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Abstract: In this work, the spectral properties of distributed Bragg reflector-based photonic crystal
(DBR-PhC) structures were studied for the near-infrared (NIR) range. Different structural properties
were varied to study their effect on the quality of the stopband and the appearance of the resonant
dips in the reflection spectra of the DBR-PhC structure. The investigated structural features included
the depth of PhC holes, hole radius, and number of PhC elements in the DBR structure. The 11-layered
DBR structure was designed with a 2.4/1.4 refractive index contrast of alternating layers. The study
aimed to achieve optical filtering properties in the DBR-PhC structure, to simplify the structural
complexity of Fabry-Pérot filters by eliminating the FP cavity and upper-DBR mirror. The proposed
DBR-PhC device can be used in different optical filtering and sensing applications.

Keywords: DBR-PhC; photonic crystals; DBR; optical filters; dielectric PhCs

1. Introduction

In the past few decades, photonic devices have received much attention from re-
searchers due to their significant advantages over their electronic counterparts in speed,
power efficiency, and ease of use. Considering the optical filtering capabilities of photonic
devices, photonic crystal (PhC) structures are one of the promising candidates that can
confine and control the flow of photons at a wavelength scale. Initially, the concept of
PhCs was presented in solid-state physics in the late 1980s [1,2]. PhC structures exist in
one-dimension (1D), two-dimensions (2D), and three dimensions (3D), depending on the
shape and the direction of energy confinement [3]. The 1D PhC structures are often known
as distributed Bragg reflectors (DBRs), which is an established science already being used in
various optical filtering [4] and sensing applications. Moreover, 2D PhCs are often applied
as air hole-based gratings, drilled into slab waveguide structures. A category of PhC struc-
tures works on the principle of Fano resonances, which are also known as guided-mode
resonances (GMR), where the incident light couples vertically with the surface of the struc-
ture [5–8]. Since DBRs also work on the principle of coupling energy vertical to the surface
of the structure, these 1D PhCs (so-called DBRs) and 2D slab waveguide PhC structures can
be integrated to combine their spectral characteristics. DBR mirrors, in general, offer a wide
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stopband and reflection of above 90%, and their use has already been demonstrated in a
high-quality optical filter application in the form of Fabry-Pérot (FP) [4] filters. Meanwhile,
sharp Fano resonances can be obtained by 2D slab waveguide PhC structures implemented
into a single layer. By implementing a hybrid DBR-PhC structure where the PhC holes
are drilled into DBR layers, the structural complexity and bulky size of an FP filter can
be reduced. Moreover, the above-mentioned spectral features with a wide stopband and
sharp Fano resonance can be combined to investigate the optical filtering properties of the
hybrid DBR-PhC structure. A key structural parameter in hybrid DBR-PhC structures can
be the structural features of the PhC holes, which can significantly affect the coupling of
optical energy inside the periodic gratings and the quality of the guided modes inside the
multilayered structure. Hence, optical tunability can be studied by varying the depth and
radius of the PhC holes instead of the FP cavity thickness.

So far, single-layered and multi-layered PhC structures have been demonstrated
in various applications such as optical filters [8–10], waveguides [11], logic gates [12],
and biomedical sensors [13]. Similarly, the use of DBRs has been shown in applications
like FP filters [4], sensors [13], spectroscopy [4,14], and numerous others. PhCs have been
introduced to surface-emission lasers for the NIR wavelength range, along with the study of
the role of the etching depth in PhCs [15,16]. A study on how to achieve spectral tunability
by changing the depth of gratings in a micro-ring resonator was presented in [17]. Research
combining DBRs with slab waveguide PhC structures to reduce the lateral losses of resonant
modes in an optical filter design was put forward in [18]. Meanwhile, Ref. [19] offered
an analysis of leaky modes in a three-layered asymmetric slab waveguide PhC structure,
with variation in the refractive index contrast between the layers. An investigation into the
appearance of guided modes from the interaction of a Bloch surface wave, as a function of
grating geometrical parameters, in a structure with PhCs implemented in a single layer
on top of DBRs, was carried out in [20]. In [21], the FP cavity of a DBR structure was
distributed over several periods using the chirping effect, to widen the spatial distribution
of the electric field of the resonant modes. The light emission of an oxide aperture was
optimized by integrating PhC holes in the upper-DBR of a PhC-VCSEL (vertical cavity
surface-emitting laser) in [22]. Similarly, the PhC hole-radius was investigated in the upper-
DBR mirror of an InGaAlAs-based PhC-VCSEL for single-mode operation [23]. Similarly, a
PhC defect-based laser cavity was demonstrated in 2D PhCs etched into DBR layers for
the NIR range in [24]. Further to this, the enhancement of a second harmonic generation
was optimized in an air-bridged dielectric structure with DBR layers and 2D PhCs in [25].
Research into the effects of 2D PhCs’ structural parameters on their spectral properties was
reported in multiple works including [8,26]. However, a thorough study of the effect of
the PhC hole depth on the spectral properties of hybrid DBR-PhC structures has not yet
been presented.

In this work, a hybrid DBR-PhC structure was studied for optical filter application
where the air hole-based PhC structures were patterned in the DBR layers. The consid-
ered DBR structure had a total of 5.5 periods (11 layers) with a refractive index contrast
nH/nL = 2.4/1.4. Since the proposed device was designed to work in the NIR range, the
DBR structures were designed for a central wavelength of λc = 1.5 µm, and the lattice
constant of PhC holes was kept a = 1 µm. Since the simulation was performed in 2D-FDTD,
the shape of the PhC holes appeared as 2D nano-grooves rather than 3D cylindrical air
holes, and accordingly, the terms “hole depth” and “hole radius” should be considered
as representing the depth and lateral size of the nano-grooves. A linear-polarized source
was used to study the spectral properties of the proposed device. The hole depth (d), hole
radius (r), and number of PhC-elements (N) were varied to study the spectral tuning and
filtering properties of the proposed structure. The studied spectral characteristics were
the width of stopband, percentage of reflection, free spectral range (FSR), fineness (F), and
quality of the resonant modes appearing in the stopband.
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2. Materials and Methods

The design and numerical simulations of the proposed work were carried out in an
open-source finite-difference time-domain (FDTD)-based software called MIT electromag-
netic equation propagation (MEEP) [27,28]. The used FDTD method works on the principle
of solving Maxwell’s equations in space and time to compute the electromagnetic field
propagation. It also provides the advantage of being able to calculate the response of a
system over a wide range of frequencies in a single run. To ease the complexity of the
problem, the simulations were performed in the 2D-FDTD. A basic simulation model used
in this work is depicted in Figure 1, showing the position of the excitation source, structure,
and application of the boundary conditions. The simulation domain has an 11-layered DBR
structure (L = 11) with an indication of the transmission and reflection field-monitoring
layers below and above it, respectively. A plane wave source at a normal incidence was
used for all the computations. Furthermore, a unit cell simulation approach was taken to
optimize the basic structural parameters, i.e., d and r of the PhC holes. Moreover, Bloch’s
periodic boundary conditions (PBC) were used in the lateral direction (x-axis) of the unit cell
to simulate a perfect crystal and infinite structure. However, finite-dimensional problems
such as the optimum number of PhC holes in x-direction were computed without the use
of PBCs. To avoid back reflections and absorb the outgoing EM field, perfectly matched
layer (PML) boundary conditions were used in the vertical direction (z-axis). To visualize
the output spectra of the simulated problem, the resultant field from the time-domain
simulation was converted to the frequency domain by applying Fourier transform. The
constructive interference of reflection would occur in a DBR holding a quarter wavelength
λ/4, equal to the product of physical thickness t and refractive indices nH/nL.

t =
mλc

4nH
whereas, m = 1, 2, 3
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Figure 1. Simulation model depicting an excitation source, DBR structure, reflection, and transmission
monitoring layers with the application of boundary conditions.

The above equation is the condition for in-phase interference where λc is the Bragg
wavelength or central wavelength. The calculated optical thicknesses of the DBR layers
(shown in Figure 1) are tH = 0.16 µm and tL = 0.27 µm for the layers corresponding to nH
and nL, respectively.

3. Results and Discussion

In the first step of the simulation, the transmission and reflection stopband of a DBR
structure with 5.5 periods was computed as shown in Figure 2. The simulated DBR structure
can be seen in the inset of Figure 2. The computed output spectra show a wide stopband
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starting from 1.274 µm and ending at 1.930 µm, with a width of around 0.656 µm. The
stopband also portrays the property of DBRs with above 95% reflection over a wide range
of wavelengths, which paves the way for further analysis, i.e., the introduction of PhC
holes into the DBR structure.
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Figure 2. Output spectrum of the DBR structure where red (transmission) and blue (reflection) lines
represent a stopband of 0.656 µm with λc = 1.5 µm.

3.1. Effect of Depth of the PhC Holes

To study the effect of the presence of PhC holes in the considered DBR structure, a unit
cell model was used. Figure 3a depicts the simulated structure with the introduction of a
PhC hole into the DBR structure. The depth of the PhC hole is varied from the first layer
to the fifth layer in steps, keeping all other structural parameters constant. The PhC hole
has an optimized hole radius of r = 0.3a, where a represents the lattice constant of the PhC
structure. The PhC structures can be scaled up or down to different spectral ranges just
by changing the lattice constant, and therefore, their structural parameters are denoted in
terms of lattice constant. Figure 3b shows the reflection spectrum of a DBR-PhC structure
with a PhC hole present in the first layer. A single-mode and multi-mode dips are produced
in reflection spectra as shown in Figure 3, representing the occurrence of Fano resonance in
PhC structures [8]. The reflection spectrum shows three resonant modes, appearing around
the 1.421, 1.532, and 1.615 µm wavelengths. The overall width of the stopband is 0.685 µm.
Furthermore, increasing the depth up to the third DBR layer (1.5 periods) shows variation
in the reflection spectrum depicted in Figure 3c. It can be observed that the spectral width
of the stopband has increased up to 0.775 µm and the resonant modes appear around the
1.358, 1.487, and 1.60 µm wavelengths. Similarly, Figure 3d presents the reflection spectrum
of the structure with d extended up to the fifth DBR layer. The reflection spectrum shows
two sharp resonances located at wavelengths of 1.275 and 1.573 µm with the width of the
stopband as 0.769 µm. Moreover, the change in the output spectra of the structures in terms
of shifting the guided modes is due to variation in the effective refractive index and mode
coupling efficiency as d increases.

3.2. Investigating the Radius of PhC Holes with Holes Extending up to the First DBR Layer

To investigate the spectral characteristics of the DBR-PhC structure further, the hole
radius is varied from r = 0.1a to 0.4a for three different case studies, i.e., d reaching up to
the first, third, and fifth DBR layers. Figure 4a shows four structures with the hole depth
reaching the first layer and simulated at values of r = 0.1a, 0.2a, 0.3a, and 0.4a. The reflection
spectra of the discussed structures are shown in Figure 4b.
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of PhC holes reaching the fifth DBR layer.
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Figure 4. (a) 2D unit cell model of PhC structure with d extending up to the first layer and r varying
as (I) 0.1a, (II) 0.2a, (III) 0.3a, and (IV) 0.4a. (b) Reflection spectra of the structure for r = 0.1a, 0.2a, 0.3a,
and 0.4a.

Referring to the reflection spectra in Figure 4b, strong evidence of energy-coupling and
GMR can be seen. For the entire considered values of r, the appearance of three resonant
modes can be seen around the wavelengths of 1.429, 1.535, and 1.616 µm. These resonant
peaks are not very intense at r = 0.1a; they reach their maximum intensity at r = 0.2a,
with two peaks reaching below the 10% reflection value. Furthermore, as r increases to
r = 0.3a, the resonant mode dips start reducing and we observe a slight blueshift. At
a larger value for the radius, i.e., r = 0.4a, the resonant modes almost disappear from
the reflection spectrum.
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The case study of variation in I is taken to three DBR layers in the third step, as shown
in Figure 5a. Similar to the first case study, the guided modes show the strongest coupling
and resonance at r = 0.2a, appearing around the wavelength of 1.395 µm. Furthermore, the
amplitude of the resonant peaks also decreases with an increase in the hole radius. Among
the designed radius values of the holes, r = 0.2a gives promising results, producing a single
mode with good values for FWHM and finesse. Thus, for an optical-filtering application, a
hole radius of r = 0.2a can be proposed.
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Figure 6a shows variation in the r of PhC for d reaching up to the fifth DBR layer.
Moreover, the reflection spectra in Figure 6b show strong coupling of resonant modes at
r = 0.1a and 0.20a around the wavelengths of 1.36 and 1.40 µm. At larger values for the hole
radius, i.e., r = 0.30a and 0.40a, the mode-coupling becomes weak and shows non-significant
optical-filtering properties.
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3.3. Investigating the Number of PhC Elements with Holes Extending up to the Third DBR-Layer

After optimizing the d and r values of the PhC holes in the unit cell model, it was crucial
to investigate the total number of PhC elements N, to get the optimum optical filtering
properties in a finite model. To investigate the number of PhC holes, we generated a finite
DBR-PhC simulation domain, as shown in Figure 7, designed with PML boundaries applied
in both the x and z-directions to absorb unwanted reflections and act as the boundaries of
the structure.
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positions of the excitation source, reflection and transmission monitoring layers, and PML boundaries.

Figure 8a depicts four different finite models of the DBR-PhC structure, with the
number of PhC elements as N = 15, 21, 25, and 31. The d of the PhC holes is kept up to
three DBR layers and an optimized value of r = 0.20a is used. When observing the reflection
spectra of structures in Figure 8b, it can be seen that at N = 15, the overall reflection
spectrum achieves a maximum value of 60% and the two resonant modes appear around
wavelengths of 1.21 and 1.40 µm. As the lateral size of the structure increases and the
numbers of PhC holes reach N = 21 and N = 25, the overall reflection spectrum rises above
90%, and as a result, the two main resonant modes become stronger. Meanwhile, for N = 31,
the reflection spectrum drops abruptly to 58%, which shows the strengthening of leaky
modes during GMR phenomena and weak optical-filtering properties. Consequently, as
the percentage of the reflection for values of N = 21 and N = 25 is almost the same, the
structure with N = 25 is selected due to the sharpness of its peaks, FWHM, and higher
values of F. Since the lattice constant of the PhC structure is a = 1 µm in the presented work,
it can be concluded that the total size of the DBR-PhC structure in x-dimension should be
around 25 units for good optical-filtering characteristics.
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Figure 8. (a) Finite 2D-FDTD simulation models of DBR-PhC structures with variation in number of
PhC elements as follows: (I) N = 15, (II) N = 21, (III) N = 25, and (IV) N = 31, and with r = 0.2a and d
extending to three DBR layers. (b) Reflection spectra of the DBR-PhC structure with variation in the
number of PhC elements.
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3.4. Spectral Tuning of Finite DBR-PhC Structure with N = 25 and Variation in Hole Radius

After reaching the optimum value of the number of PhC holes (N = 25) and with d
equal to three DBR layers (Figure 9a), fine-tuning of the resonant peaks was required by
varying the values of r. The reflection spectra for variation in the PhC hole radius, for
r = 0.10a to 0.23a, are shown in Figure 9b. It can be observed that the resonant modes
undergo a blueshift as the radius of the holes is increased. For r = 0.10a, the resonant modes
appear at 1.423 and 1.432 µm, and similarly for r = 0.20a, at 1.4 and 1.409 µm, and for
r = 0.23a, at 1.39 µm. The hole radius at r = 0.20a shows the lowest value of dip, reaching
below 20%.
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The optical characteristics of the simulated model in Figure 9a can be evaluated by
considering the spectral parameters given in Table 1. The spectral parameters show that
the reflection for r = 0.18a is 76%, followed by r = 0.14a with a 70% reflection, which
gradually decreases for hole radius values of 0.2a, 0.23a, and 0.1a. Furthermore, r = 0.18a
offers the least value of FWHM (0.016 µm) when compared to the rest of the hole radius
values. Moreover, the largest value of FSR can also be observed with r = 0.18a. This
demonstrates that for a good-quality factor or finesse, the hole radius 0.18a provides
better results than the rest of the variable hole radius values. A comparative analysis
of other spectral parameters concerning the effect of a change in the hole radius on the
overall optical-filtering performance of the studied PhC-DBR structure can also be made by
considering the parameters given in Table 1. The reported spectral characteristics of the
DBR-PhC structure can be further validated by considering the thorough study of Fano
resonances in multilayered dielectric PhC slabs reported in our previous work [8].

Table 1. Spectral parameters of DRB-PhCs structure used to evaluate its spectral characteristics.

Radius (a) Resonant Peak
Reflection (%) FWHM (µm) FSR (µm) Finesse

0.10 53% 0.022 0.433 4.863

0.14 70% 0.021 0.9824 8.757

0.18 76% 0.016 3.07812 11.405

0.20 65% 0.018 0.86172 7.232

0.23 59% 0.019 0.4411 5.882

4. Conclusions

In this research, the optical-filtering properties of a hybrid DBR-PhC structure with
11 layers of DBR were studied in reflection spectra for the NIR spectral range. The proposed
device possesses spectral characteristics with a wide stopband in reflection and with the
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presence of single as well as multiple resonant mode dips. The output spectra of the device
show over 80% reflection for almost all the investigated structural properties, and the dip
of the resonant modes reaches its best value of below 10% reflection. The investigated
structural parameters included the depth of PhC holes, their radius, and the number of
PhC holes. The depth and radius of the holes were investigated up to the fifth DBR layer.
The optimum value for the PhC hole-depth was found to be one penetrating up to the third
DBR layer, with the total number of PhC elements as N = 25 for a value of r = 0.18a. The
optimized design offers a good value of finesse at 11.405, while the reflection of resonant
peaks is below 20% and the FWHM is 0.016. The proposed device can be suggested as
suitable for optical-filtering applications requiring a wide stopband and a compact device
design. The device can be used as an alternative to an FP filter since it reduces the number
of layers to less than half by eliminating the FP cavity and upper-DBR mirror. The device
model will be further optimized in 3D-FDTD simulations in future work to bring it closer
to becoming a real device model.
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