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Abstract: A novel Ag(I) citrate complex with ethyl-3-quinolate (Et3qu) was synthesized. Its structure
was confirmed using X-ray single crystal to be [Ag(Et3qu)2(citrate)]. It crystallized in the Triclinic
crystal system and P-1 space group with unit cell parameters of a = 8.6475(2) Å, b = 11.4426(3) Å,
c = 15.2256(3) Å, α = 73.636(2)◦, β = 79.692(2)◦ and γ = 86.832(2)◦, while the unit cell volume was
1422.19(6) Å3. In the unit cell, there are two [Ag(Et3qu)2(citrate)] molecules and one unit as the asym-
metric formula. The molecular structure comprised one Ag(I) coordinated with two Et3qu molecules
via two almost equidistant Ag-N bonds and one citrate ion acting as a mono-negative monodentate
ligand via a short Ag-O bond (2.5401(14) Å). Hence, Ag(I) is tri-coordinated and has a highly distorted
triangular planar coordination geometry which is more like to be described as a slightly distorted
T-shape. The supramolecular structure of the [Ag(Et3qu)2(citrate)] complex was analyzed using Hir-
shfeld calculations. The H···H (39.3–40.1%), O···H (33.2-34.0%), C···C (9.1–9.5%) and C···H (7.2–7.4%)
contacts shared significantly in the packing of the studied Ag(I) complex. The antimicrobial and
anticancer activities of the Ag(I) complex were investigated. The [Ag(Et3qu)2(citrate)] complex has
broad-spectrum antimicrobial activity specifically against the fungus A. fumigatus. In addition, the
IC50 values of 1.87 ± 0.09 µg/mL and 0.95 ± 0.06 µg/mL against the breast MCF-7 and lung A-549
cell lines, respectively, revealed the potent anticancer activity of the [Ag(Et3qu)2(citrate)] complex
compared to the free Et3qu (IC50 = 30.64 ± 1.98 and 22.89 ± 1.48 µg/mL, respectively).

Keywords: Hirshfeld; X-ray; antimicrobial; anticancer; Ag/quinoline/citrate complex

1. Introduction

Silver(I) complexes have gotten a lot of attention because of their pharmacological
and biological characteristics, which makes them promising antibacterial and antifungal
agents [1–4]. Cisplatin, as well as its derivatives, has been the most widely applied metal-
based drug in cancer treatment. Their mechanisms of action are recognized by their
interactions with DNA. However, their use is restricted due to potential side effects, toxicity,
and acquired drug resistance [5,6]. To avoid the drawbacks of cisplatin, researchers have
looked into a new class of metal-based drugs that are less poisonous and more efficient
in chemotherapy for inhibiting the growth of human tumor cell lines, as well as harmful
microbes. In recent decades, Ag(I) has also gained popularity as an anticancer therapeutic.
A set of literature reviews discussed silver(I) complexes with various types of ligands,
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including amino acids, nitrogen, carboxylic acids, sulfur or phosphorus donor ligands, that
have specific effects against a range of various tumor cells [7–9].

Numerous silver(I) complexes, especially those containing N-heterocyclic ligands,
have demonstrated great cytotoxicity against a variety of mammalian cancer cells [10]. The
development of new, simple, inexpensive and safe silver complexes containing bioactive
ligands is a needed target from researchers. In order to improve and gain better biological
drugs, mixed ligands have been applied in the coordination process with Ag(I) ions. In
general, mixed-ligand complexes have demonstrated greater biological properties than
the corresponding mono-ligand complexes. Since these complexes have so many func-
tional groups and binding sites, they can be used in a variety of ways in drugs and the
pharmaceutical industry. In addition, mixed-ligand complexes provide a better understand-
ing of biological systems in which mixed chelation is the most common type of bonding.
Furthermore, different ligand combinations will produce a wide range of physical and
chemical features [11,12]. The study of silver(I) carboxylates is yet another important con-
tributor to the development of new medications [13–15]. Silver citrate in combination with
N-heterocycles is thought to be very appealing for future therapeutic, biomedical or phar-
maceutical applications. According to a review of the literature, these complexes are likely
to act synergistically as enhancers of antimicrobial activity, antioxidants and anticancer
agents [16–19]. As a result, we are interested in synthesizing a new Ag(I) complex with
mixed bioactive ligands, ethyl-3-quinolate and citric acid (Figure 1), in search of a more
effective multipurpose compound that can be used as both an anticancer and antimicrobial
agent. This study presents the synthesis and X-ray crystal structure of a novel Ag(I) citrate
complex. Additionally, the antimicrobial and anticancer activities of the Ag(I) complex
were investigated.

Figure 1. Structures of the studied ligands.

2. Materials and Methods
2.1. Physicochemical Characterizations

Chemicals used were purchased from Sigma-Aldrich. The FTIR analysis was per-
formed at 4000–400 cm−1 in KBr pellets by Bruker Tensor 37 FTIR equipment, Waltham,
MA, USA. A Perkin Elmer 2400 Elemental Analyzer was utilized to perform the CHN
analysis (PerkinElmer, Inc., 940 Winter Street, Waltham, MA, USA). A Shimadzu atomic
absorption spectrophotometer (AA-7000 series, Shimadzu, Ltd., Kyoto, Japan) was used to
measure the Ag content.

2.2. Synthesis of [Ag(Et3qu)2(citrate)]

Silver citrate can be properly synthesized by the method mentioned in the litera-
ture [16]. Since it has a limited solubility in water [16], silver citrate (299 mg, 1 mmol) was
dissolved in a 5-mL aqueous solution of citric acid (20 mg, 0.1 mmol), then mixed with two
equivalents of ethyl quinoline-3-carboxylate (402 mg, 2 mmol) in 10 mL of ethanol. The
mixture was stirred for few minutes while it warmed. The solution was filtered, and the
clear filtrate was kept at room temperature. After one week, colorless crystals suitable for
X-ray diffraction were isolated and air dried.

[Ag(Et3qu)2(citrate)]: Yield: 86%; Anal. Calc. C30H29AgN2O11: C, 51.37; H, 4.17; N,
3.99; Ag, 15.38%. Found: C, 51.22; H, 4.21; N, 3.25; Ag, 15.41%. FTIR cm−1: 3429, 3059, 2990,
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1718, 1617, 1597, 1577, 1528, 1503, 1373, 1338, 1290, 1243, 1199, 1020, 790, 585, 524, 492, 442
(Figure S1, Supplementary Data). Ligand (Et3qu): 3046, 2978, 1711, 1617, 1569, 1423, 1373,
1294, 1245, 1197, 1097, 1018, 973, 477 (Figure S2, Supplementary Data).

2.3. Biological Studies

The antimicrobial [20] and anticancer [21] activities of Et3qu and its Ag(I) complex
were determined as described in Methods S1 and S2 (Supplementary Data).

2.4. Crystal Structure Determination

The crystal structure measurements and solution details of [Ag(Et3qu)2(citrate)] are
depicted in the Supplementary Data [22–25]. The crystallographic details are summarized
in Table 1. The topology analyses were performed using the Crystal Explorer 17.5 pro-
gram [26].

Table 1. Crystal data of [Ag(Et3qu)2(citrate)].

CCDC 2151811
empirical formula C30H29AgN2O11
fw 701.42
temp (K) 120(2) K
λ (Å) 1.54184 Å
crystal system Triclinic
space group P-1
a (Å) a = 8.6475(2) Å
b (Å) b = 11.4426(3) Å
c (Å) c = 15.2256(3) Å
α (deg) 73.636(2)◦

β (deg) 79.692(2)◦

γ (deg) 86.832(2)◦

V (Å3) 1422.19(6) Å3

Z 2
ρcalc (Mg/m3) 1.638 Mg/m3

µ (Mo Kα) (mm−1) 6.273 mm−1

No. reflns 39671
Unique reflns 5968
Completeness to θ = 67.684◦ 99.9%
GOOF (F2) 1.068
Rint 0.0295
R1 a (I ≥ 2σ) 0.0236
wR2

b (I ≥ 2σ) 0.0597
a R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = {Σ[w(Fo

2 − Fc
2)2]/Σ[w(Fo

2)2]}1/2.

3. Results and Discussion
3.1. Crystal Structure Description

The structure of the [Ag(Et3qu)2(citrate)] complex was unambiguously determined
using an X-ray single crystal structure. The structure of the asymmetric unit is presented in
Figure 2. This silver(I) complex crystallized in the Triclinic crystal system and P-1 space
group. The unit cell parameters are a = 8.6475(2) Å, b = 11.4426(3) Å, c = 15.2256(3) Å,
α = 73.636(2)◦, β= 79.692(2)◦ and γ = 86.832(2)◦. The unit cell volume is 1422.19(6) Å3,
and the number of molecules per unit cell is two. The structure comprised disorder at the
ethyl groups of the ester group in both Et3qu ligand units. Such a situation led to some
different orientations for the conformation of the ethyl groups in the coordinated Et3qu, as
shown in the lower part of Figure 2. Furthermore, the Ag(I) is coordinated with two Et3qu
molecules as monodentate ligands, where both Et3qu units are located syn to one another.
The two Ag-N bond distances differ marginally from each other, where the Ag1-N1 and
Ag1-N2 distances are 2.1818(14) and 2.1848(14) Å, respectively. In addition, the Ag(I) is
coordinated with one oxygen atom from the central carboxylate group of the citrate anion
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with a Ag1-O6 bond distance of 2.5401(14) Å. The Ag-N distances are comparable with
those found in the structurally related Ag(I) complexes with quinoline-type ligands [27].
For example, the Ag-N distances in [Ag(6-quinolinecarboxylic acid)2]NO3 are found to
be 2.1597(15) and 2.1680(15) Å, respectively. The Ag-O distances showed wide variations
depending on the structure of the organic ligand [27]. The N1-Ag1-N2 angle is found bent
(169.29(5)◦), possibly due to the presence of some steric hindering between the bulky Et3qu
ligand units and the coordinated citrate anion. The Ag1···O5 distance is significantly long
(2.907(1) Å). Hence, the citrate anion is acting as a monodentate ligand via O6 as a donor
atom. On the other hand, the N2-Ag1-O6 and N1-Ag1-O6 angles are 90.53(5) and 99.90(5)◦,
respectively (Table 2). As a result, the coordination environment could be described as a
slightly distorted T-shape where the torsion angles C9N1Ag1O6 and C21N1Ag1O6 are
2.81 and 2.85◦, respectively. Additionally, the distances between the mean planes of the
two quinoline rings and the central Ag atom are only 0.806 and 0.403 Å for the quinoline
rings of lower and higher atom numbering, respectively. These results indicate an almost
planar AgN2O coordination sphere. In the literature, the T-shaped coinage metal complexes
are well-known, but such an arrangement of donor atoms around the metal ion is still
uncommon [28–31]. For example, the di-nuclear [Ag(methylnicotinate)2(ClO4)]2 comprised
a tri-coordinated Ag(I) with a T-shaped coordination environment [31]. In this complex,
the Ag–N and Ag–O distances are 2.158(2) and 2.752 (3) Å, respectively, while the N–Ag–N
and N–Ag–O angles are 171.26(9) and 92.76(9)–89.70(9)◦, respectively.

Figure 2. Crystal structure of the [Ag(Et3qu)2(citrate)] complex. The structure showed some disorder
at the ethyl groups of the ester moieties in the coordinated Et3qu ligand units.
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Table 2. Bond lengths (Å) and angles (◦) for the [Ag(Et3qu)2(citrate)] complex.

Bond Distance Bonds Angle

Ag(1)-N(2) 2.1818(14) N(2)-Ag(1)-N(1) 169.29(5)
Ag(1)-N(1) 2.1848(14) N(2)-Ag(1)-O(6) 90.53(5)
Ag(1)-O(6) 2.5401(14) N(1)-Ag(1)-O(6) 99.90(5)

The structure of the [Ag(Et3qu)2(citrate)] complex was found to be stabilized by three
intramolecular H···O contacts, where the two C21-H21···O6 and O7-H7···O5 interactions
are common in the two disordered parts shown in Figure 2. The donor–acceptor distances of
these interactions are 3.151(2) and 2.593(2) Å, respectively. Additionally, part B comprised
another intramolecular interaction (C24B-H24E···O10), with a donor–acceptor distance of
3.352(6) Å. The different intramolecular and intermolecular H···O interactions present in
the structure of the [Ag(Et3qu)2(citrate)] complex are depicted in the left part of Figure 3,
while the right part of the same figure presents the packing view of the complex unit via
O10-H10···O8 and O10-H10···O8B intermolecular interactions found in parts A and B,
respectively. The donor–acceptor distances of these hydrogen-bonding interactions are
2.798(18) and 2.569(7) Å, respectively (Table 3).

Figure 3. Hydrogen bond contacts (left), and view of the hydrogen bond packing scheme (right) of
part A (upper).

Table 3. Hydrogen bond parameters (Å, ◦) in the [Ag(Et3qu)2(citrate)] complex.

D-H···A d(D-H) d(H···A) d(D···A) <(D-H···A)

C(21)-H(21) ···O(6) 0.95 2.39 3.151(2) 137
O(10)-H(10) ···O(8B) #1 0.75(3) 2.10(4) 2.798(18) 155(3)
O(10)-H(10) ···O(8) #1 0.75(3) 1.83(4) 2.569(7) 170(4)

C(24B)-H(24E) ···O(10) 0.98 2.44 3.352(6) 155.3
O(7)-H(7) ···O(5) 0.77(3) 2.05(3) 2.593(2) 127(3)
O(9)-H(9)-O(6) 0.78(4) 1.72(4) 2.499(2) 176(4)

#1 x + 1, y, z.
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In addition, there are two significant π–π stacking interactions between the two
quinoline rings (Figure 4). The shortest C14···C18 contact distance is 3.384 Å, and the
centroid C18C19C20C21N2C13-to-centroid C13C14C15C16C17C18 distance is 3.659 Å.

Figure 4. The π–π stacking interactions in the [Ag(Et3qu)2(citrate)] complex.

3.2. Analysis of Molecular Packing

The Hirshfeld analysis of the two complex parts A and B was used to calculate the per-
centages of all intermolecular interactions in the crystal structure of the [Ag(Et3qu)2(citrate)]
complex. The results are depicted in Table 4 and presented in Figure 5. The results in-
dicated that the intermolecular interactions in parts A and B are almost the same. The
most dominant contacts are the H···H (39.3–40.1%) and O···H (33.2–34.0%) interactions.
Additionally, the C···C and C···H contacts shared significantly in the packing of the studied
Ag(I) complex. Their percentages are 9.1–9.5% and 7.2–7.4%, respectively.

Additionally, the analysis of shape index revealed the presence of red/blue triangles,
and the curvedness map showed the flat green area corresponding to the regions included
in the π–π stacking interactions (Figure 6). Additionally, the decomposed fingerprint
plot with a characteristic peak for short-distance contacts is considered as evidence of the
presence of π–π stacking interactions.

Table 4. The percentages of all contacts in the [Ag(Et3qu)2(citrate)] complex.

Contact A B

Ag···Ag 0.2 0.2
Ag···N 0.4 0.3
Ag···C 0.3 0.4
Ag···H 2.0 2.0
O···O 0.5 0.5
C···O 2.9 3.5
O···H 33.2 34.0
N···N 0.4 0.4
C···N 1.9 1.9
N···H 1.2 1.2
C···C 9.5 9.1
C···H 7.4 7.2
H···H 40.1 39.3



Crystals 2022, 12, 356 7 of 11

Figure 5. Distribution of the intermolecular interactions in the [Ag(Et3qu)2(citrate)] complex. A and
B refer to the disorded parts of the [Ag(Et3qu)2(citrate)] complex.

Figure 6. Evidence from the Hirshfeld surfaces on the π–π stacking interactions in the
[Ag(Et3qu)2(citrate)] complex.

3.3. FTIR Spectra

The free ligand, Et3qu, exhibits three major absorption bands in its IR spectrum
(Figure S2, Supplementary Data). The band at 1710 cm−1 is attributed to the stretching
vibration of the C=O of the ester group, while the bands at 1617 and 1568 cm−1 correspond
to the ν(C=C) and ν(C=N) stretching modes of the quinoline ring, respectively. In the
Ag(I) complex, the corresponding values for ν(C=O), ν(C=C) and ν(C=N) are 1718, 1617
and 1577 cm−1, respectively (Figure S1, Supplementary Data). The observable shift in
the position and shape of the ν(C=N) band in [Ag(Et3qu)2(citrate)] indicates its direct
coordination to the silver center. The noticeable change in the intensity of ν(C=O) of the
mixed-ligand complex compared to the free ligand is attributed to the carbonyl group of
the coordinated ethyl-3-quinolate and that of citric acid. In addition, the appearance of
two new bands in the range 1335–1375 and 1597 cm−1 in the spectrum of the complex
can be assigned to the symmetric and asymmetric stretching vibrations of the COO−

group, respectively, indicating a monodentate mode of the citrate group around the Ag(I)
ion [32,33]. Finally, some new moderate-intensity IR bands are observed in the complex
spectrum in the regions 480–570 and 400–460 cm−1. These bands can be assigned to the
vibrational modes of Ag–O and Ag–N bonds, respectively [34].

3.4. Antimicrobial Studies

The antimicrobial activity of Et3qu and its [Ag(Et3qu)2(citrate)] complex were deter-
mined. The sizes of the inhibition zones for the two compounds at 10 mg/mL against
different microbes are listed in Table 5. The free ligand showed good antifungal activity
against A. fumigatus and C. albicans. The inhibition zone diameters were determined to be
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30 and 19 mm, respectively. Additionally, the Et3qu ligand and the [Ag(Et3qu)2(citrate)]
complex have similar results against A. fumigatus (30 mm), but the Ag(I) complex is less
active against the fungus C. albicans (15 mm). On the other hand, the [Ag(Et3qu)2(citrate)]
complex has good activity against the Gram-positive bacteria S. aureus (13 mm) and B.
subtilis (12 mm), while the free Et3qu showed no activity at the applied concentration
against these microbes. On the other hand, Et3qu and its [Ag(Et3qu)2(citrate)] showed
good activity against E. coli and P. vulgaris as Gram-negative bacteria. Both compounds
have the same size of inhibition zones for E. coli (12 mm) while the Ag(I) complex has a
larger-size inhibition zone (18 mm) against P. vulgaris than the free Et3qu (12 mm). In com-
parison with Ketoconazole as a standard antifungal agent, Et3qu and [Ag(Et3qu)2(citrate)]
have better activity against A. fumigatus. Regarding the antibacterial activity, the Ag(I)
complex has lower sizes of inhibition zones than the standard Gentamycin. The lower an-
tibacterial activity of the [Ag(Et3qu)2(citrate)] complex compared to Gentamycin indicated
that the Ag(I) complex has broad-spectrum action against both bacteria and fungi, and the
MICs results revealed these observations very well. The best MIC results were for both
compounds against A. fumigatus, where the Ag(I) complex had lower MIC value and better
activity than the free Et3qu and the standard Ketoconazole as well. It was believed that
the biological action of Ag(I) complexes depends on the ease of Ag(I) release to biological
fluids. In this regard, silver complexes comprising the relatively weak Ag-N and Ag-O
bonds [35] are desirable as antimicrobial agents [36–38].

Table 5. Inhibition zone diameters (mm) and MIC (µg/mL) values for Et3qu and its [Ag(Et3qu)2(citrate)]
complex a.

Microbe Et3qu [Ag(Et3qu)2(citrate)] Control

A. fumigatus 30 (9.7) 30 (4.8) 17 (156.25) b

C. albicans 19 (312.5) 15 (312.5) 20 (312.5) b

S. aureus NA (NA) d 13 (1250) 24 (9.7) c

B. subtilis NA(NA) d 12 (625) 26 (4.8) c

E. coli 12 (2500) 12 (1250) 30 (4.8) c

P. vulgaris 12 (2500) 18 (1250) 25 (4.8) c

a MIC values are in parentheses. b Ketoconazole. c Gentamycin. d NA: not active.

3.5. MTT Assay

The inhibitory activity against lung (A-549) and breast (MCF-7) carcinoma cells
for Et3qu and its [Ag(Et3qu)2(citrate)] complex was determined using the MTT assay
(Figure 7). The detailed MTT assay results are given in Tables S1–S4 (Supplementary Data).
The results indicated that both compounds showed inhibitory activity against both cell
lines, where the Ag(I) complex has promising anticancer activity. The IC50 values were
generally lower for the Ag(I) complex than the free Et3qu. The [Ag(Et3qu)2(citrate)] had
IC50 values of 1.87 ± 0.09 µg/mL and 0.95 ± 0.06 µg/mL against the MCF-7 and A-549
cell lines, respectively. The corresponding values for the free Et3qu were 30.64 ± 1.98 and
22.89 ± 1.48 µg/mL, respectively. These results indicated the higher anticancer activity
of [Ag(Et3qu)2(citrate)] compared to the free Et3qu. Additionally, the studied complex
exhibited significantly higher cytotoxicity against both cancerous cell lines compared to
the reference anticancer drugs doxorubicin and cis-platin (Table 6). It was believed that
the interaction between the target compound and DNA via noncovalent interactions could
damage the cancer cell, leading to the death of these malignant cells [9]. Recently, the
anticancer activity of Ag(I) complexes was linked to both the metal and coordinating ligand
rather than just the metal ions [39,40]. Many factors such as the complex stability and
its hydrophilic–lipophilic characters are crucial factors for the anticancer activity of Ag(I)
complexes [7,40–44].
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Figure 7. MTT assay of Et3qu and its [Ag(Et3qu)2(citrate)] complex.

Table 6. Anticancer screening (expressed as IC50 (µg/mL)) of the newly synthesized complex, its
corresponding free ligands and the reference drugs against the tested human cancer cell lines.

Cell Line Cisplatin [45] Doxorubicin [46] Et3qu [Ag(Et3qu)2(citrate)]

Lung carcinoma (A-549) 2.46 1.91 22.89 ± 1.48 0.95 ± 0.06
Breast carcinoma (MCF-7) 3.23 1.51 30.64 ± 1.98 1.87 ± 0.09

4. Conclusions

The structure of the novel [Ag(Et3qu)2(citrate)] was elucidated based on the results
of X-ray single crystal diffraction. It comprised a tri-coordinated Ag(I) with two Et3qu
and one citrate as monodentate ligands. The supramolecular structure aspects were an-
alyzed quantitatively using a Hirshfeld analysis. The percentages of the H···H, O···H,
C···C and C···H contacts were 39.3–40.1%, 33.2–34.0%, 9.1–9.5% and 7.2–7.4%, respectively.
Biological experiments indicated promising antimicrobial and anticancer activities of the
[Ag(Et3qu)2(citrate)] complex. The results indicated higher anticancer activity of the Ag(I)
complex against the MCF-7 and A-549 cell lines than the free ligand. Additionally, the
[Ag(Et3qu)2(citrate)] complex has good activity against both Gram-negative and Gram-
positive bacteria and the fungi as well, while the free Et3qu ligand showed no activity
against the Gram-positive bacteria.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cryst12030356/s1, Crystal structure determination details. Method
S1: Antimicrobial activity assay. Method S2: Evaluation of the cytotoxic effects against the A-549
cell line. Figure S1: The FTIR spectrum of the complex [Ag(Et3qu)2(citrate)]. Figure S2: The FTIR
spectrum of the free ligand Et3qu. Table S1: MTT assay for the Ag(I) complex against the MCF-7 cell
line. Table S2: MTT assay for Et3qu against the MCF-7 cell line. Table S3: MTT assay for the Ag(I)
complex against the A-549 cell line. Table S4: MTT assay for Et3qu against the A-549 cell line.
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