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Abstract: This paper describes a study on the interaction between joint fissures in a nonpersistent
jointed rock mass by introducing a self-consistent methodology, amending the traditional method
of self-consistency by increasing the number of joints one by one, and deducing a new compound
mesoscale and macroscale constitutive damage model based on the Betti energy reciprocity theorem.
By analyzing the Mohr–Coulomb failure criterion and generalized von Mises yield criterion and
their impact on the calculation result of macroscopic damage, the generalized von Mises criterion
is proven to be more appropriate, and it is, thus, chosen for this compound damage constitutive
model. Comparing the theoretical calculation and laboratory results of the compound damage model
with the existing theoretical calculation results indicates the following: 1. The compound damage
model in this paper provides a better fit of the stress–strain curves from the laboratory tests. 2. The
theoretical calculative results for the compound damage model in this paper are consistent with
the experimental results; that is, the peak load decreases as the connectivity rate increases. 3. For
different joint angles and connectivity rates, the overall absolute deviations and relative deviations
of the peak stress from the theoretical calculations and the laboratory tests are less than those from
the theoretical calculations provided in the original literature. The theoretical calculations of the
compound damage model in this paper are more aligned with the experimental results, verifying its
correctness and rationality.

Keywords: damage; compound; constitutive model; self-consistent; yield criterion

1. Introduction

Natural wall rock has certain defects, such as joints, fissures, and cavities [1]. Under
the effect of an external force, the mechanical characteristics of a rock mass are influenced
by its internal structures. With the development of statistical damage theory [2,3], the
constitutive model of compound mesoscopic and macroscopic damage has gradually
attracted attention, as most jointed rock masses in construction areas exhibit a random
nonpersistent distribution of joints, and research on the damage constitutive equation of
nonpersistent jointed rock masses has become increasingly meaningful.

Many scholars have studied the constitutive model of a damaged rock mass. Zhao
Heng et al. obtained the statistical damage constitutive equation by assuming that rock
element strength obeys a normal distribution function and Weibull function [4]. Li and Ma
found [5] that the stress–strain curve of weakly jointed rock mass is obviously dependent
on the joint width and water content. Shojaei et al. [6] studied the deformation and damage
mechanism of porous rock and established the elastic–plastic damage constitutive model
of rock based on continuous damage mechanics. On the basis of the Lemaitre hypothesis,
a damage variable equation considering both macroscopic and mesoscopic defects was
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derived by Yiqing Zhao, Hong-yan Liu, and other scholars [7], and the compound damage
constitutive model of a jointed rock mass has been established. According to the equivalent
elastic parameter model of the nonpersistent jointed rock mass proposed by Shilin Yan,
a macroscopic and mesoscopic coupling damage variable expression was proposed by
Xiaoqing Yuan and Hongyan Liu et al. [8]. This model established a three-dimensional
compound damage constitutive model for a nonpersistent jointed rock, but the complexity
of its parameters is not conducive to calculation and application. On the basis of Helmholtz
free energy, considering rock damage and lossless plastic deformation, an elastoplastic
constitutive equation was deduced by Lide Wei and Weiya Xu [9] by using continuum
damage mechanics. Wengui Cao and Sheng Zhang et al. [10] divided rock material into
two parts: damaged and unbroken parts. On the basis of the different forces of these two
parts, a rock damage constitutive equation was established using the energy principle of
rock material destruction and yield. On the basis of the assumption of isotropic damage
and strain equivalency and the adoption of the least energy consumption principle, Wei
Gao and Lei Wang et al. [11] proposed a developing equation of rock damage from the
point of view of energy. Qijian Liu and Linde Yang et al. [12] noted that the selection of
the failure criterion has a great influence on the establishment of model curves and the
equivalent elastic modulus of damaged rock, so it is necessary to select the appropriate
failure criterion. In engineering construction, a nonpersistent joint is a typical type of
rock joint, and the influence of the interaction of macroscopic joints on rock damage is
considered. In the existing literature, a modification factor was introduced that was based
on the array pitch and penetration rate [13]. However, the arrangement of rock joints is too
complex, and it is difficult to confirm an appropriate correction factor for calculation. In
this paper, based on Betti energy exchange theory [14], a corrected self-consistent method
is introduced to manage the interaction of joint fissures, and a new compound mesoscopic
and macroscopic damage constitutive model is deduced. On the basis of the effects of
mesoscopic damage variables on different failure criteria, the difference in the calculation
results of mesoscopic damage between the Mohr–Coulomb criterion and generalized von
Mises criterion is studied, and these results are compared with laboratory test results [15].

2. Evolution Constitutive Model for Microscopic Damage
2.1. Establishment of the Model

According to the statistical damage model [16], macroscopic rocks are composed of
mutually bonded particles. Under the effect of external force, defect elements will be
gradually surrounded by these particles, and the rock mass damage develops due to the
gathering and connecting process of these defect elements. Here, the mesoscopic damage
variable D1 is introduced to indicate the failure process of the rock; D1 = 0 indicates that the
rock is undamaged, and D1 = 1 indicates that the rock is completely damaged. In this paper,
to calculate the damage variable of the rock, we assume that the intensity distribution of
the elements obeys a certain density function.

Assuming that the rock strength follows a Weibull statistical probability density, the
distribution function of rock microelements can be expressed as [16]:

P(F) =
m
F0
(

F
F0
)

m−1
exp

[
−( F

F0
)

m]
(1)

where m and F0 are rock parameters.
The total number of microelements is N; if the number of microelements destroyed in

rock mass under a certain load is Nf, the damage variable can be defined as [16]:

D1 =
N f

N
=
∫ F

0
P(x)dx = 1− exp

[
−( F

F0
)

m]
(2)

The evolution equations of the mesoscopic damage variable can be deduced from
Equation (2).
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According to the Lemaitre hypothesis 5, the effective stress can be defined by the
following equation:

σi = σ′i (1− D1) (3)

where σi is the nominal stress of the material and σ′i is the effective stress of the material.
Assuming that the microelements of rock obey Hooke’s law before destruction, the

rock damage constitutive equation can be deduced from Equation (3).

σi = Eεi(1− D1) + µ(σj + σk) (4)

where E is the elastic modulus of the intact rock and ε1 is the strain of the intact rock.
According to the generalized Hooke’s law, and substituting Equation (2) into Equation (4),

the constitutive equations of damage statistics can be deduced:

σi = Eε1 exp
[
−( F

F0
)

m]
+ µ(σj + σk) (5)

where σi and σk are both confining pressures of the material.
There are different forms of expression of F under different failure criteria, and the

principal effective stress satisfies σ′1 ≥ σ′2 ≥ σ′3. Currently, the most widely used criterion is
the Mohr–Coulomb criterion, which is also used here and can be presented as

F =
1
2
(
σ′1 − σ′3 − (σ′1 + σ′3) sin γ

)
= c cos γ (6)

where c and γ are the cohesion of the rock and angle of friction.
In a laboratory triaxial compression test, to force the specimen to reach an isotropic

stress state, which means that the specimen is under a hydrostatic stress, the specimen is
initially compressed. From Equation (6), it can be determined that F < 0; furthermore,
during the calculation process, F = 0 is regularly considered. However, in general rock
problems, hydrostatic pressure has an effect on rock yielding; thus, in this paper, the
generalized von Mises failure criterion is used and expressed as Equation (7):

F = αI1 + J2
1
2 − k

I1 = 3
2
(
σ′1 + σ′3

)
− 3αJ2

1
2 , J2 = 1

4
(σ′1−σ′3)

2

1−3α2

α = sin γ
√

3(3+sin2 γ)
1
2

, k = 3c cos γ
√

3(3+sin2 γ)
1
2

(7)

According to the Lemaitre strain equivalent hypothesis and Hooke’s law, the effective
stress and nominal stress have the following relation:

σ′1 =
Eε1σ1

σ1 − 2µσ3
(8)

σ′3 =
Eε1σ3

σ1 − 2µσ3
(9)

By using Equations (8) and (9), the effective stress can be calculated from the nominal
stress and axial strain.

2.2. Determination of the Distribution Parameters

It is assumed that σc and εc are the stress and strain at the peak point of the stress–strain
curve from the uniaxial compression test, respectively, and the following two geometric
conditions are introduced:

σ1|ε1=εc = σc (10)

dσ1

dε1
|σ1=σc , ε1=εc = 0 (11)
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By using Equations (6) and (7), it is not difficult to calculate the value of F correspond-
ing to the peak load. {

S1 = F|σ1=σc , ε1=εc

S′1 = dF
dε1
|σ1=σc , ε1=εc

(12)

Substituting Equation (12) into Equation (5), the distributed parameters m and F0 can
be calculated using the following two formulas.

m =

(
−σc − 2µσ3

εc
S1

)
·
{
[σc − 2µσ3]S′1· ln

[
σc − 2µσ3

Eεc

]}−1
(13)

F0 =
S1(

− ln
[

σc−2µσ3
Eεc

]) 1
m

(14)

3. Compound Damage Constitutive Equation

Under a uniaxial stress σ, a unit volume of rock mass exhibits the following relation
according to the Betti energy reciprocity law [12].

σ2

2E∗
=

σ2

2E
+ ∆φ1 + ∆φ2 (15)

where ∆φ1 is the additional strain energy produced by microscopic damage of the unit
volume of rock mass; ∆φ2 is the additional strain energy produced by an incipient joint in
the unit volume rock mass; E∗ is the elastic modulus of the damaged rock; and E is the
elastic modulus of the intact rock.

3.1. Calculation of ∆φ1

Under a uniaxial stress σ, ∆φ1 can be calculated using Equation (16) by means of the
microscopic damage variable presented in Section 2 [13,17].

∆φ1 = σ2
[

1
2E(1− D1)

− 1
2E

]
(16)

3.2. Calculation of ∆φ2

For plane stress problems, the additional strain energy, which is produced by the
incipient joints in the unit volume of rock mass, can be calculated by Equation (17):

∆φ2 = ρv

∫ A

0
GdA =

ρv

E

∫ A

0

(
K2

I + K2
I I

)
dA (17)

where ρv is the average volume density of a single group joint, A is the initial surface area
of a single joint, A = 2Bc, B is the depth of the initial joint, and c is the half-length of the
initial joint. G is the energy release rate of the rock. KI and KI I are the effective stress
intensity factors of the joint tip.

The distribution of joints in a nonpersistent jointed rock mass is complex and is mostly
random. To simplify the analysis, a rock mass is regarded as a damaged elastomer according
to the theory of mathematical statistics, which simplifies the joints in the rock into multiple
sets. The plastic strain energy, kinetic energy, and loss of other energy are not considered.
For rock masses with N groups of joints, ∆φ2 can be obtained using Equation (17) on the
basis of the energy superposition principle.

φ2 =
N

∑
i=1

ρvi

∫ Ai

0
GidAi =

N

∑
i=1

ρvi

E

∫ Ai

0

(
K2

Ii
+ K2

I Ii

)
dAi (18)
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As shown in Figure 1, under the action of a uniaxial compressive stress σ, the far-field nor-
mal stress and shear stress acting on the joint surface are described by Equations (19) and (20).

σn = σ cos2 γ (19)

τs = σ sin γ cos γ (20)
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Figure 1. Schematic Diagram of the Wing Crack Growth Model.

For a closed joint, the friction angle at the joint surface is ϕ; then, the friction factor can
be expressed as µ = tan ϕ. On the basis of a study by Xiaoqing Yuan et al. [13], the effective
stress τe f f on the joint plane can be expressed as

τe f f =

{
0 tan γ < tan ϕ

τs − µσn tan γ ≥ tan ϕ
(21)

On the basis of the research of Xiaoqing Yuan et al. [13] and Isida [18], considering the
influence of plate width, the revised effective stress intensity factor at the joint tip can be
written [19] as

KI = −
2cτe f f sin θ
√

πl∗

√
sec
(πc

w

)
(22)

KI I = −
2cτe f f cos θ
√

πl∗

√
sec
(πc

w

)
(23)

where w is the width of the plate; θ is the extended direction of the wing crack, which is, in
this paper, θ = 70.5◦; and l∗ is the introduced effective length considering the singularity at
the joint tip, which is, in this paper, l∗ = 0.27c [13].

Substituting Equations (21)–(23) into Equation (17) can produce Equation (24).

∆φ2 =

{
0 tan γ < tan ϕ

9.43c2Bρvm0σ2

E sec
(

πc
w
)

tan γ ≥ tan ϕ
(24)

where m0 = cos2 γ(sin2 γ− cos γ tan ϕ)
2
.

For multiple fractures, to consider the influence of interaction between joints, the
existing literature simplifies the randomly distributed joints to an ideal arrangement, as
shown in Figure 2. The difference in the connection rate and array pitch, f (c, b, d), which is
the correction factor of the effective stress intensity factor for a single joint [13], is introduced
and listed in Table 1.

KI = KI0 f (c, b, d) (25)

KI I = KI I0 f (c, b, d) (26)

where KI0 and KI I0 are the effective stress intensity factors for a single joint.
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Figure 2. Model of a Cracked Rock Mass.

Table 1. Values of f (c, b, d).

d/2c
b/2c

∞ 5 2.5 1.67 1.25

∞ 1.000 1.017 1.075 1.208 1.565
5 1.016 1.020 1.075 1.208 1.565
1 1.257 1.257 1.258 1.292 1.580

0.25 2.094 2.094 2.094 2.094 2.107

In practice, rock mass joints cannot be easily simplified into a linear form, such as that
shown in Figure 2, and the correction factor is selected mostly due to past experience, which
is not advised for practical calculation and theoretical analysis. Previous studies had shown
that it is practical to use self-consistent methods to determine the interaction between
joints 1; for example, the elastic moduli of the elements around the joint determines the
nominal modulus of elasticity of the primary damaged mass. Therefore, the nominal
modulus E∗ replaces the elasticity modulus E in Equation (24), as shown in Equation (27):

∆φ2 =

{
0 tan γ < tan ϕ

9.43c2Bρvm0σ2

E∗ sec
(

πc
w
)

tan γ ≥ tan ϕ
(27)

Substituting Equations (16) and (27) into Equation (15),

E∗

E
=

{
1− D1 tan γ < tan ϕ

1− (1− D1)18.86c2Bρvm0 sec
(

πc
w
)

tan γ ≥ tan ϕ
(28)

From Equation (28), under the condition tan γ ≥ tan ϕ, when the unit volume density
of the rock mass ρv reaches a certain value, the nominal modulus of elasticity E∗ is equal to
zero, which is not consistent with natural conditions. Therefore, Equation (28) needs to be
corrected and optimized. Bruner [20] proposed a revising method for self-consistency that
is more specific, successively adding a single joint into the rock mass, and the corresponding
modulus of elasticity of the rock mass changes. The elastic modulus changes from E, which
is the elastic modulus of the rock mass before the first joint is added, to E∗, which is the
nominal modulus of elasticity of the rock mass after the last joint is added. Through this
method, when tan γ ≥ tan ϕ, varying ρv in Equation (28) and replacing E with E∗ [21], the
following equations and corresponding initial conditions can be obtained:{

dE∗
dρv

= −(1− D1)18.86c2Bm0 sec
(

πc
w
)
E∗

E∗(0) = E(1− D1)
(29)

An approximate solution of Equation (29) is

E∗

E
= exp

(
−(1− D1)18.86c2Bρvm0 sec

(πc
w

))
(30)
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According to the definition of damage variable E∗ = E(1− D) and Equation (30), the
compound microscopic and macroscopic joint damage can be deduced as

D = 1− (1− D1) exp
(
−(1− D1)18.86c2Bρvm0 sec

(πc
w

))
(31)

From Equation (31), when there is only microscopic damage in the rock mass, namely,
the joint volume density ρv = 0, the compound damage variable is equal to the microscopic
damage D = D1. When there is only macroscopic damage in the rock mass, the compound
damage variable is equal to the macroscopic damage, which corresponds with the actual
situation, so the compound damage equation established in this method is reasonable.

Equations (28) and (31) show that the expression of the compound microscopic and
macroscopic damage variable can be deduced as

D =

{
D1 tan γ < tan ϕ

1− (1− D1) exp
(
−(1− D1)18.86c2Bρvm0 sec

(
πc
w
))

tan γ ≥ tan ϕ
(32)

On the basis of the energy superposition principle used in Equation (18), the dam-
age variable formula of a damaged rock mass with multiple joints can be derived and
expressed as

D =


D1 tan γ < tan ϕ

1− (1− D1) exp
(
−

i=n
∑

i=1
(1− D1)18.86c2Bρvm0 sec

(
πc
w
))

tan γ ≥ tan ϕ
(33)

where i represents different series of joints.
According to the study of Xiaoqing Yuan [11], the compound microscopic and macro-

scopic damage constitutive equations can be written as

σ = E(1− D)ε (34)

where σ is the stress component, ε is the strain component, and the compound damage
variable D can be calculated using Equations (32) and (33).

4. Example Calculation and Model Verification

To verify the validity of the model built in this paper, the experimental results and
corresponding theoretical results of a plaster model test [13], which is deduced from
the compound damage constitutive equation based on the Lemaitre hypothesis [22],
are compared with the theoretical calculation results of this paper. The test piece is a
15 cm × 5 cm × 15 cm square slab, the prefabricated crack is the crack with penetrating
thickness, the joint center distance h = 3 cm, the joint layer spacing B = 3 cm, and the
arrangement mode is aligned. There are five values of joint connection rate K in the test,
which are 0, 0.2, 0.4, 0.6, and 0.8. In the test, the loading is controlled by displacement,
and the loading rate is 0.15 mm/min. The plane model of the test specimen is shown in
Figure 3.

The definition of the connection rate of joint k is the same as the definition provided in
Reference [13], namely, it is the area ratio within the plane of the joint, and when the values
of k are 0.0, 0.2, 0.4, and 0.6, the corresponding joint lengths are 0.0, 0.6, 1.8, and 2.4 cm.
When calculating the damage variable using Equation (33), the parameter value is the same
as the value provided in Reference [13] and given in Table 2.
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Table 2. Parameters for Calculation [13].

Elastic
Modulus

E/GPa

Friction
Factor

Joint
Density
ρv/cm−3

Joint
Depth
B/cm

Plate
Width
w/cm

Cohesion
/MPa

Internal
Friction
Angle

/◦

4.25 0 0.11 5 15 2.5 30

For comparing the influence of mesoscopic damage, for the calculation results under
different failure criteria, based on the complete stress–strain curve of gypsum in [13], the
corresponding mesoscopic damage variables under the generalized von Mises and Mohr–
Coulomb criteria can be calculated as m = 3.88, F0 = 7.647 and m = 3.88, F0 = 11.02,
respectively. The stress–strain curves of the fitted complete plaster model under the Mohr–
Coulomb and generalized von Mises criteria are given in Figure 4 [13], and the fitting effect
is satisfactory when the stress level is less than 3 MPa. The calculation results of these
two failure criteria are basically the same as the values acquired from the laboratory test,
as shown in Figure 4. The main reason for this is that the microscopic damage has not
yet evolved, which means that the elastic modulus of the rock mass is equal to the elastic
modulus of the complete model. With an increase in the stress level, when the stress is
greater than 3 MPa, in this paper, mesoscopic damage begins to evolve, and the theoretical
calculation values are higher than the laboratory test results. The maximum deviation in the
results between the two failure criteria and the laboratory tests are 0.69 MPa and 0.39 MPa,
respectively, and the relative deviations are 12.0% and 6.8%. Clearly, the deviation of the
theoretical arithmetic values from the Mohr–Coulomb failure criterion is greater, and the
computed results under the generalized von Mises yield criterion agree well with the
results from the laboratory test.

According to the above failure criteria, the influence factors of the microscopic damage
variable calculations are analyzed with the generalized von Mises yield criterion, which
produces results that more closely follow the results of the laboratory tests; this leads to
the creation of the compound damage constitutive model presented in this paper. The
compound damage variables can be calculated by substituting Equation (32) into the
theoretical stress–strain curve relations of the model presented in this paper. The complete
plaster model and stress–strain curve of the laboratory test assumes a joint inclination of
α = 75◦ and a connectivity rate of k = 0.6. The fitting results of Equation (34), based on the
model presented in this paper, and the stress–strain curve, presented in [13], are shown in
Figure 5, while the calculation parameter is given in Table 2.
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Figure 5 shows that the model presented in this paper fits well with the tested stress–
strain curve for a joint inclination of α = 75◦ and a connectivity rate of k = 0.6 when the
stress level is low (in this paper, the stress is less than 2 MPa); the experimental curves [23]
and the theoretical curves of the model basically coincide, and the errors can be ignored.
The main reason for this consistency is that the microscopic damage has not yet evolved,
which means that the elastic modulus of the rock mass is equal to the elastic modulus of
the complete model. With an increase in the stress level, when the stress is greater than
2 MPa, in this paper, microscopic damage begins to evolve, and the theoretical calculation
values are higher than the results of the laboratory test. The maximum absolute error
and maximum relative error are 0.25 and 5.7%, respectively, and the error is less than the
acceptable standard. Compared with the error of the complete plaster model, the error of
the damaged body from the laboratory test is clearly lesser. The analysis shows that the
low stress levels of the damaged body caused the reduction in error.

With the increase in stress level, the joint damage of the rock mass changes from macro-
scopic damage to compound damage, including both initial macroscopic joint damage and
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microscopic damage. From the definition of the damage variables, the peak load strength
of the rock mass σf can be calculated using Equation (35), shown as [11]

σ = E(1− D)ε f (35)

where ε f is the strain value corresponding to the peak load. D is the compound damage
variable of microscopic and macroscopic joints at the peak load and can be calculated using
Equation (32).

To explain the rationality of the compound damage model in this paper, referring
to the data in Reference [13], in this paper, the peak stresses of the compound damage
model are calculated using Equation (35) for various joint angles and connectivity rates.
Figure 6 shows curves that contain the peak values of the theoretical arithmetic results of
the presented model in this paper, the values of the laboratory test from Reference [13],
and the peak values of the theoretical arithmetic results of Reference [13]. Figure 6 clearly
shows that the variations in the three curves are in good agreement. That is, the peak load
value of the rock mass decreases with the increasing penetration rate.

Crystals 2022, 12, x FOR PEER REVIEW 11 of 16 
 

 

where f  is the strain value corresponding to the peak load. D  is the compound dam-
age variable of microscopic and macroscopic joints at the peak load and can be calculated 
using Equation (32). 

To explain the rationality of the compound damage model in this paper, referring to 
the data in Reference [13], in this paper, the peak stresses of the compound damage model 
are calculated using Equation (35) for various joint angles and connectivity rates. Figure 6 
shows curves that contain the peak values of the theoretical arithmetic results of the pre-
sented model in this paper, the values of the laboratory test from Reference [13], and the 
peak values of the theoretical arithmetic results of Reference [13]. Figure 6 clearly shows 
that the variations in the three curves are in good agreement. That is, the peak load value 
of the rock mass decreases with the increasing penetration rate. 

 
(a) 

 
(b) 

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

Pe
ak

 st
re

ss
 σ

 (M
Pa

)

Connectivity rate k

 Experimental value
 Calculated value in Reference
 Calculated value of the present model

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

Pe
ak

 st
re

ss
 σ

 (M
Pa

)

Connectivity rate k

 Experimental value
 Calculated value in Reference
 Calculated value of the present model

Figure 6. Cont.



Crystals 2022, 12, 352 11 of 14
Crystals 2022, 12, x FOR PEER REVIEW 12 of 16 
 

 

 
(c) 

Figure 6. Curves of Peak Strength at Various Joint Inclination Angles. (a) α = 15°. (b) α = 45°. (c) α = 
75°. 

The values of the laboratory test results and the peak values of the theoretical arith-
metic results presented in Reference [13] are expressed as f  and 1t , respectively, and 
the peak load values of the theoretical arithmetic results of the compound damage model 
presented in this paper are expressed [24] as 2t . The absolute error and relative error of 
the theoretical calculation and the laboratory test results can be calculated using Equations 
(36) and (37): 

ti fS     (36)

100%
f

SSS


   (37)

 
In Figure 7, the variation in absolute error S , of which the peak load values of the 

theoretical model presented in this paper and peak load values of the theoretical arithme-
tic and laboratory test in Reference [13], are shown for different joint angles and connec-
tivity rates. The corresponding relative error SS  is marked in brackets. 

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

Pe
ak

 st
re

ss
 σ

 (M
Pa

)

Connectivity rate k

 Experimental value
 Calculated value in Reference
 Calculated value of the present model

Figure 6. Curves of Peak Strength at Various Joint Inclination Angles. (a) α = 15◦. (b) α = 45◦.
(c) α = 75◦.

The values of the laboratory test results and the peak values of the theoretical arith-
metic results presented in Reference [13] are expressed as σf and σt1, respectively, and the
peak load values of the theoretical arithmetic results of the compound damage model
presented in this paper are expressed [24] as σt2. The absolute error and relative er-
ror of the theoretical calculation and the laboratory test results can be calculated using
Equations (36) and (37):

S =
∣∣∣σti − σf

∣∣∣ (36)

SS =
S
σf
× 100% (37)

In Figure 7, the variation in absolute error S, of which the peak load values of the
theoretical model presented in this paper and peak load values of the theoretical arithmetic
and laboratory test in Reference [13], are shown for different joint angles and connectivity
rates. The corresponding relative error SS is marked in brackets.

Figure 7 shows that the calculation errors of the peak load of the theoretical model
used in this paper and the calculation error from Reference [13] exhibit the same variation
with the connectivity rate. On the whole, under different joint angles and connectivity
rates, the total mean absolute error and relative error presented in this paper are 0.6 MPa
and 17.6%, both of which are less than the corresponding values given in Reference [13],
namely, 1.23 MPa and 43.1%. By analyzing the absolute error and relative error at the peak
load, it is not difficult to determine that the theoretical calculation errors of the compound
damage model presented in this paper are less than the corresponding values of error in
Reference [13], that is, the results of the compound damage model [25] of this paper agree
with the results of the laboratory test more closely than the results in Reference [13].

In this paper, based on a modified self-consistent method, a compound microscopic
and macroscopic damage constitutive model is deduced, and a comparison of the theoretical
calculation results of this paper with the corresponding results in Reference [13] confirms
the rationality of this new compound damage constitutive model.
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5. Discussion

(1) In this paper, for nonpersistent jointed rock masses, a self-consistent methodol-
ogy is introduced that amends the traditional self-consistent method by increasing the
number of joints one by one to account for the interaction among joints. Based on the
Betti energy reciprocity theorem, this work deduces the new compound microscopic and
macroscopic damage constitutive model. The joint compliance and hysteresis in normal
loading are ignored in the model. The model has limitations in the uniformity of nonpersis-
tent joint distribution, the assumption of uniform stress distribution, and the certainty of
joint information.

(2) The comparison and analysis of the theoretical calculation results and laboratory
test results of the compound damage model with the existing theories indicates the follow-
ing: 1. The compound damage model in this paper more accurately fits the stress–strain
curve from the laboratory test. 2. The theoretical calculation results for the compound
damage model in this paper are consistent with the experimental results, i.e., peak load
decreases as the connectivity rate increases. 3. Under different joint angles and connectivity
rates, the theoretical calculations of the compound damage model are more aligned with
the experimental results, verifying the correctness and rationality of the model.
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