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Abstract: Diamonds are thought to be excellent candidates of next-generation semiconductor materi-
als for high power and high frequency devices. A two-dimensional hole gas in a hydrogen-terminated
diamond shows promising properties for microwave power devices. However, high sheet resistance
and low carrier mobility are still limiting factors for the performance improvement of hydrogen-
terminated diamond field effect transistors. In this work, the carrier scattering mechanisms of a
two-dimensional hole gas in a hydrogen-terminated diamond are studied. Surface roughness scatter-
ing and ionic impurity scattering are found to be the dominant scattering sources. Impurity scattering
enhancement was found for the samples after a high-temperature Al2O3 deposition process. This
work gives some insight into the carrier transport of hydrogen-terminated diamonds and should be
helpful for the development of diamond field effect transistors.

Keywords: diamond; carrier mobility; two-dimensional hole gas; carrier scattering mechanisms

1. Introduction

Due to its high critical breakdown electric field, high carrier saturation drift velocity,
high thermal conductivity, and high carrier mobility, diamonds have great application po-
tential in high power and high frequency areas [1]. A hydrogen-terminated (H-terminated)
diamond surface demonstrates a relatively high surface conductivity due to the forming of a
two-dimensional hole gas (2DHG) by transfer doping from adsorbates/dielectric materials
in contact with a H-terminated diamond surface. The electron transfer from the diamond
to the adsorbates/dielectric materials and the holes accumulate in the subsurface of the
H-terminated diamond [2,3]. The 2DHG shows a sheet density of 1012 to 1013 cm−2 and a
carrier mobility of less than 200 cm2/(V·s) [4–6].

H-terminated diamond field effect transistors (FETs) have obtained good direct cur-
rent (DC) and radio frequency (RF) performances. A drain current density (IDSmax) of
1.3 A/mm [7] and a maximum oscillation frequency (f max) of 120 GHz [8] have been ob-
tained for H-diamond FETs. Recently, the output power density was also improved and
reached 3.8 W/mm at 1 GHz [9]. Output power densities at 2 GHz [10] and 10 GHz [11]
were also reported. However, for high power and high frequency applications, the sheet
resistance of the 2DHG is still at a high level and the carrier mobility is low, which leads
to large parasitic resistance and limits the performance of H-terminated diamond FETs.
Another issue is that, in the fabrication process of H-terminated diamond FETs, a gate
dielectric, such as Al2O3 deposition, is needed, which is usually performed at a high
temperature. The surface adsorbates would be broken during the high temperature pro-
cess, which influences the electrical properties of the 2DHG of the H-terminated diamond.
The atomic layer deposition (ALD) Al2O3 films are gate insulator and passivation films
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for the p-type surface conduction of the H-terminated diamond surface. Many works
have investigated the effects of Al2O3 passivation films [12–14]. Kawarada et al. [12,15]
suggested that the surface adsorbates desorbed below 250 ◦C. There are defects in the ALD
Al2O3 films, which introduce unoccupied levels above the valence band edge of Al2O3.
The defects could accept the electrons transferring from the H-terminated diamond and
be negatively charged. Ren et al. deposited an Al2O3 film at 300 ◦C and found that O
impurity or Al vacancy defects existed in the ALD Al2O3 dielectric. Additionally, the ALD
Al2O3 dielectric can work as an acceptor-like transfer doping material on the H-terminated
diamond surface [16]. Liu et al. deposited Al2O3 at 120, 200, and 300 ◦C. They found
that, when the deposition temperature of ALD Al2O3 was increased from 120 to 300 ◦C,
the polarity of the fixed charges in the ALD Al2O3 dielectric changes from positive to
negative [17]. The low carrier mobility of the 2DHG of the H-terminated diamond has been
one of the limiting factors for the development of H-terminated diamond FETs. Some works
have investigated the carrier scattering mechanism of the H-terminated diamond [18,19].
The deposition of Al2O3 may introduce an extra scattering source to the 2DHG of the
H-terminated diamond and influence its electrical properties. However, to date, no report
on the scattering mechanism analysis has been conducted for the Al2O3/H-terminated
diamond structure.

In this work, the influence of Al2O3 deposition by a high-temperature ALD process on
the transport properties of the 2DHG in a H-terminated diamond is investigated. The sheet
resistance, carrier density, and mobility of H-diamond samples with and without Al2O3
were measured from 90 to 300 K by a Van der Pauw–Hall method. The temperature
dependence of the mobility of the 2DHG is fitted considering four scattering mechanisms:
ionic impurity (IM) scattering, acoustic phonon (AC) scattering, optical phonon (OP)
scattering, and surface roughness (SR) scattering for the H-diamond samples with and
without Al2O3 deposition.

2. Experiments

Three kinds of H-terminated diamond samples were prepared, as shown in Figure 1.
The samples were prepared by the microwave plasma CVD (MPCVD, Seki diamond
systems, Japan) technique. For the SC-Epitaxial H-termination samples, the samples were a
single crystal diamond with a H-termination formed by a homoepitaxial growth process
as stated in [20]. The microwave power was 1 kW, and growth temperature was 900 ◦C
with a chamber pressure of 100 Torr. The CH4/H2 ratio was 1% with total flow of 500 sccm.
For the SC-H plasma treatment and PC-H plasma treatment samples, the samples were
treated by MPCVD in H2 plasma [21]. The hydrogen plasma treatment was performed at
a chamber pressure of 5 kPa and a temperature of 800 ◦C for 40 min. The SC-H plasma
treatment samples were a single crystal diamond, and the PC-H plasma treatment samples
were a polycrystalline diamond with a grain size of ~100 µm. The electrical properties of
the H-terminated diamond samples were measured by the Van der Pauw–Hall method in
the low temperature Hall measurement system from 90 K to 300 K.
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Figure 1. Relationship of carrier mobility µ vs. sheet density NS at room temperature for the
H-terminated diamond samples.

3. Results and Discussion

Figure 1 shows the relationship of carrier mobility µ vs. sheet density NS at room
temperature for the three kinds of H-terminated diamond samples. As shown in Figure 1,
all the samples follow the µ∝1/Ns relationship, indicating the mobility of the 2DHG in the
H-terminated diamond is limited by ionized impurity scattering [22]. The mobility values
of the PC-H plasma treatment samples are comparable with the SC-Epitaxial H-termination
samples and SC-H plasma treatment samples, showing that the grain boundary scattering
is not dominant at this mobility level for the H-terminated diamond. This may be the reason
why H-terminated diamond FETs on polycrystalline diamond samples show comparable
or even better DC and RF properties than those on single crystal diamond samples [23].

To analyze the carrier transport mechanism of the 2DHG in H-terminated diamond,
Van der Pauw–Hall measurements were performed. As listed in Table 1, five samples with
(samples A, B, and C) and without (samples C and D) ALD Al2O3 deposition were studied.
All the five samples are a single crystal diamond. The ALD processes were performed
at 450 ◦C, 400 ◦C, and 300 ◦C for samples A, B, and C, respectively. From Table 1, it can
be seen that the carrier mobility µ of the samples A, B, and C decreased after the Al2O3
deposition. The changes of the sheet density Ns of the samples are dependent on the
deposition temperatures of the ALD Al2O3, as shown in Figure 2a and Table 1. For sample
C with the ALD temperature of 300 ◦C, the sheet density Ns decreases. For sample B with
the ALD temperature of 400 ◦C, the sheet density Ns shows a small decrease. Addition-
ally, for sample A with the ALD temperature of 450 ◦C, the sheet density Ns increases.
The adsorbates on the H-terminated diamond surface formed in the air desorbed from
the surface during the heating process. Additionally, the ALD Al2O3 is the new transfer
doping layer for the formation of the 2DHG of the H-terminated diamond. The different
changes of sheet density Ns of the samples A, B, and C could be due to the different
electron affinities of the ALD of Al2O3 deposited at different temperatures [24]. Hiraiwa
et al. found that the Al2O3 electron affinity increases with the increasing of the Al2O3
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deposition temperature. The high electron affinity of Al2O3 induces a high sheet density in
the H-terminated diamond.

Table 1. Room temperature electrical properties of five H-terminated single crystal diamond samples
with and without Al2O3 deposition.

Sample Name
Before Al2O3 Deposition After Al2O3 Deposition Al2O3 Deposition

Temperature (◦C)Rs (Ω/sq) Ns (1012/cm2) µ (cm2/V·s) Rs (Ω/sq) Ns (1012/cm2) µ (cm2/V·s)

A 8727 4.715 152 7360 6.18 137 450
B 9271 6.461 104 13,300 6 77.9 400
C 8332 7.512 99.7 11,500 5.37 101 300
D 7000 11.7 76.4 —— -
E 5380 14.3 80.9 —— -
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Figure 2. The electrical properties of the five H-terminated diamond samples with (samples A, B,
and C) and without (samples D and E) ALD Al2O3. (a) Change of sheet density Ns of the samples
A, B, and C vs. performed temperatures of ALD processes. Temperature dependences of (b) sheet
resistance, (c) sheet density, and (d) carrier mobility for the H-terminated diamond samples with and
without ALD Al2O3.
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Figure 2b shows the temperature dependences of the sheet resistance Rs of the H-
terminated diamond samples with and without the ALD Al2O3. The sheet resistances of all
the five samples decrease with temperature, which are due to the carrier mobility increases
with temperature, as shown in Figure 2d. The sheet densities of the H-terminated diamond
samples keep unchanged or slightly reduced with temperature, as shown in Figure 2c.
The weak dependence of sheet density with temperature should be due to the electron
affinity difference of the ALD Al2O3 and the H-terminated diamond is almost unchanged in
the temperature range from 90 to 300 K. The carrier mobility of all the five samples increases
with temperature. The carrier mobility of the H-terminated diamond samples with Al2O3
(samples A, B, and C) shows a stronger temperature dependence compared with those
without (w/o) Al2O3 (samples D and E). The temperature dependence of the mobility of
the 2DHG is fitted considering four scattering mechanisms to analyze the influences of
Al2O3 deposition on the transport properties of the 2DHG in the H-terminated diamond.

The total relaxation time can be obtained by the Mathiessen rule:

1
τ
= ∑

n

1
τn

(1)

where τn is the momentum relaxation time corresponding to the nth scattering mechanism.
The mobility of the 2DHG of the H-terminated diamond can be obtained by the equation
µ = eτ/m∗c , where m∗c is the conduction mass, and formulated as m∗c = (m∗3/2

lh + m∗3/2
hh +

m∗3/2
so )/(m∗1/2

lh + m∗1/2
hh + m∗1/2

so ) [25,26] with m∗c = 0.444731 m0. The quantities mhh
*, mlh

*,
and mso

* are the heavy, light, and spin-orbit hole mass, respectively.

(1) Acoustic phonon (AC) scattering

Phonons are the quanta of the lattice vibrations of materials and introduce intrinsic
scatterings to carriers. Due to different modes of vibrations, phonons can be divided into
acoustic phonons and optical phonons. In this work, the relaxation time limited by the
acoustic phonon was calculated following the formula for 2DEG [27]:

1
τac

=
3m∗dbkBTD2

ac

16ρu2
l }3

(2)

where ρ is the mass density, kB is the Boltzmann constant, Dac is the acoustic defor-
mation potential, and ul is the longitudinal acoustic phonons velocity. The parame-
ter b = [33πm∗de2 ps2D/

(
2}2ε0εs

)
]
1/3. In this paper, the acoustic deformation potential

was considered as 8 eV. The density of state mass of diamond m∗d was evaluated as

m∗d = (m∗3/2
lh + m∗3/2

hh + m∗3/2
so )

2/3
[28] and m∗d = 0.907832 m0.

(2) Optical phonon (OP) scattering

The Debye temperature is about 2240 K for a diamond, which is very high. If the
optical phonons dominate the carrier scattering, an exponential drop in carrier mobility
with temperature is expected for T < 600 K. The carrier mobility can be estimated by [29]:

µOP =
4
√

2πqρ}2
√

kΘ

3D2
0(m

∗
d)

3/2m∗c
ϕ(T) (3)

where D0 is the optical deformation potential. ϕ(T) is a temperature-dependent func-
tion, which is in an exponential relationship and drops with temperature T below the
Debye temperature.

(3) Ionic impurity (IM) scattering

Due to its deep impurity levels, the ionized impurity concentration is not a constant
for diamond. This makes the ionic impurity scattering momentum relaxation time show a
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strong temperature dependence. The classical expression for the ionized impurity scattering
momentum relaxation time is the Brooks–Herring expression [30]:

τim =
16
√

2m∗c πε2

Z2q4NI
(ln(1 + b)− b/(1 + b))E3/2 (4)

where b = 8m∗c L2
DE/}2 and ε is the dielectric constant of the medium. NI is the ionized

impurity concentration. Z is degree of ionization. LD is the Debye length and E is the carrier
energy. Assuming parabolic bands, by averaging over carrier momentum and neglecting
the weak dependence of b on energy, the ionized impurity scattering limited relaxation
time can be written as:

τim =
128
√

2πm∗c ε2(kT)
3
2

Z2q4NI(ln(1 + b′ )− b′/(1 + b′ ))
(5)

where b′ = 24m∗c L2
DkT/}2.

(4) Surface roughness (SR) scattering

The relaxation time of SR is expressed including the screening by the 2DHG as [31]:

1
τ
=

∆2L2e4m∗d
2(ε0εs)

2}3
(

Ns

2
)

2
·

1∫
0

u4 exp(−k2
FL2u2)

(u + G(q)qTF/(2kF))
2√1− u2

du (6)

where ∆ is the root-mean-square roughness of surface and L is the correlation length. u = q/2kF,
which is a dimensionless parameter, with q = 2kFsin(θ/2), θ∈(0, π). θ is the angle between
the initial and final wave vector.

Figure 3 shows the fitting results of the carrier mobility of the 2DHG with temperature
for samples B and D. It can be seen that the surface roughness (SR) scattering and ionic impu-
rity (IM) scattering are the dominant scattering sources in the measured temperature range.
For sample B with Al2O3 deposition, the influence of IM scattering enhances, as shown in
Figure 3a. This indicates that the adsorbates on the H-terminated diamond surface formed
in the air desorbed from the surface during the heating process of the Al2O3 deposition.
The ALD Al2O3 as the new transfer doping layer makes the concentration of the ionized im-
purity NI increase. This is consistent with the results of Liu et al. [17]. They found that there
were negative charges at the Al2O3/H-terminated diamond interface. They thought the
unoccupied levels within the Al2O3 dielectric near the Al2O3/H-terminated diamond inter-
face were the main sources of the negatively charged acceptors at the Al2O3/H-terminated
diamond interface. The above results indicate that the initial stage of the ALD Al2O3 is
especially important for the H-terminated diamond. The reduction of unoccupied levels in
the Al2O3 near the Al2O3/H-terminated diamond interface will be beneficial for the carrier
mobility improvement of the 2DHG in the H-terminated diamond.
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4. Conclusions

In summary, we studied the influence of Al2O3 deposition by a high-temperature
atomic layer deposition process on the transport properties of the 2DHG in a H-terminated
diamond. The temperature dependence of the mobility of the 2DHG is fitted considering
four scattering mechanisms: ionic impurity scattering, acoustic phonon scattering, optical
phonon scattering and surface roughness scattering. The surface roughness scattering
and ionic impurity scattering are found to be the dominant scattering sources in the H-
terminated diamond. Impurity scattering enhancement was found for the H-terminated
diamond sample after the high-temperature atomic layer deposition Al2O3 process.
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