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Abstract: AISI-D6 steel is widely used in the creation of dies and molds. In the present paper, first
the electrical discharge machining (EDM) of the aforementioned material is performed with a testing
plan of 32 trials. Then, artificial neural networks (ANN) and adaptive neuro-fuzzy inference system
(ANFIS) were applied to predict the outputs. The effects of some significant operational parameters—
specifically pulse on-time (Ton), pulse current (I), and voltage (V)—on the performance measures of
EDM processes such as the material removal rate (MRR), tool wear ratio (TWR), and average surface
roughness (Ra) are extracted. To lead the process operators, process plans (i.e., parameter—effect
correlations) are created. The outcomes exposed the upper values of pulse on-time caused by higher
amounts of MRR and Ra, and likewise lower volumes of TWR. Furthermore, growing the pulse
current resulted in upper volumes of the material removal rate, tool wear ratio, and surface roughness.
Besides, the higher input voltage resulted in a lower amount of MRR, TWR, and Ra. The estimation
models developed by using experimental data recounting MRR, TWR, and Ra. The root means
the square error was used to determine the error of training models. Furthermore, the estimated
outcomes based on the models have been proven with an unseen validation set of experiments. They
are found to be in decent agreement with the experimental issues. The investigation shows the
powerful learning capability of an ANFIS model and its advantage in terms of modeling complex
linear machining processes.

Keywords: electrical discharge machining; artificial neural network (ANN); ANFIS; AISI D6 tool
steel; tool wear ratio (TWR); MRR

1. Introduction

The difficulty in treating hard-to-cut materials impacted the start of numerous pro-
gressive machining approaches such as water jet machining, electric discharge machining,
laser machining, and electrochemical machining. These processes, commonly termed non-
traditional machining procedures, create energy to remove residual material from the stock
to create the preferred portion. Of these procedures, electric discharge machining (EDM)
has received ample attention from the nuclear, aerospace, and automobile subdivisions [1].
Regardless of the extraordinary price of the apparatus (e.g., electron beam processing, water
jet, and laser) or the disadvantage of dangerous slope (e.g., electrochemical machining), it is
still superior to other methods. The electrode modeling tool has a shape that is the opposite
of the cut profile. The additional material is censored through a sequence of sparks among
the tool and the workpiece in the form of a dielectric medium that works as an insulator to
avoid the material declaration reserved externally to the device. The EDM procedure has
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found numerous uses such as fabrication of molds/dies and the cutting of holes in a variety
of materials containing metals and composites [2] by vast distance to diameter ratio.

Various research has attempted to improve the quality attributes of the EDM process
through a change in the process parameters. Boujelbene et al. [3] inspected the outcome of
energy ignition on the tool wear ratio (TWR), material removal rate (MRR), and the depth
of altered layer (i.e., the material re-solidified on the work-surface) in the machining of
two steels: X200Cr15 and 50CrV5. They described the depth of the altered layer and the
augmented MRR and the obstinately condensed TWR as the sparking energy was enlarged.
Pradhan et al. [4] considered the performance of copper and aluminum electrodes on the
EDM of EN-8 steel to display that the copper electrode executed better in terms of outward
value. Besides, they found that the surface quality declined with a rise in the pulse-on-time
(200 ps to 700 us) over the reflected range of peak current (8 A to 24 A). Amorim et al. [5]
examined the effect of polarized graphite and copper electrodes on the EDM performance
of AISI P20 steel. As demonstrated by the outcomes, advanced MRR was achieved when
the dispensation was prepared with the graphite electrode but good surface quality was
appreciated when machining was approved with the copper electrode. Jefferson et al. [6]
suggested that application of cryogenic usage on the electrode could improve the surface
quality of the work piece.

Bhupinder Singh and J.P. Misra [7] used RSM and ANN modeling to study the appar-
ent finish investigation of electric wire discharge machined samples through. This research
determined the optimal morals of factors for the WEDM of nickel-based super alloys that
will offer options to engineering production and to machine tool workers depending upon
their occupation necessities. Vishnu P et al. [8] worked on the presentation forecast of elec-
tric discharge machining of inconel-718 by ANN. They used backpropagation algorithms
to forecast performance characteristics, specifically MRR, SR, and TWR.

Tebni et al. [9] detected the influence of the difference in the pulse current, pulse
on-time, and pulse off-time on the surface quality, MRR, and altered layer depth on two
steels (50CrV4 and X200Cr15). They offered to work with a weak current pulse with short
time if the surface quality was mainly neutral, and they consistently chose high sets of these
factors if production speed was the main objective. Moreover, in order to reduce the depth
of the replaced layer, low saving of input energy was proposed. The same results have been
noted in the literature on 40CrMnNiMo864 steel [10]. Muthuramalingam and Mohan [11]
observed the influence of a discharge current on machinability in EDM to show that the
adapted ISO pulse achieved better surface quality than the prepared predictable pulse.

Chandramouli et al. [12] closely studied the outcome of MRR, TWR, and Ra by using
input properties such as pulse-off time, current, and pulse-on time. Kibra et al. [13]
described the outcome of diverse dielectrics on MRR, TWR, over-cut, and surface reliability
during the micro-EDM of Ti-6Al-4V with a tungsten electrode. Retaining a copper electrode,
Jeykrishnan et al. [14] operated on EN24 tool steel, optimizing procedural factors and
expending the Taguchi technique. Yongfeng et al. [15] investigated an experimental study
of EDM factors for zrb2-sic ceramics machining, and they discussed the effect of EDM
factors on ZrB2-SiC ceramics EDM machining technique.

Employing a Cu-W electrode, Marafona [16] optimized the model through the design
of an experimental approach. Guo and Tsai [17], using a genetic algorithm, developed an
optimum model for processing BaTiO semi-conductive material. Shrivastava and Dubei [18]
performed an intelligent modeling and multi-objective optimization of electric discharge
diamond grinding. Baraskar et al. [19] applied a mixture of the genetic algolritm and
the response surface methods to optimize the EDM of ENS steel. Ramesh Raju et al. [20]
worked on optimizing process parameters in the electrical discharge machining of haste
alloy C276 using Taguchi’s method. In this investigation, an attempt was made to determine
the optimum process variables for obtaining better machining performance in terms of
the material removal rate and the surface roughness. Basha et al. [21] worked on the
experimental study of electrical discharge machining of Inconel X-750 using a tungsten-
copper electrode. The results showed that the MRR increased with an increase in the
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discharge current and pulse on-time, and the lower surface roughness was obtained at the
initial conditions of the discharge current and pulse-on time.

Tsai and Wang [22] have proven that besides processing parameters, the material’s
physical properties such as heat conductivity, specific heat capacity, boiling point, melting
point, and electrical conductivity play an essential role in determining the performance of
the EDM process. From this research, it is understandable that EDM process performance
is highly dependent on the material used. Thus, the setup parameters that are optimal for
performance tend to vary between test materials. Therefore, a search should be made for
each of the responsible parameters for each material.

Rajesh and Gagandeep [23] have investigated the effects of process parameters on the
performance of electrical discharge machining of AISI M42 high-speed tool steel alloy. The
objective of the study was to determine the effect of machining parameters on MRR such as
the current, tool polarity, pulse on-time, and gap voltage for AISI M42 alloy. Singh et al. [24]
instigated a mathematical model to predict MRR during gas-based EDM.

Khalid Al-Ghamdi and Osman Taylan [25] conducted a comparative study on mod-
eling the material removal rate by ANFIS and on polynomial methods in the electrical
discharge machining process. The results for this study showed that the ANFIS model with
21 rules was the best. Singh et al. [26] worked on predictive analysis of surface roughness
in EDM using semi-empirical, ANN, and ANFIS techniques. In this research, a mathemat-
ical model was actuated to realize the SR by utilizing dimensional analysis hypothesis.
Bobbili et al. [27] completed a comparative report on the wire electric discharge machining
of materials used in defense for making arms with the dimensional method related to MRR
and SR. In other investigations, Singh and Singh [28] put forward a mathematical model
to estimate SR during gas-based EDM. Their findings revealed that the developed model
predicted the responses with agreeable accuracy.

The AISI-D6 steel offers excellent corrosion resistance and high toughness at elevated
temperatures. Thus, it is used extensively in the making of forming dies and injection
molds. However, due to its high hardness, it is not an easy process to cut through typical
mechanical machining. Therefore, different solutions with no mechanical machining
means are to be used. In this study, the EDM process is used to cut AISI-D6 steel. To
investigate the needed parameters offering the optimal performance, some essential input
parameters—namely pulse on-time, pulse current, and voltage—are varied over tests.
Their output effects such as MRR, TWR, and Ra are recorded. The drawn process maps
provide guidelines for understanding the process users for quality EDM of AISI-D6 material.
Moreover, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network
(ANN) machine-learning approaches have been applied to the output estimation of the
parameters. The control variables used for MRR, TWR, and Ra are pulse current, pulse
on-time, and voltage.

2. Experimental Procedure
2.1. Work-Piece and Tool

The material for the electrode tool used for the EDM process needs to be electrically
conductive. There is a wide range of materials that can be used to manufacture electrodes
such as graphite, electrolytic copper, brass, tungsten carbides, silver-tungsten alloy, copper
tungsten alloys, tellurium-copper alloys, and copper-graphite alloys. For the present study;,
an electrode made of electrolytic copper with a machining interface of 18 mm diameter and
the AISI-D6 tool steel hardened to 60 HRC were, respectively, employed as the electrode
and experimental materials. The test pieces and electrodes were precisely machined to the
sizes given in Table 1 and Figure 1.
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Table 1. Tool and work-piece specifications.

Material Type Length (mm) Diameter (mm)
Tool Copper 20 18
Work-piece AISI D6 20 20
o
A o
002] A ]
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20 >
SECTION A-A
=+
B =
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f—— 20 —p]

SECTION B-B

Figure 1. Tool and work-piece specifications.

2.2. Experimental Setup

Table 2 shows the parametric conditions for conducting the experimental trials. The
controlling parameters pulse on-time (Ton) and pulse current (I) each was varied over
four levels. The steel was usually cut in the range of 150 V to 250 V [29,30]; therefore, this
specific parameter was varied over only two levels so that the number of tests could be
minimized. The other parameters were set as: machining gap = 2 mm; duty cycle = 20; and
polarity = positive. Kerosene oil was used as the dielectric medium. A three-level full-
factorial experiment comprising 4 x 4 x 2 = 32 runs was conducted. In all, 32 experiments,
as listed in Table 2, were performed on the Azarakhsh Ayzvpals CNC EDM system shown

in Figure 2.

Table 2. Parametric conditions for conducting the experimental trials.

Parameters Units Notations Levels
1 2 3 4
Discharge current A Ip 8 10 12 14
Pulse on-time us Ton 10 20 30 40
Discharge voltage Volt \% 150 250 - -
Dielectric used Kerosene oil
Dielectric flushing Side flushing with pressure

Work material
Electrode material
Electrode polarity

Work material polarity

AISI D6 steel
Electrolytic pure copper
Positive
Negative
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Figure 2. On-job process and samples produced through EDM.

2.3. Performance Measures in EDM

After the completion of every testing scenario, the relative output characteristics, such
as MRR, TWR, and Ra were measured. The MRR and TWR weighing process was done by
checking the difference in the masses of steel and copper tools before and after use in the
machining process using a digital precision scale Mettler Toledo AB265 with an accuracy
of £0.00001 g. The MRR in mm3/min and TWR in g/g were calculated employing the
following relationships:

MRR = (Mw1 — Mw2) % 103 1)
(Pw x t)
o%TWR — \Mr1 = M) X Pw 405 )

(Mw1 — Mwp) x Pr

where MRR is the material removal rate; and TWR is the tool wear ratio. The weight
of workpiece (in grams) before and after machining are My, Mw,, and Mr;, Mr; are
the weight of tool (in grams) before and after machining. The density of the workpiece
in g/cm3 is py; t is the machining time in minutes; and pr is the density of the Cu tool
(i.e., 93.8 g/cm3).

3. Result and Discussion

In experimental applications, the effect of the input parameters on the output perfor-
mance of electronic discharge machining differs from theory. Thus, it is recommended to
set the I and the T,y to high values and the voltage to low values if productivity is the prime
objective during the electronic discharge machining of AISI-D6 steel. However, contrarily,
the Ton and the I need to be set to high values and the voltage must be kept low when the
tool wear ratio is the major objective. To obtain less surface roughness, low values for the
pulse on-time and the pulse current and large values for the voltage are recommended.

3.1. Machine Learning Algorithms

Machine learning is a branch of artificial intelligence. In this research, artificial intelli-
gence teaches computers to do what a human operator may do, i.e., regressive learning. As
the learning samples increase, the algorithm’s performance improves adaptively [31]. Deep
learning began from artificial neural networks which is a subcategory of machine learning.
Machine learning usually implements neural network-based operations such as deep learn-
ing. The application of deep learning is available in all industries from automated driving to
medical devices [32]. Wuest, Weimer, Irgens & Thoben (2016) distinguished the supervised
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and unsupervised machine learning algorithm. Supervised machine learning was suitable
for most manufacturing applications mainly because manufacturing applications provided
labeled data [33].

Machine learning (ML) applications are used in all areas of industry. Machine learning
approaches are implemented in procedural compliance, documentation of process and
orientation, and risk and quality frameworks in the manufacturing industry. Machine
learning is utilized in cloud computing, data science, and IoT. The ability of machine
learning approaches to anticipate failure in advance of its occurrence is a cost and risk
minimizing approach that is being implemented by most industries [34].

3.1.1. Artificial Neural Network (ANN)

A subcategory of statistical machine learning, neural network (NN), is often used in
various kinds of prediction tasks. Artificial neural networks is the most commonly used
branch of neural networks; they work very similarly to brain neurons. Due to their accuracy
in predicting output over other methods of prediction of non-linear input variables, ANNs
have recently been emerging as a forecasting solution.

In this study, a MATLAB computer program was employed to plan the best ANN
structure. The information layer was identified with pulse current, pulse on-time, and
voltage. The yield layer was compared to the MRR, TWR and R;. In the proposed model,
the data layer was identified with a hidden layer neuron and the concealed layer was
related to yield layers. After expansive fundamentals and based on investigation of the
network, the ANN model for the MRR, TWR, and R, was created.

The ANN architecture is defined by the way in which the neurons are interconnected.
The network is fed with a set of input-output pairs, and it is trained to reproduce the
output. The structure of each ANN is represented as (i, j, k), where i expresses the number
of nodes in the input layer, j the nodes in the hidden layer, and k the nodes in the output
layer. In Figure 3, the typical structure of a multi-layer ANN model is presented. In this
example a model of an ANN (3-10-3) structure is presented with three variables (Ton, I, and
V) in the input layer, 10 nodes in the hidden layer, and 3 nodes (MRR, TWR, and R,) in the
output layer [35].

Nodes in input layer Nodes in hidden layer Nodes in output layer
(=3) (=10 (k=3)

|

W

Pulse on time LA 7

\
|

Pulse current

Voltage

/A

$000000000

Input Output

Figure 3. Typical structure of a multi-layer ANN model with 3 nodes in the input layer, 10 nodes in
the hidden layer, and 3 nodes in the output layer.

In this investigation, the ANN prediction model is trained for each component using
the Levenberg-Marquardt algorithm which shows a stable and a fast convergence. Figure 4
reveals the design of this ANN: 3 layers with full connection and 3 input nodes are logged
into the input layer to describe 3 outputs. The input nodes include pulse-on time, pulse
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current, and voltage. The output of this design is MRR, TWR, and R,. Additionally, a total
of seventy percent (70%) of the experimental data was used for training, with 15% used
for validation and testing, respectively. The training algorithm used was the Levenberg—
Marquardt algorithm [36].

& Randomly divide up the 32 samples:

N Training: 70% 22 samples
W Validation: 15% v 5 samples
W Testing: 15% ~ 5 samples
Hidden Layer Output Layer
Input — ‘ Output
P o o w =
T O = @ o
; e e .
10 1
Algorithms
Data Division Random (dividerand)
Training Levenberg—Marquardt (trainlm)
Performance Mean Squared Error (mse)
Calculation MEX

Figure 4. The schematic architecture of the ANN model.

Figure 5 shows the correlation of the RMSE error in both the validation and the
training sets for the different numbers of hidden units after 100 iterations. The hidden
layer with 10 neurons gave the minimum RMSE values for the training and testing sets.
Figures 6-8 show the performance of the proposed ANN model (3LM10-3) for MRR, TWR,
and R,, respectively. These figures show the training, testing, and validation processes of
the 3LM10-3 model starting at a large value and decreasing to a smaller value. The best
training performances obtained were 1.5994 at the 22nd epoch, 0.1653 at the 4th epoch, and
0.074334 at the 3rd epoch, for MRR, TWR, and R;, respectively. A minimum value of the
MSE defines a good ANN model.

25

15 4

RMSE

—+—Validation

—&—Train set

05 1

35

Number of Nodes in Hidden Layer

-05

Figure 5. Root mean square error versus number of hidden units in both validation and training sets.
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Best Validation Performance is 1.5994 at epoch 22

Train
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Test
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w
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Figure 6. Performance of the 3LM10-3 model for MRR.

Best Validation Performance is 0.1653 at epoch 4

Train
Validation
Test -
I B o e, e T Basi
2 Goal =
£ —
s
]
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4
S 10
=2
»
s
S 106
= 10
108 B e e R i S R S e S s s w1 it G e T e R A s M e R o s A
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Figure 7. Performance of the 3LM10-3 model for TWR.

Best Validation Performance is 0.074334 atepoch 3

Train

Validation
=
—_ e
E Goal
=
i
=
o
s -5
3 10°
o
7]
o
<
D
=
10-1°
1 2 3 4 5 6 7 8 9 10
10 Epochs

Figure 8. Performance of the 3LM10-3 model for R,.

Figures 9-11 show the coefficient regression of training, testing, validation, and all
the data from the 3LM10-3 model. These figures explain the correlation between the target
(experimental data) and the ANN model output. The dashed line in each figure represents
the targeted values. The best-fit linear regression line between the outputs and the targets
is represented by a solid line. The values of coefficients for training, testing, validation,
and all the data were found to be 0.99724, 0.99061, 0.98597, and 0.99415 for MRR; 0.99863,
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0.96499, 0.99812, and 0.98535 for TWR; and 0.97594, 0.89775, 0.99113, and 0.95076 for R,,
respectively. The overall response with R close to 1 verified that training produced the
optimal results. The root mean square error (RMSE) of the training model for MRR, TWR,
and R, are 1.03, 1.17, and 0.33, respectively.

40

35

30

25
20

Output ~=0.99*Target+0.13

Train Data: R=0.99724

35

Qutput ~=1.1*Target + 1.4

T Data
Fit
------- Y=T
10 20 30 40
Target

Test Data: R=0.99061

Q  Data

10 1 20 25 30 35
Target

30

25

20

Output ~= 0.97*Target + 0.5

40
35
30
25

Output ~= 1*Target + 0.13

Validation Data: R=0.98597

< Data
Fit
------- Y=T
s
o}
s}
10 15 20 25 30
Target

All Data: R=0.99415

< Data
Fit o)
------- Y=T
[}
10 20 30 40
Target

Figure 9. The plot of all data regression for data set of MRR.

Output ~= 0.98*Target + 0.054

Train Data: R=0.99863

< Data
Fit

5 10 15
Target

Test Data: R=0.96499

20¢
- < Data
‘;‘ 181 Fit .
2 Y=T ’,’
) 161 o}
]
— 14}
*
a3
p= 12r
¥ 10l
-
=]
£ 5
=]
o Bl

10 15 20

Target

Output ~= 1*Target + 0.12

Output ~=0.91*Target + 0.35

Validation Data: R=0.99812

14 < Data y
Fit o

12 . ve1 7
10
8
6
1
23,'0

2 4 6 8 10 12 14

Target
All Data: R=0.98535

20

< Data

5 10 15 20
Target

Figure 10. The plot of all data regression for the data set of TWR.
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Figure 11. The plot of all data regression for the data set of Ra.

3.1.2. Adaptive Neural Fuzzy Inference System (ANFIS)

The word ANFIS means an adaptive neuro-fuzzy inference system that uses a specified
input/output data collection; the ANFIS toolbox creates a fuzzy inference system (FIS),
and its subscription includes calibrated (tuned) variables) either using a backpropagation
method on its own or in combination with a least squares type approach. This modification
allows the fuzzy structures to learn from the data they are processing. The neuro-adaptative
learning approach works in a similar way to that of neural networks. Neuro-adaptative
learning methods provide a mechanism for a fuzzy modeling system to learn details about
data collection. The Mamdani fuzzy inference system’s fundamental structure is a model
that maps input features to input membership functions, input membership functions to
principles, rules to a set of output features, output features to output membership functions,
and output membership functions to a single-valued output or output-related decision.
Such a system uses fixed membership functions that are chosen arbitrarily and a rule
structure that is essentially predetermined by the user’s interpretation of the characteristics
of the variables in the model. The fuzzy inference style utilized in this paper contains three
inputs, three MFs for every input, and two rules. The Takagi-Sugeno fuzzy design aimed
to be consistent with the two IF rules constructed as follows [37]. The ANFIS utilized in this
investigation was settled with MATLAB. Figure 12 demonstrates the view of the developed
ANFIS model.

The planned ANFIS designs for the output parameters is shown in Figure 13. It
includes 3 nodes in the input layer, 100 nodes in the hidden layer, and 3 nodes (MRR, TWR,
and R;) in the output layer. Figures 14-16 exhibit the contour and the 3D graph of MRR,
TWR, and Ra values with different input parameters. The results of the graphs show that
MRR increases with the increase in the pulse current and the pulse on-time. On the other
hand, as the pulse current decreases, the MRR decreases. Figure 17 shows the graph of
the estimated values versus the actual values for MRR, TWR, and R,. The results prove
that the estimated values are in good agreement with the actual responses. The root mean
square error (RMSE) of the ANFIS training model for MRR, TWR, and R, are 0.81, 0.28,
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and 0.17, respectively. The precision of the ANFIS model relies on a couple of essential

variables, which are listed in Table 3.

) )
Pulse on time Material
(sec) Removal Rate
) R )
Pulse AdaptivefNeural Surface
Fuzzy Inference @ [K——
current(A) System (ANFIS) Roughness
- J
) )
Voltage :
W) Tool Wear Ratio
- L—/

Figure 12. Observation of the established fuzzy model.

input inputmf rule outputmf
)
Pulse on time
Output
1. MRR
Pulse current 2.TWR
3.Ra
Voltage Logical Operations
and
O o
S— nol

Figure 13. The design of the ANFIS model for output parameters (MRR, TWR, and R,).

Table 3. ANFIS architecture and training parameters.

Number of nodes 78
Number of linear parameters 27
Number of nonlinear parameters 18
Total number of parameters 45
Number of training data pairs 32
Number of checking data pairs 5

Number of fuzzy rules 27
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Figure 14. The 3D relations of input parameters versus MRR for ANFIS model.

Figure 15. The 3D relations of input parameters versus TWR for ANFIS model.
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Figure 16. The 3D relations of input parameters versus R, for ANFIS model.
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Number of data
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Figure 17. ANFIS results; estimated responses vs. actual values scheme for MRR, TWR, and R,.

3.2. Prediction Error

The precision of the prediction model was evaluated by using the root mean square
error (RMSE) [38]. The accompanying condition can be utilized to get the RMSE.
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where N is the complete training data, p; is the estimation of the deliberate information, and
q; is the worth, anticipated by the ANFIS model. The adequacy of the created model was
checked by the mean square error (MSE), root mean square error (RMSE), and standard
deviations [39], and it is depicted in Tables 4—6. From these evaluations, it very well may
be surmised that the prompted model has the dynamically accurate expectation.

3.3. Prediction of Output Responses

With the help of an artificial neural network (ANN), an adaptive neural fuzzy infer-
ence system (ANFIS), and the prophetic value of MRR, TWR and R, were detected for
observation in training data sets as depicted in Tables 4-6. Two parameters such as MSE
and RMSE were used to examine the outcome of models for the better judgment of the
MRR, TWR, and R, value obtained through the ANN and ANFIS methodologies. The
values of the MSE and RMSE for all the models were specified in Table 7. The outcomes
show that the actual responses are in near agreement with the predicted responses. The
root mean square error (RMSE) of the ANN and the ANFIS models are 1.03 and 0.81 for
MRR; 1.17 and 0.28 for TWR; and 0.33 and 0.17 for R,, which proves that ANFIS models
are relatively superior to other ML techniques.

Table 4. Testing the capability of all models in the prediction of MRR.

Experimental Parameters Expt Model Prediction Error
No I Ton v Value ANN ANFIS ANN ANFIS
1 8 10 150 6.044916 7.40094 5.20004 1.356 —0.845
2 8 20 150 8.696462 8.885814 9.966221 0.189 1.2698
3 8 30 150 17.05669 16.69261 16.09935 —0.364 —0.957
4 8 40 150 17.77503 17.87653 18.35636 0.101 0.5813
5 10 10 150 7.911647 8.300831 7.214604 0.389 —0.697
6 10 20 150 11.34493 13.03521 13.3308 1.69 1.9859
7 10 30 150 22.64498 22.34559 21.27945 —0.299 —1.366
8 10 40 150 24.34266 24.50652 24.33714 0.164 —0.006
9 12 10 150 11.10143 10.14908 10.23128 —0.952 —0.87
10 12 20 150 16.91269 17.30969 18.34621 0.397 1.4335
11 12 30 150 30.0778 30.46354 29.01461 0.386 —1.063
12 12 40 150 32.78978 33.13807 33.32342 0.348 0.5336
13 14 10 150 13.11668 13.54476 13.44128 0.428 0.3246
14 14 20 150 23.10135 22.83831 22.47436 —0.263 —0.627
15 14 30 150 35.64444 38.20145 36.09756 2.557 0.4531
16 14 40 150 44.64781 44.32793 44.49635 —0.32 —0.151
17 8 10 250 6.712741 6.662043 6.701174 —0.051 —0.012
18 8 20 250 11.02284 11.93448 10.97197 0.912 —0.051
19 8 30 250 15.80746 14.71322 15.7947 —1.094 —0.013
20 8 40 250 16.53785 16.03618 16.43005 —0.502 —0.108
21 10 10 250 7.576641 7.825279 8.092684 0.249 0.516
22 10 20 250 14.66197 15.05229 13.7811 0.39 —0.881
23 10 30 250 19.60727 20.68079 20.3264 1.074 0.7191
24 10 40 250 21.47027 22.55168 21.42358 1.081 —0.047
25 12 10 250 9.611261 8.809756 10.18376 —0.802 0.5725
26 12 20 250 19.1213 17.64114 17.95628 —1.48 —1.165
27 12 30 250 26.23166 25.77989 27.03839 —0.452 0.8067
28 12 40 250 29.1648 27.87662 28.82355 —1.288 —0.341
29 14 10 250 12.20727 9.685567 12.79918 —2.522 0.5919
30 14 20 250 21.89337 19.84489 20.74241 —2.048 —1.151
31 14 30 250 29.43663 30.33535 30.26816 0.899 0.8315
32 14 40 250 32.8661 32.97477 32.59584 0.109 —0.27
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Table 5. Testing the capability of all models in the prediction of TWR.
Experimental Parameters Expt Model Prediction Error
No I Ton A% Value ANN ANFIS ANN ANFIS
1 8 10 150 20.49628 14.80214 20.49113 —5.69 —0.005
2 8 20 150 12.22179 11.99425 12.21554 —0.23 —0.006
3 8 30 150 1.71064 1.828137 1.855931 0.117 0.1453
4 8 40 150 0.805808 1.21488 0.671929 0.409 —0.134
5 10 10 150 14.9604 14.91488 15.06815 —0.05 0.1077
6 10 20 150 12.98909 12.84186 13.06678 —0.15 0.0777
7 10 30 150 2.215157 1.868149 2.138513 —0.35 —0.077
8 10 40 150 1.295127 1.079804 1.138633 —0.22 —0.156
9 12 10 150 17.90438 17.42396 17.31107 —0.48 —0.593
10 12 20 150 16.25867 15.7496 15.8289 —0.51 —0.43
11 12 30 150 3.753688 3.902268 4.254516 0.149 0.5008
12 12 40 150 2.435521 2.355693 3.219124 —0.08 0.7836
13 14 10 150 17.32432 15.94907 17.81167 —1.38 0.4874
14 14 20 150 16.0907 16.09635 16.44482 0.006 0.3541
15 14 30 150 5.199727 5.471832 4.726387 0.272 —0.473
16 14 40 150 4.264924 4.352463 3.683061 0.088 —0.582
17 8 10 250 14.24802 11.59812 14.24613 —2.65 —0.002
18 8 20 250 6.914154 6.402733 6.91212 —0.51 —0.002
19 8 30 250 1.411702 2.085448 1.461996 0.674 0.0503
20 8 40 250 0.775119 0.532355 0.728759 —0.24 —0.046
21 10 10 250 9.954948 9.826657 10.00355 —0.13 0.0486
22 10 20 250 4.279131 4.879254 4.285975 0.6 0.0068
23 10 30 250 1.484691 1.580431 1.330647 0.096 —0.154
24 10 40 250 0.779914 0.638105 0.868602 —0.14 0.0887
25 12 10 250 12.07978 12.37901 11.83927 0.299 —0.241
26 12 20 250 6.939682 6.680634 6.937462 —0.26 —0.002
27 12 30 250 2.29648 2.173512 2.358917 —-0.12 0.0624
28 12 40 250 1.554845 1.380158 1.789565 —0.17 0.2347
29 14 10 250 12.04724 12.57006 12.24898 0.523 0.2017
30 14 20 250 7.520435 7.134863 7.52897 —0.39 0.0085
31 14 30 250 2.790472 2.651723 2.588242 —0.14 —0.202
32 14 40 250 2.047492 1.477596 1.994939 —0.57 —0.053
Table 6. Testing the capability of all models in the prediction of Ra.
Experimental Parameters Expt Model Prediction Error
No I Ton A% Value ANN ANFIS ANN ANFIS
1 8 10 150 3.43 3.376873 3.439442 —0.053 0.0094
2 8 20 150 4.01 4.287986 3.929857 0.278 —0.08
3 8 30 150 4.92 5.05046 5.103606 0.1305 0.1836
4 8 40 150 5.91 6.52498 5.797063 0.615 —0.113
5 10 10 150 3.17 3.512229 3.245244 0.3422 0.0752
6 10 20 150 4.5 4.326987 4.45652 —0.173 —0.043
7 10 30 150 5.84 5.318601 6.03458 —0.521 0.1946
8 10 40 150 7.05 6.744532 6.920684 —0.305 —0.129
9 12 10 150 4.01 3.960998 3.763625 —0.049 —0.246
10 12 20 150 4.92 5.039596 4.945607 0.1196 0.0256
11 12 30 150 6.18 6.107069 5.791721 —0.073 —0.388
12 12 40 150 5.95 6.548194 6.222229 0.5982 0.2722
13 14 10 150 3.81 4.827091 3.973394 1.0171 0.1634
14 14 20 150 5.06 5.117459 5.14347 0.0575 0.0835
15 14 30 150 5.65 5.658762 5.693384 0.0088 0.0434
16 14 40 150 5.99 5.747169 5.939528 —0.243 —0.05
17 8 10 250 3.24 2.649677 3.218985 —0.59 —0.021
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Table 6. Cont.

Experimental Parameters Expt Model Prediction Error
No I Ton A% Value ANN ANFIS ANN ANFIS
18 8 20 250 3.89 4.266676 4.068164 0.3767 0.1782
19 8 30 250 5.34 5.002421 493177 —0.338 —0.408
20 8 40 250 5.15 5.24454 5.401096 0.0945 0.2511
21 10 10 250 3.24 2.476626 3.14556 —0.763 —0.094
22 10 20 250 4.08 4.032333 4.054105 —0.048 —0.026
23 10 30 250 5.19 5.03863 5.163834 —0.151 —0.026
24 10 40 250 5.8 5.659738 5.782211 —0.14 —0.018
25 12 10 250 3.09 3.105256 3.414244 0.0153 0.3242
26 12 20 250 4.77 4.731091 4.889681 —0.039 0.1197
27 12 30 250 5.61 5.401034 5.632478 —0.209 0.0225
28 12 40 250 5.87 6.010513 5.973753 0.1405 0.1038
29 14 10 250 3.74 3.75692 3.522968 0.0169 —0.217
30 14 20 250 5.43 5.407616 5.227786 —0.022 —0.202
31 14 30 250 5.57 5.607572 5.82209 0.0376 0.2521
32 14 40 250 6.29 6.317659 6.05123 0.0277 —0.239

Table 7. Evaluation parameters performance table for MRR, TWR, and R..

Model Training Set
Mean Squared Error Root Mean Square Error
(MSE) (RMSE)
Material Removal Rate Data Set (MRR)
Artificial Neural Network 1.07 1.03
Adaptive Neural Fuzzy Inference System 0.67 0.81
Tool Wear Ratio (TWR)
Artificial Neural Network 1.39 1.17
Adaptive Neural Fuzzy Inference System 0.08 0.28
Surface Roughness (R;)
Artificial Neural Network 0.11 0.33
Adaptive Neural Fuzzy Inference System 0.03 0.17

4. Conclusions

In the current investigation, two models—artificial neural network (ANN) and adap-

tive neuro-fuzzy inference system (ANFIS)—have been utilized to estimate the MRR, TWR,
and R;, in the EDM of AISI-D6 tool steel. The important conclusions of the study are
summarized as follows:

@

@

®)
4)

©)

As the pulse current and pulse on-time increase, the material removal rate increases;
and, conversely, it decreases as the voltage increases, especially when the pulse current
is above 30 A.

The tool wear ratio increases as the pulse current increases, it decreases when the
voltage increases; and as the impact on-time increases, it decreases in contrast to the
increase in the metal removal rate.

In terms of roughness, surface quality improves with decreasing pulse current and
pulse on-time, and it improves as the voltage is increased.

Both the accuracy of prediction and the suitability for use of these models are consid-
ered to support the forecast. The results indicate that the ANFIS approach is relatively
superior to other ML techniques, providing more reliable and accurate results in terms
of lower RMSE (0.81, 0.28, and 0.17) for output parameter requirements in electric
discharge machining.

The trends presented in this study are expected to act as guidelines for users to set
the parameters in order to achieve their desired objective. Furthermore, from the



Crystals 2022, 12, 343 17 of 18

above findings, it follows that the effect of input parameters on various performance
measures of the process are opposing in nature. Therefore, to acquire a trade-off
among all of the considered measures, the parameters should be set to intermediate
values of the settings employed in this study.

(6) Inthe future, hybrid models can be applied to further increase the accuracy of forecasts.
Hybrid models combine machine learning techniques with optimization algorithms.
They are more powerful than single models as they commonly incorporate the advan-
tages and they compensate for the weaknesses of the individual techniques involved,
improving forecasting accuracy. Hybrid models can be created with one or more
phases, corresponding to different problem-solving goals.
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