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Abstract: H2O molecules in emerald channels have been extensively discussed over the past half
century. Recent studies paid attention to their classification and coordination, but have mostly
focused on the type related to Na+. There are few works on the other types, and the related infrared
(IR) absorption bands are rather controversial. This paper investigated natural emeralds from China
and Colombia by means of micro-Fourier transform infrared (µ-FTIR) spectroscopy, micro-confocal
Raman spectroscopy, and laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS).
The results suggested that doubly (IId) and singly (IIs) coordinated H2O molecules were incorporated
in natural emerald channels. Type IId H2O predominated in those emeralds with relatively low alkali
content. As the alkali content increased, the proportion of type IIs H2O rose, stemming from the
decrease of the H2OII/Na+ apfu ratio. Moreover, IR bands of H2O corresponding to Li+ and Cs+

were tentatively ascribed here. IR bands for D2O and HDO in Colombian sample were observed in
the range of 2600–2850 cm−1 and preliminarily assigned, which might be a potential tool for emerald
origin determination. Our work expanded the existing classification of water molecules in emerald
channels and redefined the controversial IR absorption bands.

Keywords: natural emerald; H2O, D2O and HDO molecules; spectroscopy; classification; coordination

1. Introduction

An emerald is the green gem variety of the mineral beryl with a general formula of
Be3Al2Si6O18. The charming color is due to trace amounts of Cr and/or V in the crystal
structure. Beryl crystallizes in the space group P6/mcc. Its crystal structure is characterized
by the six-membered rings comprised of six [SiO4] tetrahedras, which are linked together by
Al3+ at octahedral (O) site and Be2+ at tetrahedral (T2) site. These six-membered rings stack
along the c-axis, forming large channels that are not identical in diameter. As shown in
Figure 1, the cavities of channel are approximately 5.1 Å in diameter, while the “bottlenecks”
are 2.8 Å, and the distance between adjacent cavities is about 4.6 Å [1,2]. There are two
types of structural positions in the uneven channels: twelve-coordinated 2a position (0
0 1/4) in the center of cavity and eight-coordinated 2b position (0 0 0) in the center of
“bottleneck”. Large-sized channels are sufficient to incorporate alkali metal cations (Na+,
K+, Li+, Rb+, Cs+), transition metal ions (such as Fe2+, Fe3+), Ca2+, REE3+, NH4

+, F−, Cl−

and neutral molecules (H2O and CO2), as well as noble gases, such as argon, helium,
xenon, and neon [1–14]. The discourse about the positions of these cations and molecules in
channel has raged unabated for over half a century [1–3,5,10,15]. To date, it has commonly
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been assumed that the large cations and molecules, such as K+, Cs+, Rb+, NH4
+, H2O, and

CO2, occupy the 2a site, whereas the smaller Na+, Li+, Ca2+, Fe2+, Fe3+ and REE3+ are likely
to reside in the narrower 2b site.

H2O molecules in emerald channels were preliminarily classified as two types: Type I
and II, and commonly recognized by infrared (IR) and Raman spectroscopies [1,11,15–19].
Both types of H2O have three vibrational modes, which are symmetric stretching (ν1),
antisymmetric stretching (ν3), and bending (ν2) modes. Type I H2O exists at 2a site with
the twofold axis perpendicular to c-axis (Figure 1a). Type II H2O exists near an alkali ion
(Figure 1b,c), and its orientation is changed from perpendicular to parallel to c-axis due to
the electrostatic attraction between the charged cation and the oxygen of H2O molecule.
Recently, there have been some more detailed studies on the subtypes of type II H2O.
For example, [4] firstly proposed singly (IIs) and doubly (IId) coordinated type II water
molecules related to Na on the basis of the IR bands of ν1 and ν2 modes. This classification
was further updated by [20–22]. Since Na+ is the dominant alkali ions in the channel of
natural emerald and the other cations such as Li+ and Cs+ are comparably subordinate, the
coordination of H2O molecules with Li+ or Cs+ has not been carried out yet.
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Figure 1. Channel configurations of type I H2O (a), type IIs H2O (b), and type IId H2O (c). Modified
after [2,16,22].

Infrared spectroscopy is a widely used method to characterize the vibrational frequen-
cies of water molecules in the emerald channel. The difference in frequencies between type
I and type II H2O might be due to the coupling cations [4,8]. Furthermore, the difference in
bond lengths between Na+ and oxygen atoms of water molecules results in the different IR
absorption bands of type IIs and IId H2O. Extensive research has recorded the IR bands
corresponding to the three vibration modes of type I, IIs and IId H2O [1,2,4,7,9,11,14,16–35].
However, there are currently no consensuses on the ν1 band of type I H2O and the ν3
band of type IIs H2O. Additionally, the IR bands of H2O related to Li+ or Cs+ have not
been determined.

Aside from OH groups, vibration of OD groups in natural emeralds from Brazil
and Colombia was firstly observed by [29]. Additionally, then [35] reported two bands
at 2640 and 2671 cm−1 [14] synthesized a unique type of H2O, D2O, and HDO bearing
beryl, and put forward the assignments of corresponding IR bands [31] synthesized D2O-
containing beryl crystals, investigated the distribution of type I and type II D2O in the
channel, and concluded the coordination of Li+ with two type II D2O molecules based on
the calculated contents. Currently, –OD related IR bands in the range of 2600–2800 cm−1

tend to be a potential tool for emerald origin determination since its common occurrence in
emeralds from a few deposits such as Colombia. However, a systematic investigation on
D2O and HDO molecules in natural emeralds is still lacking.

This paper investigates the chemical composition and spectroscopy of natural emeralds
from Dayakou (China), and explores the coordination of alkali ions with H2O in the
channel. We here aim to expand the existing classification of channel water, to redefine the
controversial IR absorption bands, and to quantitatively express the relationship between
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type II H2O and Na content. We also investigate the spectroscopy of emerald from Colombia
to systematically assign the IR absorption bands of D2O and HDO in natural emerald.

2. Materials and Methods
2.1. Materials

Fifteen rough emeralds from Dayakou (China) and one emerald crystal from Colombia
(col-022) were collected for this study (Figure 2). Dayakou samples consist of crystal
fractions and euhedral columnar single crystals. Sized from 2 to 13 mm, these crystals are
translucent to opaque and their colors cover various shades of green. All the Dayakou
emeralds were cut into thin sections parallel to c-axis with the thickness of 1 mm and
polished with double parallel sides. The Colombian sample is a polished crystal cut parallel
to the c axis with a weight of 0.82 ct.
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2.2. Methods
2.2.1. Micro-Fourier Transform Infrared (µ-FTIR) Spectroscopy

Unpolarized µ-FTIR spectra in the range of 600–6000 cm−1 were measured at room
temperature using a Bruker LUMOS FTIR spectrometer equipped with a MCT (mercury–
cadmium–telluride) detector cooled at 77 K, housed at the Gem Research Center, the School
of Gemology, China University of Geosciences, Beijing (CUGB). Due to the limitation of
transparency of crystal, the reflectance mode was used for Dayakou samples, while trans-
mission mode for Colombia sample to measure a FTIR spectrum in range of 400–4000 cm−1.
The spectral resolution was 2 cm−1, and each spectrum was averaged from 512 scans.
All the measurements were conducted with same crystal orientation. Peak analysis was
performed using an Origin 2018 professional software package, and the peaks were fitted
using Gauss–Lorentz function.
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2.2.2. Micro-Confocal Raman Spectroscopy

Raman spectra of Dayakou emerald sections were collected at room temperature
using Horiba HR Evolution micro-confocal Raman spectrometer at the Gem Research
Center, the School of Gemology, CUGB. The system was equipped with 50× magnification
objectives and a Peltier-cooled Si-based CCD detector. The Raman spectra (100–4000 cm−1)
were recorded using 532 nm solid stage laser with the resolution of 4 cm−1. The grating,
acquisition time, and accumulation were 600 slots/mm, 3 s, and 1, respectively. Data
analysis was performed using Labspec6 and Origin 2018 professional software, and the
peaks were fitted using the Gauss–Lorentz function.

2.2.3. Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)

In situ chemical composition measurements were carried out in the same area where
the spectroscopic measurements were performed using a Thermo X-Series ICP-MS fitted
with a J-100 343 nm femto-second laser ablation system, housed at the National Research
Center for Geoanalysis (CAGS). The parameter settings are the same as those of [36]. The
radiofrequency power of ICP-MS was 1300 W. Helium gas carrying the ablated sample
aerosol from the chamber was mixed with argon gas and nitrogen as an additional diatomic
gas to enhance sensitivity. A baffled-type smoothing device in front of the ICP-MS was used
to reduce fluctuation effects induced by laser-ablation pulses and to improve the analytic
quality. Samples were ablated for 60 s at a repetition rate of 8 Hz at 8 J/cm2, and ablation
pits were ~50 µm in diameter. Each analysis incorporated an approximate 20 s background
acquisition (gas blank) followed by 50 s data acquisition from the sample. Every twelve
analyses were followed by a calibration process with two analyses of NIST 610 and one
analysis of NIST 612 in order to correct the time-dependent drift of sensitivity and mass
discrimination. All elemental concentrations were calculated by applying 29Si as an internal
standard. Data reduction was carried out with the commercial software ICPMSDataCal
10.8, and the analytical procedures and calibration methods were similar to those described
by [37]. The precision and accuracy are about 10% rel. at ppm level.

3. Results
3.1. Chemical Analyses of Dayakou (China) Emerald

The results of the concentrations of alkali elements in Dayakou emeralds are pre-
sented in Table 1. The results suggest that the total concentration of alkali elements in
Dayakou emerald ranges from 7164 to 14,685 ppm, with the Na concentration from 5612 to
11,864 ppm, the Li concentration from 278 to 654 ppm, and the Cs concentration from 771 to
3123 ppm. The content of Rb is generally below 40 ppm. Although the average Cs content
of Dayakou samples is the highest ever reported among that of worldwide emeralds [36,38],
the calculated Cs+ atoms per formula unit (apfu) are negligible. The main alkali ions in
channel are Na+ (0.131–0.287 apfu) and Li+ (0.022–0.051 apfu). The proportions are in
the order: Na+ (79.66–89.30%) > Li+ (7.93–18.96%) > Cs+ (1.34–4.45%). The water content
(0.634–0.806 apfu) was calculated using the equation relating Na+ to H2O molecules, which
was proposed by [39]. In Table 1, the sample YEW-33 shows the lowest content of alkali
elements, whereas samples YEW-22 and YEW-19 display relatively high alkali contents.
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Table 1. Concentrations of alkali elements (in ppm), major elements (oxide, in wt.%), and H2O (apfu) in Dayakou emeralds.

Sample No. YEW-1 YEW-5 YEW-6 YEW-10 YEW-11 YEW-12 YEW-14 YEW-19 YEW-22 YEW-24 YEW-25 YEW-28 YEW-29 YEW-32 YEW-33

SiO2 (wt.%) 64.85 65.39 65.83 64.05 65.45 65.06 66.33 64.86 66.93 65.25 65.51 66.59 67.05 66.46 66.98
BeO (wt.%) 14.23 14.08 13.90 13.79 13.70 14.16 13.25 14.18 12.86 14.37 14.42 13.75 13.89 14.12 13.88

Al2O3 (wt.%) 18.13 15.38 15.90 16.04 16.33 16.76 16.67 16.45 15.86 15.75 15.74 16.88 15.96 17.06 16.56
Li (ppm) 445 303 343 438 373 507 569 379 654 345 290 311 278 343 294
Na (ppm) 7648 8975 10,409 10,099 10,339 11,112 7916 11,864 10,548 9977 10,814 6274 6402 5748 5612
K (ppm) bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl
Rb (ppm) 8.0 33.0 25.4 23.2 37.3 16.4 14.0 25.2 13.9 24.2 21.9 22.9 23.7 23.0 16.4
Cs (ppm) 990 2508 1944 1798 3123 1044 771 2417 2254 2101 1904 1515 1878 1504 1242

Alkali elements total
(ppm) 9091 11,819 12,721 12,358 13,872 12,679 9270 14,685 13,469 12,448 13,029 8123 8582 7618 7164

Li+(apfu) 0.036 0.024 0.027 0.036 0.030 0.040 0.045 0.030 0.051 0.027 0.023 0.024 0.022 0.027 0.023
Na+ 0.185 0.215 0.248 0.247 0.248 0.268 0.187 0.287 0.247 0.240 0.259 0.148 0.150 0.136 0.131
Rb+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Cs+ 0.004 0.010 0.008 0.008 0.013 0.004 0.003 0.010 0.009 0.009 0.008 0.006 0.008 0.006 0.005

H2O * 0.693 0.726 0.763 0.762 0.762 0.785 0.695 0.806 0.762 0.754 0.775 0.652 0.654 0.638 0.634
Alkali ions total 0.225 0.250 0.283 0.291 0.290 0.313 0.235 0.327 0.307 0.276 0.290 0.178 0.179 0.169 0.159

Na+/Alkali ions 82.27% 86.12% 87.56% 85.09% 85.28% 85.64% 79.66% 87.60% 80.47% 86.83% 89.30% 82.85% 83.63% 80.38% 82.46%
Li+/Alkali ions 15.87% 9.63% 9.55% 12.23% 10.19% 12.94% 18.96% 9.26% 16.53% 9.95% 7.93% 13.60% 12.05% 15.89% 14.31%
Cs+/Alkali ions 1.84% 4.16% 2.83% 2.62% 4.45% 1.39% 1.34% 3.09% 2.97% 3.16% 2.72% 3.46% 4.24% 3.64% 3.16%

Note: Compositions were recalculated on the basis of Si = 6. Apfu = atoms per formula unit. bdl = below detection limit. * Calculated using [1.1061 * Na+ (apfu) + 0.4884 = H2O (apfu)]
proposed by [39].
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3.2. Micro-Confocal Raman Spectra of Channel Water Molecules

In the region of 3500–3700 cm−1, the Raman shifts of ν1 modes of type I and II H2O
can be observed at 3605 cm−1 (P1) and 3596 cm−1 (P2), respectively. Three distinct spectral
patterns of channel water molecules in Dayakou emeralds are displayed in Figure 3. These
are: “alkali-poor” (Figure 3a), “medium alkali” (Figure 3b), and “alkali-rich” (Figure 3c)
patterns, among which the “alkali-rich” pattern is most common.
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12,981 cm−1) and the ratios are generally greater than 1, revealing the content of type II 
water precedes type I water.

Figure 3. Raman spectra of Dayakou emeralds. (a) “Alkali-poor” pattern of sample YEW-33 shows
that the 3605 cm−1 peak (P1) is more intense than the 3596 cm−1 peak (P2). (b) “Medium alkali”
pattern of YEW-29 shows the similar intensity of both peaks. (c) “Alkali-rich” pattern of YEW-22
shows that the intensity of P2 exceeds that of P1. (d) Waterfall plots of the Raman spectra of all
Dayakou samples.

The waterfall plots of Raman spectra of all Dayakou samples (Figure 3d) suggest that
there is no absolute negative correlation between P1 and P2. The intensity of P1 even rises
simultaneously with P2, indicating that the overall content of channel water increases.
After peak fitting, the intensity, full width at half maxima (FWHM) and peak area of P1
and P2 were collected. As shown in Table 2, the peak intensity ratio of P2 to P1 ranges
from 0.40 to 1.99. The FWHM of P1 is in the range of 9.3–14.8 cm−1, while that of P2 in
3.5–7.2 cm−1. In addition, the peak area of P2 (8912–34,385 cm−1) is much larger than P1
(4413–12,981 cm−1) and the ratios are generally greater than 1, revealing the content of type
II water precedes type I water.
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Table 2. Raman peak information of water molecule in Dayakou emeralds.

Sample No. YEW-1 YEW-5 YEW-6 YEW-10 YEW-11 YEW-12 YEW-14 YEW-19 YEW-22 YEW-24 YEW-25 YEW-28 YEW-33 Range

PI (a.u.)
3596 cm−1 2063 1108 687 865 942 1176 2398 1348 1300 1587 769 1980 1725 767–2061
3605 cm−1 1113 1648 1366 1699 1814 1446 1112 2061 1849 1860 1408 802 767 687–2398

3596 cm−1/3605 cm−1 0.54 1.49 1.99 1.96 1.93 1.23 0.46 1.53 1.42 1.17 1.83 0.40 0.44 0.40–1.99

FWHM
(cm−1)

3596 cm−1 11.7 13.2 14.8 9.3 14.5 13.2 9.5 14.2 14.7 14.8 14.6 11.4 10.4 9.3–14.8
3605 cm−1 4.7 6.7 4.9 5.5 4.8 4.9 3.5 6.7 6.9 6.3 7.2 4.7 3.8 3.5–7.2

3596 cm−1/3605 cm−1 2.47 1.97 3.01 1.67 3.00 2.69 2.71 2.10 2.14 2.37 2.02 2.44 2.77 1.67–3.01

PA
(cm−1)

3596 cm−1 16,829 27,995 23,478 20,463 31,305 22,475 13,747 34,385 31,871 33,385 23,950 9732 8912 8912–34,385
3605 cm−1 12,763 9668 4413 6267 5952 7529 8901 11,852 11,667 12,981 7217 12,112 6896 4413–12,981

3596 cm−1/3605 cm−1 1.32 2.90 5.32 3.27 5.26 2.99 1.54 2.90 2.73 2.57 3.32 0.80 1.29 0.80–5.32

Note: PI = peak intensity, FWHM = full width at half maxima, PA = peak area.
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3.3. µ-FTIR Spectra of H2O in Dayakou Samples

The infrared spectra of Dayakou and Colombian samples are displayed in Figure 4,
and the specific infrared absorption bands are presented in Table 3. It can be found that
the IR bands of natural emeralds slightly shift to higher wavenumbers than those of
beryls. In this work, IR bands caused by different modes of H2O molecular vibration were
observed in three regions: (1) 1500–1700 cm−1 (ν2); (2) 3500–3800 cm−1 (ν1 and ν3); and
(3) 5000–5500 cm−1 (combination mode). To shorten the expression, an abbreviation like
H2OIν1 is used to symbolize the ν1 mode of type I H2O.
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As shown in Figure 5, IR bands at 1603 and 1637 cm−1 can be ascribed to H2OIν2 and
H2OIIν2, respectively. Besides, the 1558 cm−1 and 1651 cm−1 bands commonly appear in
all Dayakou samples, while the 1645 cm−1 band is more obvious in samples with high
alkali content. These bands were referred to as the ν2-related modes of type I water [25].

Figure 6 displays the IR bands of four representative Dayakou samples in the region of
3500–3800 cm−1. The most significant absorption at ~3603 cm−1 and ~3704 cm−1 could be
assigned to H2OIIν1 and H2OIν3, respectively. In Figure 6d, two bands related to H2OIIν1
at 3593 and 3604 cm−1 could be observed after peak fitting. Bands in 3650–3690 cm−1 are
mainly caused by H2OIIν3, which include the 3661/3663 cm−1 and 3675/3676 cm−1 bands
in low alkali content samples (Figure 6a,b), and the 3650, 3666 and 3683 cm−1 bands in
medium and high alkali content samples (Figure 6c,d). The assignments of these bands
and the weak band at ~3633 cm−1 are discussed in a later section.

IR band at 5273 cm−1 is likely to be the combined frequency of ν2 and ν3 modes. As
shown in Figure 7, there is a significant positive correlation between the alkali content and
the peak intensity. In previous studies, the 5273 cm−1 band was commonly ascribed to type
I H2O according to the orientation of measurement [14,23,29], but occasionally related to
type II H2O [24,34]. Since the obvious positive correlation observed in Figure 7, this band
is assigned to H2OIIν2+ν3 here.
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Table 3. Assignments of the IR absorption bands (cm−1) of H2O, HDO, and D2O molecules in beryls
and emeralds.

This Work
(cm−1, Unpolarized)

Refs.
[1,2,4,7,9,11,14,16–35]

(cm−1)
Assignments Polarization

Relative to c Axis

Dayakou Colombia

7143/7144 H2OI(ν1 + ν3)/HDOI

2νOH
‖

7044/7102 H2OII
(ν1 + ν3) unpolarized

5297 D2OI (ν1 + ν3) ‖
5273 5274/5276 H2OI or H2OII (ν2 + ν3)? ‖

5038 HDOI (d + νOH) ‖
4076 HDOI (d + νOD) ‖

3825/3979/4057/4060 H2OII (ν3 + νlibr) ‖
3914 D2OI (ν2 + ν3) ‖

3747/3850/3863/3880 H2OI or H2OII (ν3 + νlibr)? ⊥
3703–3705 3690/3693/3696–3700 H2OI (ν3) ‖

3674/3683 3653/3660/3661/
3666//3670/3671 H2OII (ν3) (unclassified) ⊥

3661/3666 3661/3662/3664/3665 H2OIId (ν3) ⊥
3650–3652 3643/3651 H2OIIs (ν3) ⊥

3655 HDOI (νOH) ‖
3636 HDOII (νOH) ‖

3628/3634/3637
3602–3610
3630–3635

3647/3649/3650
H2OI (ν1) ⊥

3587–3599 H2OII (ν1) (unclassified) ‖
3602–3604 3596/3597/3600/3602 H2OIId (ν1) ‖

3593 3586–3589 H2OIIs (ν1) ‖

3222/3230/3236 H2OII (2ν2) or
[Fe2(OH)4]2+ ‖

3019/2956 D2OI (ν3 + νlibr) ‖
2813 2876 D2OII (ν3 + νlibr) ⊥
2750 2745 D2OI (ν3) ‖

2724/2736 2728/2729 D2OII (ν3) ⊥
2684 2687 HDOI (νOD) ‖
2673 2673/2675/2676 HDOII (νOD) ‖
2640 2635 D2OI (ν1) ⊥
2629 2631/2634/2641 D2OII (ν1) ‖

1637 1622/1623/1630/
1631/1633/1637 H2OII (ν2) (unclassified) ‖

1619/1620/1627/1628 H2OIId (ν2) ‖
1631/1633/1637/1638 H2OIIs (ν2) ‖

1603
[1558, 1651] 1599–1607 [1546, 1645] H2OI (ν2) ⊥



Crystals 2022, 12, 331 10 of 17Crystals 2022, 12, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 5. IR spectra of Dayakou samples with different contents of alkali elements in the region of 
1550–1700 cm−1. 

 

Figure 5. IR spectra of Dayakou samples with different contents of alkali elements in the region of
1550–1700 cm−1.

Crystals 2022, 12, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 5. IR spectra of Dayakou samples with different contents of alkali elements in the region of 
1550–1700 cm−1. 

 

Figure 6. IR spectra of four representative Dayakou samples in the region of 3500–3800 cm−1. (a) and
(b): IR spectra “alkali-poor” samples (YEW-33 and YEW-32); (c): IR spectrum of YEW-1 with medium
alkali content; (d): IR spectrum of “alkali-rich” sample (YEW-22); experimental spectrum = black
solid line, fitted peaks = cyan solid line, cumulative fit = red dash line.
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3.4. µ-FTIR Spectra of D2O and HDO in Colombian Sample

Figure 8 illustrates the IR spectra of D2O and HDO molecules in Colombian emerald
sample. In Figure 8, a series of intense IR bands of sample col-022 locate at 2640, 2673, ~2740
and 2813 cm−1. After peak fitting, the intense shoulder absorption band at ~2740 cm−1 is
split into three bands located at 2724, 2736, and 2750 cm−1. Additionally, weak bands at
2629 and 2684 cm−1 are separated.
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Figure 8. IR spectra of D2O and HDO molecules in Colombian sample in the region of
2600–2850 cm−1. Experimental spectrum = black solid line, fitted peaks = cyan solid line, cumulative
fit = red dash line.

4. Discussion

It is a widely held view that type I H2O predominate in alkali-poor emeralds with
the frequencies of 1599–1607 cm−1 for H2OIν2 and 3690–3700 cm−1 for H2OIν3. In this
work, the bands corresponding to these two vibrations are at ~1603 cm−1 and ~3704 cm−1

(Figure 9a). What is controversial is the H2OIν1 related band, which was generally re-
ported in the range of 3602–3610 cm−1 [14,21,23,25,30] and occasionally observed at
3630–3635 cm−1 [16,22] and 3647–3650 cm−1 [22,32]. Additionally, 3602–3610 cm−1 is
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thought to be a reliable range for the frequency of H2OIν1 band, but this band is not
determined in our work as a result of overlapping the strong H2OIIν1 absorption.
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Two subtypes of type II H2O proposed by Fukuda and Shinoda [4] were also supported
by our results. Among the alkali ions of Dayakou samples, the proportion of Na+ exceeds
80%, which indicates that the type II H2O related to Na is dominant. In samples YEW-33
and YEW-32 with relatively low Na content, IR bands corresponding to H2OIIν3 locate
at 3661 and 3663 cm−1 (Figure 6a,b). Furthermore, in samples YEW-1 and YEW-22 with
higher Na content, aside from the above peaks, an obvious band at 3650/3652 cm−1 can
be observed (Figure 6c,d). In Figure 6d, two types of H2OIIν1 band are observed at 3593
and 3604 cm−1. These results suggest that type IId (Figure 9b) and IIs H2O (Figure 9c)
molecules also exist in natural emerald channels, and are controlled by the content of
sodium. Their IR absorption features are distinguished by the correlation between bond
length of Na-O and vibration frequency of H2O molecules. As shown in Figure 9b, the
doubly coordinated Na+ is shared by two hydroxyl oxygen (WO). The bond valence and
length are 0.14 vu and 2.483 Å, whereas those of singly coordinated Na+ are 0.28 vu and
2.227 Å, respectively [3,22]. With the increasing number of coordinated water molecules,
the bond length of Na+–WO rise together with the H–O–H angle [4,21]. Accordingly, both
the frequencies of ν1 and ν3 stretching modes of type IId H2O shift to higher wavenumbers,
which suggesting that the bands at ~3603 and ~3661 cm−1 are likely to be assigned to
H2OIIdν1 and H2OIIdν3, respectively. This is consistent with the results of [21,22]. The
~3593 cm−1 band is related to H2OIIsν1, and the controversial ~3651 cm−1 band should be
ascribed to H2OIIsν3 rather than H2OIν1 based on the almost constant frequency difference
between ν1 and ν3 modes.

Figure 6a, b indicate that type II water mainly exists as type IId with the ν3 band at
~3661 cm−1 in the channels of emeralds with low sodium content. The emergence of the
~3651 cm−1 band in the IR spectra of relatively high sodium content samples suggests that
the H2OII/Na+ apfu ratio drops below 2 as a consequence of the increase of Na content,
implicating a higher proportion of type IIs H2O.

Figure 3a–c reveal that the Raman spectrum patterns of the channel water molecules
in emeralds are controlled by the alkali content, especially the dominant Na content. At
present, many researchers quantitatively linked alkali cations with water, and various
empirical equations using Na content to evaluate the total channel water content have been
proposed [39–41], and the preferred equations are:

0.6097 Na2O (wt.%) + 1.6290 = H2O (wt.%) (1)

Na+ + 0.5 = H2O (apfu) (2)
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However, what is noteworthy is that only type II H2O is directly related to alkali
elements, especially Na. Additionally, the content of type I water is not constant as shown
in Figure 3d. Thus, it is more accurate to use the Na+ apfu and peak area of P2 Raman peak
to explore the quantitative relationship between alkali content and type II water. The data
was fitted to a trendline which can be described with the equation:

Na+ = −0.2190 + 0.0471 ln (PA3596 − 7286) (3)

Shown in Figure 10 as a black solid line. The fitted curve shows the logarithmic
relationship between type II water and the Na content, indicating a positive but not linear
correlation. The curve slope suggests that the type II water content increases uniformly
with the Na content. A possible explanation is that the proportion of type IIs H2O rises with
the increase of Na+ apfu, which means that more [Na(H2O)]+ complexes are formed with
the same number of water molecules. The specific theory of how the Na content controls
the proportion of type IIs and IId H2O demands further study.
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Water molecules related to Li+ and Cs+ were once defined as type III H2O by [16]. Li+

and Cs+ therein were set at position 2a while OH– at position 2b. The symmetry axis of
Cs(OH) was perpendicular to the c-axis. This configuration is questionable, because the
bond length between the eight-coordinated Li+ and ring oxygen (RO) was calculated to be
2.397 Å [3], which is even shorter than Na+–RO (2.568 Å) and also less than the average
2b–O distance with the value of 2.480 Å. Therefore, Li+ should occupy the 2b position in
the channel rather than the 2a position where Cs+ locates.

The chemical analyses of Dayakou samples show the proportion of Li+ among the
channel alkali ions ranges from 7.57–17.03%, indicating high possibility of the presence of
[Li(H2O)n]+ complex in which the H2O molecules are defined as Li-related type II (H2OII-Li)
here (Figure 11a). According to the calculated frequencies of OH vibration of the [M(H2O)]+

complexes by [8] and the variation of the bond strength of M+–O, the frequencies of ν1 and
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ν3 stretching modes of type II-Li should be lower than that of type II-Na. Accordingly, we
attempt to assign the weak ~3633 cm−1 band to H2OII-Liν3. This band was occasionally
assigned to H2OIν1 in previous work [16,22], because both H2OIν1 and H2OII-Liν3 are IR
active when the electric vector (E) is perpendicular to the c-axis. However, in the results
of samples BLS and DUV measured by [22], the bands at ~3650, ~3637 and ~3605 cm−1

were simultaneously detected under E⊥c, which supports that these three bands should be
ascribed to different vibration modes and is also the evidence of our assignments.
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Research on the coordination of Cs+ with H2O in natural emerald is limited as a result
of the negligible Cs content. It is possible to hypothesize a configuration of type III H2O that
the Cs+ at position 2a coordinates with OH– at position 2b (Figure 11b). The proportion of
Cs+ among the alkali ions in Dayakou emerald channels ranges from 1.63–4.24%, indicating
possible Cs(OH) complexes. According to the relationship between frequencies of OH
vibration and the bond length of M+–O [8], the ~3675 cm−1 band of higher wavenumber
than the frequency of H2OIIdν3 is tentatively assigned to the OH vibration of Cs (OH).

OD vibrations of D2O and HDO molecules in natural emeralds were once reported [29,35],
but not systematically assigned. According to IR absorption features of free D2O and
HDO molecules [42] and the H2O, D2O, and HDO bearing beryl [14], two principles of
the assignment of OD vibration are obeyed in this work: (1) the D2O-related vibrational
features are similar to those of H2O molecules; (2) the vibrations of OD group in HDO
molecule is independent without intramolecular OD–OD coupling. Additionally, the OD
vibration bands are consequently assumed to be about halfway between frequencies of
the ν1 and ν3 modes of D2O [14,29]. Hence, the systematic assignments of IR bands of
Colombian emerald are as follows: ν1 and ν3 bands of type I D2O at 2640 and 2750 cm−1;
ν1 and ν3 bands of type II D2O at 2629 and 2724/2736 cm−1; νOD of type I and type II
HDO at 2684 and 2673 cm−1, respectively. A satellite at 2813 cm−1 with a separation of
approximately 63 cm−1 from the D2O I ν3 mode is ascribed to the combination band related
to the libration mode. The coordination of D2O and HDO in the channel of emerald is
similar to H2O (Figure 12).
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Figure 12. Configurations and IR absorption features of D2O (a) and HDO (b) molecules in
Colombian emerald.

5. Conclusions

• Two subtypes (IId and IIs) of type II H2O were detected in Dayakou emerald. IR
absorption bands related to ν1 and ν3 modes of H2OIId are determined to locate at
~3603 and ~3661 cm−1, respectively, while those of H2OIIs at ~3593 and 3651 cm−1,
respectively. Type IId H2O predominates in those emeralds with relatively low alkali
content. As the alkali content increases, the proportion of type IIs H2O rises as a
result of the decrease of the H2OII/Na+ apfu ratio. The equation (3) derived from Na+

apfu and peak area of the 3596 cm−1 Raman peak is used to express the relationship
between the Na content and type II H2O.

• H2O corresponding to Li+ is defined as type II-Li H2O, of which the ν3 mode frequency
is ascertained to be ~3633 cm−1. A tentative assignment of ~3675 cm−1 band is the
OH vibration of Cs(OH) which is classified as type III H2O here.

• IR absorption bands for D2O and HDO molecules in Colombian emerald are observed
in the range of 2600–2850 cm−1 and preliminarily assigned.
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3. Bačík, P.; Fridrichová, J. The Site Occupancy Assessment in Beryl Based on Bond-Length Constraints. Minerals 2019, 9, 641.

[CrossRef]
4. Fukuda, J.; Shinoda, K. Coordination of water molecules with Na+ cations in a beryl channel as determined by polarized IR

spectroscopy. Phys. Chem. Miner. 2008, 35, 347–357. [CrossRef]
5. Andersson, L.O. The positions of H+, Li+ and Na+ impurities in beryl. Phys. Chem. Miner. 2006, 33, 403–416. [CrossRef]
6. Mashkovtsev, R.I.; Thomas, V.G. Nitrogen atoms encased in cavities within the beryl structure as candidates for qubits. J. Appl.

Magn. Reson. 2005, 28, 401–409. [CrossRef]
7. Mashkovtsev, R.I.; Smirnov, S.Z. The nature of channel constituents in hydrothermal synthetic emerald. J. Gemmol. 2004, 29,

215–227. [CrossRef]
8. Lee, H.M.; Tarakeshwar, P.; Park, J.; Kolaski, M.R.; Yoon, Y.J.; Yi, H.B.; Kim, W.Y.; Kim, K.S. Insights into the structures, energetics,

and vibrations of monovalent cation-(Water)(1-6) clusters. J. Phys. Chem. A 2004, 108, 2949–2958. [CrossRef]
9. Mashkovtsev, R.I.; Solntsev, V.P. Channel constituents in synthetic beryl: Ammonium. Phys. Chem. Miner. 2002, 29, 65–71.

[CrossRef]
10. Aurisicchio, C.; Fioravanti, G.; Grubessi, O.; Zanazzi, P.F. Reappraisal of the crystal chemistry of beryl. Am. Mineral. 1988, 73,

826–837.
11. Wood, D.L.; Nassau, K. Characterization of Beryl and Emerald by Visible and Infrared Absorption Spectroscopy. Am. Mineral.

1968, 53, 777–800.
12. Zimmermann, J.L.; Giuliani, G.; Cheilletz, A.; Arboleda, C. Mineralogical Significance of Fluids in Channels of Colombian

Emeralds: A Mass-Spectrometric Study. Int. Geol. Rev. 1997, 39, 425–437. [CrossRef]
13. Giuliani, G.; Groat, L.A.; Marshall, D.; Fallick, A.E.; Branquet, Y. Emerald Deposits: A Review and Enhanced Classification.

Minerals 2019, 9, 105. [CrossRef]
14. Mashkovtsev, R.I.; Thomas, V.G.; Fursenko, D.A.; Zhukova, E.S.; Uskov, V.V.; Gorshunov, B.P. FTIR spectroscopy of D2O and

HDO molecules in the c-axis channels of synthetic beryl. Am. Mineral. 2016, 101, 175–180. [CrossRef]
15. Goldman, S.D.; Rossman, G.R.; Parkin, K.M. Channel constituents in beryl. Phys. Chem. Miner. 1978, 3, 225–235. [CrossRef]
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