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Abstract: Eutectic freeze crystallization (EFC) is a novel separation technique that can be applied
to treat brine solutions such as reverse osmosis retentates. These are often a mixture of different
inorganic solutes. The treatment of calcium sulphate-rich brines using EFC often results in gypsum
crystallization before any other species. This results in gypsum scaling on the cooled surfaces of
the crystallizer, which is undesirable as it retards heat transfer rates and hence reduces the yield of
other products. The aim of this study was to investigate and understand gypsum crystallization
and gypsum scaling in the presence of gypsum seeds. Synthetic brine solutions were used in this
research because they allowed an in-depth understanding of the gypsum bulk crystallization process
and scaling tendency without the complexity of industrial brines. A cooled, U-shaped stainless-
steel tube suspended in the saturated solution was employed as the scaling surface. This was
because a tube-shaped surface enabled the introduction of a constant temperature cold surface in the
saturated solution and most industrial EFC crystallizers are constructed from stainless steel. Gypsum
seeding was effective in decreasing the mass of scale formed on the heat transfer surface. The most
effective seed loading was 0.25 g/L, which reduced scale growth rate by 43%. Importantly, this
seed loading is six times the theoretical critical seed loading. The seeding strategy also increased
the gypsum crystallization kinetics in the bulk solution, which resulted in an increase in the mass
of gypsum product. These findings are relevant for the operability and control of EFC processes,
which suffer from scaling problems. By using an appropriate seeding strategy, two problems can be
alleviated. Firstly, scaling on the heat transfer surface is minimised and, secondly, seeding increases
the crystallization kinetics in the bulk solution, which is advantageous for product yield and recovery.
It was also recommended that the use of silica as a seed material to prevent gypsum scaling should
be investigated in future studies.

Keywords: gypsum; scaling; seeding; eutectic freeze crystallization; brine

1. Introduction

South Africa is an industrialized semi-arid country [1] that produces numerous saline
solutions. Reverse osmosis (RO) is an economical and energy efficient way of treating these
saline solutions. However, a highly concentrated brine stream (reverse osmosis retentate)
is produced in the process, which must be treated before disposal. The brine production
in South Africa is forecast to reach a peak daily production of 17,000 m3/day in 2030
compared to approximately 3000 m3/day in 2010 [2,3].

Conventional brine disposal methods in South Africa include discharging the brine
into lined evaporation ponds, the use of mechanical evaporators, and injecting the brine into
deep wells [3]. The main limitation of these methods is their inability to fully separate the
brine into reusable products. As an example, evaporative methods result in the formation
of a sludge, which is a mixture of salts that needs another disposal method [4]. In contrast,
Eutectic Freeze Crystallization (EFC) is theoretically able to fully separate the brine into its
constituents, thus having an advantage compared to evaporative methods.

Eutectic Freeze Crystallization (EFC) is a novel brine treatment process for separating
the salts from water by cooling the brine to sub-eutectic temperatures. This results in
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the co-crystallization of ice and salts. The ice naturally floats to the top, because it is less
dense than the brine, and the salts sink, because they are denser than the brine, making
the products separable [5]. The salts produced can be sold depending on their purity and
production quantities.

The treatment of calcium sulphate-rich brines, such as reverse osmosis retentates,
using EFC, results in the formation of calcium sulphate dihydrate (gypsum) scale deposits
on the cooled surfaces of the crystallizers and surfaces of ancillary equipment. This is due
to the sparingly soluble nature of gypsum in water. Gypsum scaling is undesirable because
the scale forms an insulating layer on the crystallizer heat exchange surfaces, thus retarding
heat transfer rates and thereby lowering yields. Gypsum scaling also results in frequent
stoppages to clean the scale layer.

Scaling or crystallization fouling is a process in which a deposit forms on a surface.
This is due to either bulk crystallization followed by adhesion onto the surface or hetero-
geneous nucleation and growth on the surface [6]. Gypsum scaling due to adhesion is
common for membrane processes [7–9]. Gypsum scaling on hot surfaces is a result of hetero-
geneous nucleation and growth [10,11]. There is no literature available for gypsum scaling
mechanisms under cooling or freeze crystallization conditions, as previous studies [11–15]
were conducted under heating crystallization conditions due to the recurrence of gypsum
scaling in the handling of geothermal brines for energy production and water distillation.

Heterogeneous nucleation is a form of primary nucleation induced by foreign sur-
faces such as dust and vessel walls [16]. The nucleation energy barrier for heterogenous
nucleation is higher than that for secondary nucleation. Secondary nucleation occurs in the
presence of crystals of the material to be crystallized [17,18]. Seeding with parent crystals
of the solute in a supersaturated solution lowers the nucleation energy barrier for the
dissolved solute particles to crystallize [18].

Seed quality, seed surface area, and seed loading influence the effectiveness of a
seeding protocol. Characteristics such as surface smoothness of seed crystals and the
structural integrity of the seed crystals constitute the quality of the seeds. Jagadesh and
co-workers [19] observed that precipitated potassium seeds were the most effective seed
type to precipitate potassium alum from its solution compared to ground and commercial
potassium seeds. This may have been due to the precipitated seed crystals having fewer
strains in their crystal lattice, which are usually induced through milling. The strains in the
crystal lattice are known to dampen the ability of crystals to grow [20].

Seed loading is a measure of the mass of seeds per unit volume of the supersaturated
solution. The critical seed loading refers to the minimum amount of seeds required to pro-
mote growth without prior nucleation [21]. Doki and co-workers [22] give two correlations
that can be used to determine the critical seed loading for a system. Equation (1) is used to
determine the critical seed loading ratio using the mean seed crystal size, Ls.

C∗R = 2.17× 10−6 L2
s (1)

where C∗R = critical seed loading ratio;
Ls = mean seed crystal size (µm).
Equation (2) is then used to determine the critical seed loading of the system, using

the critical seed loading ratio determined above, as well as the theoretical yield and the
volume of the solution.

C∗S = C∗R ×
WT
V

(2)

where C∗S = critical seed loading (g/L)
WT = theoretical yield of the salt (g)
V = volume of the solution (L)
It has been found that specific seed surface area plays an important role. Wang and

co-workers [23] showed that 25 µm seed crystals were the most effective in enhancing bulk
crystallization compared to larger crystals; 48 µm and 75 µm.
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Higher seed loading introduces more surface area for nucleation and growth in the
system and thus increases the crystallization rate of the target material. Liu and Nancol-
las [24] observed that the induction time for gypsum crystallization was shortened by
increasing the seed loading from 0.42 to 1.89 g/L. However, the addition of an excessive
number of seeds above the critical seed loading was observed to have no pronounced effect
on gypsum crystallization kinetics [24].

Seeding has been employed in batch crystallization systems to control the crystal size
distribution of the product crystals [19,21,22,25]. It is also an established method to enhance
bulk crystallization of the target salt or ice in the EFC context [26–28]. Bulk crystallization
of gypsum from a reverse osmosis brine was increased significantly when the brine was
seeded with gypsum crystals [29].

A few studies on the use of seeding as a method to prevent scaling have been published.
Adams and Papangelakis [30] observed that introducing gypsum seed crystals at 10 g/L
in a laboratory scale neutralization reactor resulted in a 50% decrease in the mass of
scale formed at 70 ◦C. Wang and co-workers [23] established that seeding was more
effective in preventing scaling in brine transportation pipes compared to brine dilution.
Gainey et al. [31] reported that seeding in evaporators resulted in the elimination of the
calcium sulphate scale at the Rosewell laboratory and pilot plants. The actual details of the
seed characteristics and seed loading were not published.

In this work, seeding was tested as a method to prevent scaling under cooling crystal-
lization conditions. The aim of the study was to investigate and understand the interaction
of gypsum crystallization in the bulk and gypsum scaling on the crystallizer surfaces in the
presence of gypsum seeds.

2. Materials and Methods
2.1. Experimental Equipment

The experiments were conducted using the apparatus shown in Figure 1. A jacketed
and insulated glass crystallizer with a working volume of 1.25 L was used. A U-shaped
stainless-steel tube, 290 mm long with an outer diameter of 3.18 mm, was suspended from
the lid into the supersaturated solution. The tube was maintained at 0.0 ◦C by a Lauda
Proline PP855 thermostatic unit (Lauda, Germany), which circulated polydimethylphenyl-
siloxane (Kryo 51™) through it to cool the solution from 22.3 to 3 ◦C.

The jacket of the crystallizer was maintained at 2.5 ◦C by a Lauda ECO RE1050G
thermostatic unit (Lauda, Königshofen, Germany), which circulated polydimethylphenyl-
siloxane (Kryo 51™, Lauda, Königshofen, Germany) through it. The temperatures of the
bulk solution, coolant into and out of the tube, and coolant into and out of the jacket of the
crystallizer were measured to an accuracy of ±0.01◦C, at 3-s intervals, using platinum resis-
tance thermometers (Pt100) (Tempcontrol, Nootdorp, The Netherlands). The thermometers
were connected to a CTR5000 precision bridge (ASL, Horsham, UK), which communicated
with the computer via the ULog software (Ulog V6, ASL WIKA, Manchester, UK). A 4-blade
pitched-blade impeller, attached to an overhead stirrer, was used to agitate the solution
inside the crystallizer.
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Figure 1. Batch crystallizer with cooled stainless-steel tubing suspended from the lid.

2.2. Feed Solution Preparation

The brine solution was prepared by reacting equal quantities of 0.11 M Ca(OH)2
(Merck, Modderfontein, South Africa) and 0.11 M H2SO4 (Sigma-Aldrich, Modderfontein,
South Africa) in order to prepare a supersaturated calcium sulphate–water solution as
illustrated by the reactions in Equation (3). The average concentration of the feed solution
was 6.13 g/L CaSO4, as shown in Figure 7, resulting in an average starting supersaturation,
S, of 7.71 that was calculated using the Debye–Huckel theory.

Ca(OH)2(aq) + H2SO4 = CaSO4(aq) + 2H2O (3)

Feed solution preparation was not possible through dissolving reagent grade gypsum
powder in de-ionised water because of the sparingly soluble nature of gypsum. The
suspension formed from the reaction was filtered through a 0.22 µm cellulose acetate
membrane (Kimix Chemical and Lab Supplies, Cape Town, South Africa) held by a 250 mL
Merck Millipore glass holder connected to a vacuum pump at room temperature (23.5 ◦C).
However, this filtration step does not completely eliminate nano fraction particles as
determined by Oshchepkov and co-workers [32]. The filtrate was used as feed solution due
to technological limitations to further remove nano-sized particles.

2.3. Seeds Preparation

Gypsum seeds were precipitated by mixing equal quantities of aqueous 0.6 M sodium
sulphate solution (Merck, Modderfontein, South Africa) and 0.6 M calcium chloride solution
(Merck, Modderfontein, South Africa) as illustrated by Equation (4). The resistivity of
deionised water used to prepare both solutions was 10.9 MΩ-cm.

Na2SO4(aq) + CaCl2(aq) + 2H2O = CaSO4·2H2O(s) + 2NaCl(aq) (4)

Calcium chloride solution was added one drop at a time to sodium sulphate solution
at 70 ◦C to allow slow distribution of the supersaturation and precipitation of needle-type
gypsum crystals. This method was adapted from Liu and Nancollas [24]. The suspension
formed was filtered through a 0.22 µm cellulose acetate membrane held by a 250 mL Merck
Millipore glass holder connected to a vacuum pump. Gypsum crystals were repeatedly
washed with 0.50 L of deionised water to remove sodium chloride before they were dried.

2.4. Experimental Procedure

Briefly, 1.25 L of the feed solution was measured and transferred into the crystallizer.
The overhead stirrer was set to 450 rpm, which is equivalent to a Reynolds number, (Re)
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of 4.21 × 105, and the thermostatic units were switched on to start the experiment. Seed
crystals with a mean size of 58 µm were added into the crystallizer at the start of the
experiments in which seeding was employed.

At the end of the experiment, the thermostatic units and the overhead stirrer were
switched off. The tube was removed from the lid and allowed to dry before it was weighed.
The suspension in the crystallizer was filtered using the same apparatus as above and the
filtrate was analysed for sulphate ion concentration.

2.5. Measurement/Analytical Techniques

The sulphate concentration for the feed solution and spent solution was analysed
using the turbidimetric method. In this method, the sulphate ion is converted to barium
sulphate through addition of barium chloride dihydrate (Merck, Modderfontein, South
Africa) and the turbidity of the suspension is measured. A photometer (Merck Spectroquant
Nova 60, Merck, Modderfontein, South Africa) set at a wavelength of 410 nm was used.

The mass of the scale was determined arithmetically from the difference between the
mass of the scaled tube and the mass of the clean tube, which were both measured using
a digital scale (Mettler™ Toledo ML204, Greinfensee, Switzerland) with an accuracy of
±0.0003 g.

Crystal size and morphology of the scaled tube were analysed using a Scanning
Electron Microscope (Tescan™ MIRA3 Rise, TESCAN, Brno-Kohoutovice, Czech Republic).

3. Results and Discussion
3.1. Seed Crystals

Figure 2 shows SEM micrographs of the seeds. The seed crystals were a mixture of the
needle-type habit and prisms.
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Figure 2. Micrographs of the seed crystals. Scale bar = 100 µm in 4.2 (a) and 50 µm in 4.2 (b).

The crystal size distribution of the seed crystals is presented in Figure 3. An average
of three samples was taken and most of the seed crystals (61%) were below 55 µm in size.
The mean size of the seed crystals was 57 µm with a modal size of 26 µm.
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Figure 3. Crystal size distribution of gypsum seed crystals.

3.2. Preliminary Experiments

It was established that the required experiment run time was 4 h for a measurable
mass of gypsum scale to be deposited on the stainless-steel tube. The mass of gypsum scale
recorded was 0.045 g. The bulk solution temperature was 3 ◦C at the time of stopping the
experiment. There was negligible mass of gypsum scale on the inner wall of the crystallizer.
A temperature of 3 ◦C was maintained in all experiments as this allowed the study of
gypsum scaling, testing the effectiveness of gypsum seeding, without the complexity
caused by ice formation.

Figure 4 shows the micrographs of the scaled tube after running the experiment. The
lighter phase represents the stainless-steel tube surface and the darker phase represents
gypsum crystals. There was also a very thin layer of finely grained crystals, which could
have been due to the adhesion of gypsum crystals when the tube was left to dry.
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Figure 4. Micrographs of a scaled tube after running the experiment for 4 h. Scale bar = 100 µm (a),
50 µm (b) and 20 µm (c) respectively.

The micrographs presented in Figure 4 show that the tube was not fully covered with
scale after running the experiment for 4 h. Needle-type crystals grew normal to the plane
of the tube into the bulk solution; although, the expectation was that they would grow
along the cold tube surface, which provided high local supersaturation conditions. This
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was due to the difference in the crystallographic structure of stainless steel and gypsum,
which inhibited the growth of crystals along the plane of the tube. It is also possible that
the integration of gypsum lattice units into the scale crystals that crystallized first on the
tube could have caused the gypsum crystals to grow into the bulk solution. There were
tiny crystals that were lying parallel to the tube, possibly due to the adhesion of crystals
precipitated in the bulk solution or shearing of crystals by fluid motion. The fluid motion
around the tube was turbulent (Re = 4.21 × 105).

The experiment duration was increased further by 6 h to develop an understanding of
how the scale crystals grew. The mass of scale deposited on the tube was 0.080 g and the
final temperature of the solution was 3 ◦C. The longer experiment time did not change the
predominant habit of crystals, with needle-type crystals of varying lengths constituting the
scale layer. Growth of the crystals was also into the bulk solution, which resulted in small
‘islands’ of the tube that were not fully covered with gypsum scale.

An increase in the duration of the experiment to 24 h resulted in an increase in the
mass of gypsum scale that deposited on the stainless-steel tube. However, the increase was
not linear as was the case when the experiment duration was further increased to 48 h from
24 h. This was due to the decrease in the supersaturation of the system with time. Choi
and co-workers [33] asserted that gypsum crystallization rates decrease in batch tests as
the calcium ion concentration decreases. The mass of gypsum scale deposited on the tube
after 24 h and 48 h was 0.179 g and 0.260 g, respectively. Figure 5 shows the increase in the
mass of scale deposited on the tube as the run time was increased.
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Figure 5. Mass of gypsum scale deposited on the stainless-steel tube as a function of time.

Figure 6 shows the micrographs of the scaled tube after 48 h. In the micrographs, the
darker phase represents the stainless-steel tube surface, and the lighter phase represents
gypsum crystals.
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Figure 6a shows that the scale layer was predominantly composed of needle-type
crystals varying in length between 40 and 100 µm. Most of the smaller sized crystals were
on the top surface of the scale layer while the larger sized crystals were underneath. This
was possibly because the underlying crystals crystallized first and had more time to grow
and, hence, became larger than the top surface crystals.

Figure 6c shows attachment of smaller sized crystals to the larger crystals. This could
have been due to the underlying crystals serving as growth sites for subsequent scale
crystals. There was crystal twinning during scale layer growth as depicted in Figure 6a,b
(white circles). The twinning may have resulted from the combination of moderate su-
persaturation conditions at the start of the experiment, prolonged growth time, and close
contact with the cold tube surface where heat transfer was the highest.

Analysis of the micrographs of the scaled tube acquired after each preliminary exper-
iment enabled the formulation of a possible mechanism of gypsum scaling on the tube,
even though it was not conclusive. Gypsum scale layer was predominantly composed
of needle-type crystals showing that the stainless-steel tube did not alter its habit under
moderate supersaturation conditions present in the system. This is similar to what was
observed by Amjad [10], although on a brass tube. The phenomenon would support the
notion of gypsum scaling through adhesion. However, the plausible reasons for gypsum
scaling through adhesion were outweighed by those for heterogeneous nucleation and
supported by the micrographs.

It was proposed that gypsum scaling on the stainless-steel tube most likely proceeded
via heterogeneous nucleation followed by growth. The growth of the scale layer crystals
was into the bulk solution. Gypsum scaling was found to begin between 0 and 30 min.
Based on this, it was decided that gypsum seeds would be added at the beginning of
the experiment.

3.3. Effect of Increasing Gypsum Seed Loading on Gypsum Scale Formation

Synthetic gypsum seeds of the type described earlier were used. At the time the
experiments were stopped, the calcium sulphate concentration was on average 5.33 g/L,
which is above the thermodynamic equilibrium concentration of 2.27 g/L at 3 ◦C [34].
Since the calcium sulphate concentration in the spent solutions was double the equilibrium
concentration, more gypsum may have theoretically crystallized from the solution if the
experiments were run for longer. Gypsum crystallization kinetics were generally slow.
Figure 7 is a graphical representation of the changes in solution concentration from feed to
spent solution for 4-h run times plotted on the same axis for the different experiments.
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Figure 7. CaSO4 concentration in solutions as a function of gypsum seed loading.

The graph shows that the average change in concentration between the feed solution
and the spent solution for all seed loadings was 1.0 g/L CaSO4. At seed loadings less than
0.50 g/L, the least average change in concentration of 0.50 g/L CaSO4 was recorded while
at 1.0 g/L this change in concentration was 1.76 g/L CaSO4. The significant concentration
change at higher seed loading was a result of faster gypsum crystallization kinetics.

Figure 8 shows the mass of gypsum scale that deposited on the tube and the mass of
gypsum that crystallized in the bulk solution as a function of gypsum seed loading. The
x-axis is from a minimum value of −0.2 to show the data points at 0.0 g/L. Figure 8 shows
that the mass of gypsum that deposited on the stainless-steel tube was several orders of
magnitude less than the mass of gypsum that crystallized in the bulk solution.

The mass of gypsum that crystallized in the bulk solution increased rapidly as gypsum
seed loading was increased due to faster gypsum crystallization kinetics. The increase in
seed loading increased the available surface area with favourable energetics for gypsum
growth to occur. In addition, the abundance of gypsum crystals in suspension increased
crystal–crystal, crystal–impeller, and crystal–crystallizer surface collisions. These collisions
increased the rate of secondary nucleation, which requires the lowest activation energy;
thus, crystallization kinetics increased. The observed increase in crystallization rates as the
seed loading was increased corroborated the results found by Choi and co-workers [33],
where they observed that the induction time shortened in the presence of seeds compared
to unseeded solutions.

Although the tube was the heat transfer surface area and the coldest part of the
apparatus, causing high local supersaturation, less mass of gypsum crystallized on it than
in the bulk solution. This is because the surface area provided by the tube (28.9 cm2)
was very small compared to that provided by the bulk solution (1415 cm2) and the seed
material. Surface area is a key determinant of crystallization rate processes. The surface
area provided by the bulk solution was calculated using the internal dimensions of the
crystallizer. It was difficult to quantify the surface area provided by gypsum seeds at
the different seed loadings due to technological limitations. In addition, the surface area
provided by the tube had poor energetics for gypsum nucleation and growth compared to
the gypsum seeds.
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Figure 8. Seed loading against mass of gypsum scale deposited on the tube and mass of gypsum
crystallized in the bulk solution.

A zoomed view of Figure 8 showing the change in the mass of gypsum scale with
increase in gypsum seed loading is presented in Figure 9. The x-axis has a minimum value
of −0.2 to show the data point at 0.0 g/L.
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Figure 9. Seed loading against mass of gypsum scale deposited on the tube.

Figure 9 shows that the highest mass of gypsum scale deposited on the tube in the
control experiment. The mass of scale deposited on the tube decreased in the presence of
gypsum seeds because the added seeds consumed some of the available supersaturation to
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sufficiently low levels to decrease the rate of heterogenous nucleation on the tube, but still
promoting secondary nucleation in the bulk solution. An increase in gypsum seed loading
(specific surface area) decreased the mass of scale up to the seed loading of 0.25 g/L. Beyond
the seed loading of 0.25 g/L, a further increase in gypsum seeds resulted in an increase
in the mass of gypsum scale deposited. Although the mass of gypsum scale deposited on
the tube increased at seed loadings greater than 0.25 g/L, it was still less than the amount
deposited in the control experiment without seeding.

Contrary to expectation, the mass of gypsum scale deposited on the tube when the
critical seed loading was employed was not the lowest. It was anticipated that the mass
of gypsum scale deposited on the tube would be the least at the critical seed loading
because this seed loading is associated with growth without any prior nucleation. Hence, at
seed loadings greater than the critical seed loading the surface area provided by the seeds
would have been in excess compared to the available supersaturation. Instead, the lowest
mass of scale deposited on the tube was realised when a seed loading approximately six
times higher than the critical seed loading (0.25 g/L) was employed. This deviation could
have been because the surface area provided by the critical seed loading was too small to
sufficiently reduce nucleation on the stainless-steel tube surface any further.

In addition, the calculated contact angle for gypsum nuclei to form on a stainless-steel
surface was small. The contact angle calculation was done using Equation (A1) provided
in the Appendix A together with the values from literature which were used (Table A1).
A range of the contact angle was determined since the dispersive component of gypsum
surface free energy was found as a range. The contact angle range found was 16◦ to 50◦.
The lower limit of the contact angle range implies the degree of wetting was high, thus
heterogeneous nucleation of gypsum on stainless-steel occurred easily. The respective
surface energy reduction factors, f (∅), for the contact angles calculated using Equation (A2)
(see Appendix A) were 0.001 and 0.08. This shows that the nucleation work on the stainless-
steel tube which needed to be overcame by the dissolved gypsum molecules was low.

The relative ease of gypsum to heterogeneously nucleate [17,18] on the stainless-steel
tube as determined from the contact angle calculations may have hampered the ability of
gypsum seed crystals to sufficiently reduce heterogeneous nucleation. Figure 9 shows that
increasing gypsum seed loading six times from 0.04 to 0.25 g/L only resulted in a further
25% reduction in scale mass.

At seed loadings greater than 0.25 g/L, the specific surface area provided by the seeds
could have been in excess for this system since the contact angle calculations showed that
the degree of wetting on stainless-steel tube was relatively high, resulting in some of the
seed crystals possibly adhering onto the tube surface. It should be noted that the scaling
mechanism postulated for these experiments in which gypsum seeding was employed is
different to the one for the preliminary experiments where there was no seeding. This is
because the presence of gypsum seeds in relatively high quantities (0.50 and 1.0 g/L) made
adhesion a possibility. However, this may not have been to a great extent since the mass of
scale deposited on the tube in these experiments remained lower than that deposited in the
control experiment.

The total amount of gypsum crystallized from the experiment was computed as the
sum of the mass of gypsum scale and the mass of gypsum crystallized in the bulk solution.
Figure 10 shows the total mass of gypsum crystallized as a function of gypsum seed loading.

The graph shows that the total mass of gypsum crystallized from the solution was
much less than the theoretical yield expected. Theoretical yield was calculated using the
feed solution concentration and the thermodynamic equilibrium concentration at 3 ◦C.
This may have been due to slow gypsum crystallization kinetics stated earlier. Preliminary
experiments, which were ran for 48 h, did not yield a spent solution concentration that is
comparable to the thermodynamic equilibrium concentration.

Figure 11 shows the micrographs of the scaled tube at different seed loadings. The light
phase represents the stainless-steel surface while the dark phase represents gypsum crystals.
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Figure 10. Total mass of gypsum crystallized as a function of gypsum seed loading.
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Figure 11. Micrographs of the scaled tube (a) control experiment, (b) CS = 0.04 g/L , (c) CS = 0.25 g/L,
(d) CS = 0.50 g/L, (e) CS = 1.0 g/L. Scale bar = 100 µm.

The micrographs show that the predominant habit of the crystals that formed the scale
layer was needles. An increase in gypsum seed loading led to fewer scale layer crystals
per unit area of the tube because some of the available supersaturation was consumed
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by the seeds, leaving less available for heterogeneous nucleation and growth on the tube.
Additionally, more gypsum seed crystals meant fewer prism-shaped crystals in the scale
layer, as some of the supersaturation for growth of needle-type crystals into prisms was
consumed by the gypsum seeds.

The growth direction of the crystals that formed the scale layer was comparable to that
which was observed in the preliminary experiments at different durations. Figure 12 shows
the normalized growth rate of the scale layer as a function of seed loading. The minimum
on the x-axis (−0.2) was chosen to ensure the data point at 0.0 g/L would show clearly.
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Figure 12. Normalized gypsum scale growth rate as a function of seed loading.

The graph shows that the normalised scale growth rate followed the same trend as
was observed for the mass of scale deposited on the tube (Figure 9). The normalised scale
growth rate was calculated by dividing the mass of gypsum scale by the product of the
experiment duration and the tube surface area (same divisor). The experiment duration
and the tube surface area were constants, hence the similarity in the trends.

The micrographs of the crystals recovered from the suspension at the end of each
experiment are presented in Figure 13. The light phase represents the gypsum crystals and
the dark phase represents the mounting glue.

The micrographs show that in the control experiment (Figure 13a), the crystals in
the bulk solution were composed predominantly of needle-type crystals. There was evi-
dence of some crystal twinning (white circles). The addition of 0.04 g/L seed crystals to
the system decreased the proportion of needle-type crystals and the degree of twinning
(Figure 13b). As the seed loading was increased, the habit of the crystals transformed from
being predominantly needle-type to prisms. This was because in the absence of seeds, the
supersaturation was relatively high and numerous crystallites were birthed. The available
supersaturation was distributed among the crystallites for their growth, which resulted in
needle-type habit. The presence of seeds and increase thereof possibly reduced the degree
of nucleation and promoted crystal growth resulting in the formation of prisms.
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4. Conclusions

Gypsum scale formation on the cooled stainless-steel tube was most likely a result of
heterogenous nucleation and growth. The micrographs of the scaled tube showed that the
rough patches on the stainless-steel tube were nucleation sites for gypsum scale.

Gypsum seeding was effective in decreasing the mass of gypsum scale deposited on
the stainless-steel tube. This was attributed to the gypsum seeds providing a surface area
that had favourable energetics for gypsum crystallization compared to the tube surface.
The most effective seed loading was 0.25 g/L.

The amount of gypsum crystallized in the bulk solution increased as gypsum seed
loading was increased. This was due to the increase in specific surface area that had growth
sites on which gypsum dissolved in solution could crystallize.

These findings are relevant for the operability and control of EFC processes, which
suffer from scaling problems. By using an appropriate seeding strategy, two problems
can be alleviated. Firstly, scaling on the heat transfer surface is minimised and, secondly,
seeding increases the crystallization kinetics in the bulk solution, which is advantageous
for product yield and recovery.

This is of great importance towards scaling-up EFC for industrial applications. Beyond
that, seeding to prevent scaling has potential applicability in other processes where the scale
is regarded a product and/or purity is of importance, thus making addition of polymeric
scale inhibitors undesirable.

5. Recommendation

There is need to investigate the effect of silica as a seed material to prevent gypsum
scale formation. The gypsum crystallized in the bulk solution was still to a greater extent
composed of fines, which poses separation problems in EFC. Silica is a robust and inert
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material that can ideally maintain its structural integrity throughout the experiment. If
gypsum dissolved in solution can crystallize on silica, then there is a possibility of yielding
coarser silica-gypsum crystals that may be relatively easy to separate from ice during EFC.
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Appendix A

γsl = γcs + γclcosθ (A1)

∆G′Heterogeneous = f (∅)∆G′Homogeneous (A2)

Table A1. Parameters used to calculate contact angle.

Parameter. Value/Range (mJ/m2) Source

Stainless-steel surface free energy, γs 37 [35]

Dispersive component of stainless-steel surface free
energy, γd

s
33.72 [36]

Water surface tension, γl 72.8 [37]

Dispersive component of water surface tension, γd
l 21.8 [37]

Gypsum surface free energy, γg 37 [18]

Dispersive component of gypsum surface free energy, γd
g 25.7–47.1 [37]
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