nucleophilic area. The similar area of increasing
electron density near the triazole ring was observed in the previously obtained triazole
derivatives of betulin. These compounds were characterized by high anticancer activity.
It has been observed, that the interaction of a compound with a biological target through
the hydrogen and hydrophobic interactions depends on the system of nucleophilic and
electrophilic regions in the molecule [32].

3.5. Molecular Properties of 4

The density functional theory (DFT) implemented in Gaussian software was used to
calculate some molecular properties of 4 [24]. The selected parameters are collected in
Table 4. The molecular polarization and arrangement of the charges are described by a
dipole moment. The total molecular dipole moment of 4 is equal to 5.9024 D. Comparing
3D components of the dipole moment shows that the highest negative value is for x-axis
component µx. The molecular energy levels of 4 show that the 205 of 1163 molecular orbitals
are occupied. The HOMO and LUMO orbitals show the ability of molecules to donate or
acquire an electron, respectively. As shown in Figure 9, the HOMO and LUMO orbitals
for 4 are delocalized on the triazole moiety. The high HOMO (−6.900 eV) and low LUMO
energy levels (−1.412 eV) show that the molecule 4 is more reactive with electrophilic
than nucleophilic molecules. The energy gap (∆E) suggests that the molecule 4 has kinetic
stability and is less polarizable [33].
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Energies of the HOMO and LUMO orbitals were used to calculate the global reactivity
descriptors such as ionization potential (I), electron affinity (A), hardness (η), softness
(s), chemical potential (µ), electronegativity (χ), and electrophilicity index (ω) [34]. The
obtained values are presented in Table 4.

Table 4. Calculated molecular properties of 4.

Parameters
6-311G+(d,p)

Compound 4

SCF Energy (kcal/mol) −74,208.4052
Field independent dipole moment (Debye)
µx −4.4518
µy −1.8292
µz 3.4166
µtotal 5.9024
Fourier molecular orbital energies (eV)
EHOMO −6.900
ELUMO −1.412
∆ELUMO-EHOMO 5.488
Global reactivity descriptors (eV)
Ionization potential (I) 6.901
Electron affinity (A) 1.416
Hardness (η) 2.742
Chemical potential (µ) −4.158
Electronegativity (κ) 4.158
Electrophilicity index (ω) 3.152

The chemical modification of betulin molecule into compound 4 increases the elec-
trophilicity index from 1.223 eV [31] to 4.158 eV. The introduction of substituents at the
C-3, C-28, and C-30 positions in the derivative 4 reduces the chemical potential (µ) from
−2.947 [31] to −4.158 compared with betulin. The global reactivity descriptors show that
4 has high molecular stability. Moreover, the chemical potential and the electrophilicity
index show also that 4 has a tendency to gain electrons [35].
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4. Conclusions

The 3,28-O,O′-diacetyl-30-(1-phenylthiomethyl-1H-1,2,3-triazol-4-yl)carbonylbetulin 4
was synthesized by the alkyne-azide cycloaddition (CuAAC). Spectroscopy data and X-ray
diffraction studies confirmed the chemical structure of compound 4. It has been shown that
the intermolecular hydrogen interactions C-H . . . O determine molecular packing in the
crystal structure. The Hirshfeld surface analysis allowed the percentage of intermolecular
contacts to be determined. The MEP map showed the electrophilic and nucleophilic areas
for 1,2,3-triazole derivative 4. The negative potential regions were located near the oxygen
atoms of the betulin moiety and the sulfur atom in the triazole linker. Analysis of the
HOMO and LUMO orbitals showed that the derivative 4 is more reactive with electrophilic
then nucleophilic molecules.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12030422/s1, Figures S1–S4. 1H NMR, 13CNMR, IR, and
HR-MS for compounds 4. Table S1: Selected bond lengths (Å) for compounds 4. Table S2: Selected
angle (degree) for compounds 4. Figure S5: Atom by atom superimposition of X-ray structure (yellow)
and calculate structure (grey). Figure S6: Intermolecular orientation of triazole and phenyl centroids
showing π–π interactions. Figure S7: The full 2D fingerprint plot for 4. check CIF report.
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