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Abstract: In the study, Al7075-TiC composites were synthesized by using a novel dual step blending
process followed by cold pressing and sintering. The effect of ball milling time on the microstructure
of the synthesized composite powder was characterized using X-ray diffraction measurements
(XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and transmission
electron microscopy (TEM). Subsequently, the integrated effects of the two-stage mechanical alloying
process were investigated on the crystallite size and lattice strain. The crystallite size and lattice
strain of blended samples were calculated using the Scherrer method. The prediction of the crystallite
size and lattice strain of synthesized composite powders was conducted by an artificial neural
network technique. The results of the mixed powder revealed that the particle size and crystallite size
improved with increasing milling time. The particle size of the 3 h-milled composites was 463 nm,
and it reduces to 225 nm after 7 h of milling time. The microhardness of the produced composites
was significantly improved with milling time. Furthermore, an artificial neuron network (ANN)
model was developed to predict the crystallite size and lattice strain of the synthesized composites.
The ANN model provides an accurate model for the prediction of lattice parameters of the composites.

Keywords: mechanical alloying; Al7075/TiC composites; microhardness; artificial neural networks;
crystallite size; lattice strain

1. Introduction

The quest for fuel-saving and cost-effective materials with attractive structural and
mechanical properties has led to the development of aluminum matrix composites for
automotive and aircraft applications. In various engineering fields, such as transportation,
aviation, and the military, there is a growing need for new and advanced materials with
superior physical and mechanical properties. This is because single monolithic materials do
not display combined structural properties such as hardness and ductility. To address this
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issue, metal matrix composites (MMCs) display great potential in combining or altering
the desired properties of a highly reinforced ductile and resilient matrix [1–4]. Hence,
the development of high-performance metal-based composite materials is important for
modern technological applications due to the growing demand for lighter materials with
enhanced mechanical properties [4,5]. Composites of the particle-reinforced aluminum
alloy-based metal matrix (AMMCs) are highly desirable materials for aircraft and auto-
motive applications. For instance, Al7075 is an aluminum alloy of high performance with
reasonably good mechanical strength [6–10]. The demand for aluminum composites has
grown in recent years owing to their unique features that display substantial weight reduc-
tion due to high strength-to-weight ratio, excellent dimensional stability, strong physical
isotropic characteristics, and enhanced mechanical and physical properties such as elastic
rigidity, hardness, strength, characteristics of cyclic fatigue, tribological properties, and
creep resistance [11–15]. Aluminum alloy based MMCs reinforced with titanium carbide
(TiC) particles have been particularly suitable for aircraft, automotive, defense, and other
structural applications due to their excellent mechanical and physical characteristics. TiC
has been widely used due to its superior hardness, low density, good elastic modulus,
wettability with aluminum, and high-temperature stability [12,16–19]. The studies related
to Al7075 as a matrix and TiC particles as reinforcements are illustrated in Table 1.

Table 1. Aluminum-based composites produced by mechanical alloying.

S.No.

Materials
Preparation Technique Major Outcomes References

Matrix Reinforcements
with CONTENTS

1 Al7075 TiC (5%)
Mechanical alloying (MA)
followed by hot pressing

(10 h, 30 h, and 50 h).

Significant improvement
in crystallite size,

accumulations in lattice
strains, and high

mechanical properties.

[6]

2 Al7075 ZrO2 (2%, and 5%)

Mechanical alloying by
three different mills

(planetary, horizontal
attritor, and shaker), 15 h.

Considerable
improvement in crystallite
size and enhancement in

lattice strain.

[20]

3 Al7075 GNP (0, 1, and 2%)

Mechanical alloying in
high energy SPEX mill (for
2.5, 5, and 10 h) followed

by consolidation.

Improvement in particle
size and mechanical

properties (hardness and
strength).

[21]

4 AA6061 TiC (1, 1.5, 2 wt.%) Mechanical alloying with
a milling time of 30 h.

The structural and
mechanical properties

improved.
[16]

5 AA6005 A TiC (1.5, 3, and 6
vol. %)

High energy ball milling
for different milling times,
in the range from 1 to 10 h.

The effect of the milling
process is greater than that

of the reinforcement.
[22]

6 Al7075 TiC (5 %) Turbula mixing Reduction in crystallite
size [23]

7 Al7075 TiC (4 wt.%)
(Turbula mixing + high

energy planetary ball mill)
for 3, 5, and 7 h MA.

Significant improvement
in crystallite size and

accumulation in lattice
strain achieved.

Microhardness improved.

Present study

The synthesis of AMMCs are not only affected by reinforcement-related variables, but
also by the production routes and their associated conditions [24]. To provide a precisely
customized performance for demanding applications, primary emphasis is given to the
systematic synthesis and control of material crystal structure and microstructure. AMMCs
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reinforced with micron and nanoparticles can be synthesized following different routes that
can be divided into two classes, namely solid-state and liquid-state processing. Typically,
solid-state methods include powder metallurgy (PM) processes [1]. PM techniques include
powder processing, where a base metal powder is mixed with reinforcement particles or
fibers by mechanical alloying, the compaction stage, and the final forming stage (sintering,
extrusion) to obtain a bulk composite [25,26]. The ball milling method enables a homoge-
neous mixture to be obtained with a good distribution of reinforced particles in the metal
matrix. This step is particularly significant for microns and nanoparticles due to their
potential to agglomerate [27–30]. During the high energy ball milling (HEBM) process of
different powders, fracture and extreme deformation of the powder particles occur, thus
causing significant microstructural changes such as the reduction in crystallite size, which
results in major grain refinement and accretion of the lattice strain (lattice distortions) of the
Al7075 matrix [31]. This refinement occurs due to the existence of lattice defects, especially
dislocation density within the grains, destruction, and replication of dislocations in the unit
cell to build tiny angle boundaries at a fixed strain level and formation of sub-grains in the
micron and nanometric size range [11]. Milling parameters such as milling time, milling
speed, milling container and atmosphere, type of milling, the ball-to-powder content ratio
(BPR) for ball milling, and operation mode are vital to obtain a minimum feasible grain size
and distribution of reinforcement particles in the matrix [32]. Hence, the correct assessment
of process parameters is essential to ensure that the features of the Turbula-mixed and
ball-milled powder support the consolidation process and strengthen the final character-
istics of the composite materials. During the Turbula mixing, the powders particles are
exposed to drop and impact effect by the Turbula mixer with a mechanism combining
translation, inversion, and rotation motions. This drop impact force moves to the powders
with quick instantaneous strikes, which, in turn, deforms the powders and are reduced
to their size [33]. Thus, combining both schemes, i.e., the Turbula mixing and mechanical
alloying, to produce the composites powder and to see their effects on particles could be
interesting. Some researchers have already studied the combined mixing technique, i.e.,
Turbula mixing and mechanical alloying, for producing composites or alloys [34–36].

In recent years, artificial neural networks (ANN) have evolved as a new branch of
artificial intelligence in computing, and they have been utilized in a variety of engineering
applications [37–39]. An artificial neural network (ANN) is a modeling technique that is
based on the artificial intelligence-supervised learning algorithm. ANN is based on the
neural structure of the human brain, which processes data among several neurons [40,41]
The neuron is the basic unit in ANN. These neurons are associated with one another based
on a weight factor that decides the strength of the interconnections and the influence of
that interconnection on the accompanying neurons. The neural networks can be trained to
perform a specific function by changing the values of the weight factors among the neurons,
either from the data obtained outside the network or in response to the feedback by the
neuron itself. This characteristic feature enables ANN to acquire memory by learning. The
ANN algorithm links neurons in different layers to carry out its functions. Various studies
have been performed on the prediction of the physical and mechanical characteristics of
several composites [41–47].

The research question for the present work is as follows: What are the constitutional
and microstructural changes because of mechanical alloying of Al7075/TiC composites?
How does the milling time affect the crystallite size and lattice strain microhardness of
aluminum-based composites? What are the advantages of using a combined blending
process? Literature studies have indicated that Al alloy-based composites have been
developed by the mechanical alloying (MA) method. Even though the effect of milling
parameters on the mechanical and physical properties of aluminum composites has been
investigated in several studies [48–50]. Also, the comparative study on different kinds of
ball mills for the synthesis of aluminum alloy-based composites has also been studied [20].
In a recent study, the optimization of tribological behavior of powder metallurgy processed
Al7075/SiC composites were conducted by using ANN and ANOVA [51]. However, the



Crystals 2022, 12, 372 4 of 20

combination of two simultaneously blending processes (Turbula mixed + MA) has not
been analyzed for the development of the Al7075/TiC composite powder. Moreover,
the influence of milling time on the powder morphology and crystal structure of milled
Al7075/TiC composite powders is less investigated. The ANN prediction technique was
rarely employed for the prediction of the response of newly mixed composites for different
milling times. Therefore, the main objective of the present work is the development
of the Al7075/4 wt.% TiC composite powder using a two-stage blending process, their
detailed characterizations (particle morphology, the variation of crystallite size and lattice
strain, and the effect of milling time on the crystallite size and lattice strain of the milled
composites powder), and to investigate the effect of milling time on the microhardness
behavior of produced Al7075/4 wt.% TiC composites. Another objective is to develop an
artificial neural network model to correctly predict the crystallite size and lattice strain of
the two-stage mixed composites.

2. Materials and Methods

The methodology steps for the present study are as follows:

• Synthesis of composite powders by dual blending scheme.
• Determination of crystallite size, lattice strain, and their predictions using ANN.
• Microstructural characterizations and analysis of blended composite powders.
• Fabrication of bulk composites and investigations on microhardness behavior.

2.1. Starting Materials

The matrix material Al7075 and reinforcement TiC were utilized for the fabrication of
composite powder. The elemental chemical compositions of matrix Al7075 are expressed in
Table 2. The spherical-shaped Al7075 powder with an average particle size of 15 µm was
purchased from the CNPC Powder Co., Ltd., Shanghai, China.

Table 2. Al7075 alloy compositions.

Elements Si Cr Mn Fe Cu Mg Ai Zn Al

wt.% 0.087 0.185 0.08 0.092 1.56 2.31 0.05 5.72 Bal.

The reinforcement chosen for composite fabrication was titanium carbide (98.8% purity,
with a nominal average particle size of <800 nm, supplied by Nova Scientific Malaysia).

2.2. Blending of Matrix and Reinforcement Powders

The Al alloy-based metal matrix composite (Al7075/4 wt.% TiC) particles were synthe-
sized using the two-stage blending process. In the first stage, the blending of the matrix and
reinforcement powders was performed for 1 h using the Turbula mixer (Willy A. Bachofen
AG, Maschinenfabrik, 16000-000-6223, Switzerland). In the second stage, a planetary mono
ball mill (FRITSCH, Pulverisette, A-1552, Germany) was utilized for the high-energy ball
milling of premixed powders obtained from the first stage. A schematic illustration is
shown for the two-stage mixing process in Figure 1. The stainless-steel balls (10 mm in
diameter and 15.5 g weight) were utilized for mechanical alloying with a ball-to-powder
ratio (BPR) of 10:1, and the rotation speed of the ball mill was maintained at 300 rpm. The
milling of the powders was performed for three different milling time intervals at 3, 5,
and 7 h. Stearic acid (2 wt.%) was used as the process controlling agent (PCA) during the
milling process to prevent any unnecessary cold welding of the particles among themselves
or on the inner surface of the mixer wall and to inhibit agglomeration [8,17,52].
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Figure 1. Schematic illustration of the novel two-stage blending process for homogeneous mixing of
the matrix and reinforcement powders.

To prevent major temperature increases, 10 min of milling was alternated with 10 min
of cooling [16]. The milled powder samples obtained at different time intervals were dried
at 70 ◦C for 12 h in a vacuum drying oven for microstructural characterization.

2.3. Microhardness Measurement and Microstructural Characterization

The microhardness measurement for all the sintered composites was completed by
using a Vickers hardness tester (Leco LM 247 AT, Saint Joseph, MO, USA). The standard
test method (ASTM E92-82) was followed for the measurement of microhardness. The
test was conducted at ambient temperature, and the indentation load was kept at 500 gf
with a dwell time of 15 s. At least five microhardness readings were recorded at different
locations of each test specimen, and average values were taken into consideration. The
characterization of reinforcement TiC powder and the composite samples for different
milling times were also performed using a transmission electron microscope (Philips/FEI
Tecnai F30, Hillsboro, OR, USA) operated at 300 kV

2.4. Crystal Structure Analysis

The crystallite size was calculated from the widening of the XRD reflection peak.
Scherrer’s formula is the simplest way of measuring the size of the crystallite, and it
can only be used if the materials are not strained [53]. Thus, the X-ray line widening
analysis is utilized to describe the microstructure of mechanically alloyed powders in
terms of lattice strain and crystallite size. Crystal structures, crystallite sizes, and lattice
strains of the as-received powders, and the obtained Al7075/4 wt.% TiC composites, were
evaluated by X-ray diffraction (XRD) using a D8 ADVANCE diffractometer (Bruker AXS
Inc., Fitchburg, WI, USA) with a Cu K alpha radiation source (lambda = 0.15406 nm),
operating at 45 kV/40 mA. The scanning range was 2θ = 10–80◦, with a step width of 0.01
and 0.02◦ per step as collecting time. The Bragg angles, 2θ, and the interplanar spacing
(d-spacing) corresponding to the detected peaks were compared with the standard values
from the International Centre for Diffraction Data’s Powder Diffraction File (ICSD-53774I).
The position of the peaks 2θ, its intensity hkl, and the full width at half maximum (FWHM)
of the height of the peak was determined using High score Plus software. Using Scherer’s
equation, the crystallite size (D) was estimated from the broadening of diffraction planes
(111), (200), (220), and (311) for the Al7075 sample mentioned in Equation 1. This equation
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has been utilized in previous studies [50,54]. Using the following relation, the instrumental
broadening (β) corresponding to each diffraction peak was adjusted [55].

β =
√

β2
observed − β2

instrumental (1)

Peak broadening analysis utilizing the Scherrer equation was used to compute the
average crystallite size.

D =
kλ

β cos θ
(2)

where D = Crystallite size in nm, β = FWHM, k = 0.9, X-ray wavelength (λ) = 0.15406 nm,
and θ is the peak position in radians.

Additionally, the lattice strain (ε) induced in powders due to imperfections in crystal
and distortion was evaluated using the formula as represented in Equation (2) [50,56]
as follows:

ε =
β

4tan θ
(3)

2.5. Architecture of the Neural Network

For the development of the ANN model, the following steps were performed in
sequence: (1) experimental data collection, (2) division of the data obtained from training,
testing, and validation datasets, (3) creation of the network for the chosen parameters,
(4) configuration of the network by selecting the number of hidden layers and the desired
training, transfer, and necessary learning functions, and (5) training of the ANN model to
acquire the MSE target by providing the required parameters. If the trials led to failure, the
number of neurons of the hidden layers or weights was modified, and the network was
regenerated to continue the cycle until the desired objective was achieved. Figure 2 depicts
the flow chart of the ANN model framework developed to predict the crystallite size and
lattice strain of the composites. The parameters for artificial neural network activity used in
this study are provided in Table 3. To date, the most widely implemented neural network
proposed in various studies is the multilayered neural network (MLP) [57,58]. To train a
multilayered feed-forward network with multiple transfer functions for approximation,
pattern identification, and pattern recognition, backpropagation learning algorithms are
employed. The term backpropagation refers to the mechanism by which network error
derivatives can be computed for network weights and biases. The ANN backpropagation
consists of three stages: (a) feed forwarding of input data training patterns, (b) estimation
and backpropagation of corresponding error, and (c) modification of weights.

Figure 3 depicts the architecture of the multi-layer perceptron (MLP) neural network
utilized for the training and modeling of mechanical alloying process parameters for the
fabrication of Al7075/TiC composites.

Table 3. Multilayer perceptron training and architecture parameters for this study.

Network Parameters Values/Types

Configuration of networks 2-10-2
Neurons number in the layers Input: 2, hidden: 10, output: 2

Hidden and output layer activation functions Logsig (sigmoid)
Learning rules for training parameters Backpropagation

Number of Epochs 1000
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Figure 3a was derived from the MATLAB 2020b software (Mathworks®, New York,
NY, USA), while Figure 3b represents the schematic details of the 2-10-2 MLP. The ANN ar-
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chitecture 2-10-2 MLP is a three-layer network; the input and output layers have two nodes,
while the hidden layer consists of 10 nodes. The outcomes of the neural network represent
the features of the Al7075-TiC composites, namely the crystallite size and lattice strain.

3. Results and Discussion
3.1. Morphology of Received Powders

The morphological evaluation provides information on the size of the particles and the
distribution of the reinforcement particles. Figure 4a,b depicts the SEM micrographs of the
Al7075 and TiC powder, respectively. As observed from Figure 4a, the matrix aluminum
alloy particles were spherical with varying particles sizes. The SEM morphology of the
TiC particles revealed to be irregular and sharp-edged (Figure 4b). Figure 4c depicts the
TEM morphology of the TIC particles. The particle size of the matrix and reinforcements
was analyzed by particle size analysis, and the mean size obtained for matrix Al alloy was
15 µm with a standard deviation of 3.2 µm, whereas the TiC particles were approximately
800 nm with a standard deviation of 15.4 nm.
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3.2. SEM Characterization of Composites

The Al7075 and TiC powders were mixed at various predefined milling times to obtain
a uniform distribution of filler particles within the matrix. The SEM micrographs reflect
the improvements in the morphology of the powders with milling time (Figures 5 and 6).
It was observed that the powder size decreased with the increase in milling time. The
morphologies of 3, 5, and 7 h-mixed Al7075-TiC nanocomposite powders are represented
in Figures 5 and 6, in which the structure and size of Al7075 particles were shown to
improve with milling time. As observed from Figure 5a,b, the Al matrix for 3-h ball milling
was deformed during the early milling phase (3 h), and hard reinforcement particles
were fractured due to extreme plastic deformation. Additionally, the TiC particles were
agglomerated around the particles of Al7075 and distributed randomly.
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However, when the milling time increased to 5 h, the composite particle size reduced,
as observed in Figure 6a, and is due to friction-erosion of the Al7075 particles against the
hard TiC particles. The few welded particles became fractured with a further rise in the
milling period to 7 h, with both cold welding and fracturing occurring concurrently at this
milling time. Hence, a mixed form of morphology with improved composite particle size
was obtained as shown in Figure 6b. The particles appeared in a more equiaxed fashion,
as previously observed in higher magnification images of another study [58]. As the
brittle particles become distributed in a ductile matrix, the presence of hard reinforcement
ceramic particles in the Al matrix composites falls into the category of a ductile-brittle
component system. Thus, the ductile particles undergo deformation in the first stage of
MM, while brittle particles may undergo fragmentation [22]. During the ball collision, the
brittle particles among two or more ductile particles appeared as ductile particles begin to
weld. Consequently, reinforcement particles would be positioned inside the welded metal
particles (interfacial boundaries), resulting in the creation of an actual composite particle.

The EDS evaluation analysis of 5-h milled Al7075 + 4 wt.% TiC (Figure 7) confirmed
that no contamination was induced into the composite powders throughout the milling
process. Figure 8 revealed that the Al, Ti, C, Cu, Zn, and Mg peaks were the clear peaks in
the selected spectrum 1. No additional peaks (Fe, Cr, Mn, or Ai) associated with AL7075
were detected due to their lower contents (below 0.2 wt.%). The EDS analysis demonstrated
that, during the milling process, the powders were not contaminated. The inset image
shows the deformed structure of the composite powders.
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3.3. TEM Morphology of Composite Powder

The TEM morphology of TiC particles is depicted in Figure 4c, and the obtained
morphology is in line with the existing literature of the received TiC particles TEM mor-
phology [6,22]. The TEM micrographs of ball-milled Al7075/4 wt.% TiC powder for chosen
milling time is illustrated in Figure 8. By increasing the milling time, TiC particle disper-
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sion inside the Al7075 matrix is improved. As depicted in Figure 8a, TiC particles are
nonuniformly distributed on the surface of the matrix Al7075 after 3 h milling. However,
there was a slight improvement in the distribution for 5-h ball-milled composite powder
(Figure 8b). It was observed that the TiC particles were consistently reinforced with milling
time in the Al7075 matrix. The TEM morphology is in line with existing literature on the
TiC-reinforced Al alloy composites [16]. Figure 8c illustrates the uniform distribution of the
TiC particles, as achieved after 7 h of milling. This attributes to the good bonding between
the Al7075 and TiC particles and a good cohesiveness of the Al-TiC interface. It is also
reported in the literature that the distance between the particles declines with an increasing
milling time [59,60]. The crystallite size of composite powder was determined using the
Image J software and found to be in the range of 20–50 nm, consistent with the results
obtained by the Scherrer equation. Similar TEM morphology was attained by Supriya B
et al. for Al7075-TiO2 20-h milled composites [31].

3.4. Particle Size of Composites as a Function of Milling Time

The mean particle size of composite powder for various milling times was calculated
using particle size analysis and is depicted in Figure 9.
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Figure 9. Effect of milling time on the size of particles determined by particle size analysis.

It was observed that, during the milling process, a decrease in particle size was
observed with an increment in milling time from 3 h to 7 h. This observation is consistent
with a previous study [58]. Although the milling time was limited to 7 h in this study, a
critical stage may be reached using a prolonged milling time, as particles start to form a
bigger cluster due to coalescence [61].

3.5. X-ray Diffraction (XRD) of the Received Powders

The XRD peak patterns of received pure aluminum alloy Al7075 and particles of TiC
powders are depicted in Figures 10 and 11, respectively. As shown in Figure 10, the four major
peaks of the Al matrix, (111), (200), (220), and (311), were recognized as Al with crystalline
structure FCC and lattice parameters of a = b = c = 0.4050 nm, α = β = γ = 90◦. The diffraction
angles of the major peaks of Al7075 were 38.46◦, 44.70◦, 65.05◦, and 78.14◦, respectively.
The XRD results for Al are consistent with the findings from other studies [46,62–64].
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The major peaks of TiC were identified as (111), (200), (220), (311), and (222) at
diffraction angles of 35.96◦, 41.76◦, 60.51◦, 72.49◦, and 76.20◦, respectively, for different
TiC phases in the TiC powder (Figure 12). These results are in agreement with previous
studies [16,22].

3.6. X-ray Diffraction (XRD) of the Composite Powders

Figure 12 demonstrates the XRD patterns of synthesized Al7075/4 wt.% TiC composite
powders at different milling times. The planes (111), (200), (220), and (311) were identified
as the peaks of Al particles. Peaks for constituent elements (Mg, Cu, Fe, Cr, and Mn)
of the Al7075 alloy were not detectable in the XRD pattern due to their low volume
concentration [16]. It was expected that these elements would have dispersed in the Al
lattice. It was also observed that only Al and TiC phases were present, thus indicating that
the synthesized powder was free from contamination.
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It was also observed from Figure 12 that the peak intensities were reduced due to
the structural improvement resulting from the increment in milling time. A similar XRD
pattern for Al-TiC composites was obtained by Azimi A et al. [6], for varying milling
times. Additionally, the peak width of Al increased, as depicted in the inset figure. An
inset of Figure 12 shows the main peak of the Al7075 matrix. The intensity reduction
and peak broadening in the X-ray diffractograms reflect a decrease in crystallite size and
accumulation of lattice strain, as can be observed from the inset of Figure 12, which is in
good accord with the crystallite size data provided before [20]. It is also worth mentioning
that the collision among composite particles on the walls of the ball mill impacts the
crystallite structure of the particles.

3.7. Effect of Milling Time on the Microhardness Behavior

The combined effect of dual nature mixing time (Turbula mixing + ball milling) on the
microhardness behavior was investigated for all produced composites. It was observed
that the microhardness values of all synthesized composites were higher than the Al7075
matrix (Figure 13). The microhardness value for sintered Al7075 sample (C0) was observed
as 62.8 HV0.5. The microhardness obtained for 1 h of the Turbula mixed sintered Al7075 +
4 wt.% TiC composite sample (C1) was observed as 67.4 HV0.5, which further improved to
76.0 HV0.5 after 3 h of ball milling of composite powder sample (sample C2). The 28.18%
increment in microhardness value was observed for sample C3 (after 5 h of milling). The
highest increment in the microhardness was observed as 38.4 % at 7 h of milling for sample
C4. The results are in resemblance with previous studies [1,47]. It is observed from the
above results that a reduction in crystallite size of the composites can be considered as
one of the governing factors in the improvement of the microhardness of the Al7075/4
wt.% TiC composites. The reduction in composite crystallite sizes is achieved due to the
increasing mixing time. Thus, the microhardness improvement of composite samples can
also be attributed to multiple phenomena such as (i) grain refinement of the matrix Al7075
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(Hall–Petch strengthening), (ii) obstacles by TiC particles during dislocations movement,
and (iii) uniform distribution of TiC particles in the Al7075 matrix.
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3.8. ANN Modeling Results

The outcome predictability of the ANN simulation was calculated using mean square
error (MSE). Figure 14 demonstrates the comparison between the training, validation,
test, and combined datasets of real and predicted values. The precision of the model is
indicated by the overall curve of performance, which is based on the correlation between
the experimental and predicted results.
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The determination of coefficient (R) for the trained model was close to 1 (R = 0.99998),
as depicted in Figure 14, thus indicating the successful training of the model. The regression
coefficient (R), which reflects the output-target relationship, displayed an overall value of
0.99986, which was closer to 1 and signified better results. The estimated ANN values were
similar to the experimental results, thus indicating a slight difference in error. Therefore,
the established model can be used reliably to predict the crystallite size and lattice strain
of the Al/TiC composites. Similar studies also support the effectiveness of developed
ANN models for optimization of the mechanical alloying process for producing composite
powder and for prediction of mechanical properties [57,65].

The mean square error (MSE) convergence during the ANN model training is depicted
in Figure 15. The best validation performance was determined based on MSE during the
training, where MSE convergence with a saturation value of 1.2667 × 10−3 at the 100th
epoch was obtained. The best network displayed a minimum mean square error as well as
a greater correlation with the experimental outcome.
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The comparison of the ANN-predicted crystallite size and experimental values are
demonstrated in Figure 16. It was observed that the crystallite size predicted by the ANN
model was better than experimental values. Hence, the ANN model is more appropriate
for the study of the interacting variables and predictions over experimental measurements.
It was found that the crystallite size of the combined blended sample (C4) with a milling
time of 7 h had the least crystallite size.

Figure 17 illustrates the comparison of the response lattice strain for experimental
and ANN-predicted values. The ANN-predicted lattice strain showed significantly higher
values as compared to the experimental values, as observed from Figure 17. Thus, the ANN
model was consistent with the experimental results.

A comparison of the experimental and ANN-predicted data for the three best pre-
diction models has been analyzed by comparing the statistical errors (mean absolute
percentage error “MAPE” and root mean square error “RMSE”), as illustrated in Table 4.
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Table 4. MAPE and RMSE values for the three best prediction models.

Error Prediction Crystallite Size Lattice Strain

RMSE 3.34 3.45
MAPE 2.84 1.45

4. Conclusions and Future Scope

In this study, aluminum-based composites Al7075/4 wt.% TiC were synthesized using
a two-stage blending process (Turbula mixing and ball milling). The synthesized composite
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powders were characterized by XRD, SEM, EDS, and TEM techniques. The effect of milling
time on the crystallite size and lattice strain was investigated. Additionally, an ANN-
based model was developed to predict the crystallite size and lattice strain of the blended
composite powders. The key conclusions of this study are as follows:

• The two-stage blending of composite powders resulted in good incorporation and
uniform dispersion of TiC particle reinforcement in the Al7075 powder matrix. The
SEM and TEM micrographs of the synthesized composite powders confirm the homo-
geneous distribution of reinforcement into the matrix.

• Al7075-TiC composite powder XRD patterns have been verified since there were no
intermetallic compounds, even after 7 h of ball milling. With this milling period (i.e.,
7 h), the decrement in AL7075 peaks indicates its dissolution in reinforcement TiC,
thus causing lattice distortion that results in peaks expanding and shifting.

• With an increase in milling time, a decrease in average crystallite size is achieved,
and the minimum crystallite size of 12.7 nm is attained for all composites at 7 h of
milling time. Lattice strain increased significantly with milling time; the maximum
value achieved at 7 h was 0.1534 %.

• Rising milling time gradually (from 3 h to 7 h) activated the deformation hardening
mechanism and consequently resulted in an improvement in the microhardness values
of the synthesized composites. The results of microhardness measurements revealed
that the highest increment in the microhardness of synthesized composites was ob-
served as 38.4 % at 7 h of milling for sample C4. The microhardness of the composite
samples was higher as compared to the unreinforced Al7075 matrix. Thus, increasing
ball milling is beneficial for the homogeneous dispersion of TiC particles within the
Al7075 matrix.

• A backpropagation-based ANN model was developed to predict the crystallite size
and lattice strain of the synthesized composites. The ANN model results are in good
agreement with the experimental results. Moreover, the developed ANN model
can be used as a tool in predicting composite lattice parameters and other related
properties. Thus, the ANN is an effective method for estimating the lattice parameters
of Al7075–TiC composites produced by the mechanical alloying method.

• The limitation of the present work is the small range of milling time and limited charac-
teristics (crystallite size, lattice strain, and microhardness behavior) studies. However,
the effect of different process variables viz., sintering temperature, compaction pres-
sure, and dwell time on the physical, mechanical, and tribological characteristics
of powder metallurgy processed Al7075/TiC composites can be investigated and
predicted by some other machine learning techniques. It is also recommended to
extend the present study by increasing the milling time with same experimental
boundary conditions.
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