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Abstract: High-efficiency and stable hole transport materials (HTMs) play an essential role in high-
performance planar perovskite solar cells (PSCs). 2,2,7,7-tetrakis(N,N-di-p-methoxyphenylamine)-
9,9-spirobi-fluorene (Spiro-OMeTAD) is often used as HTMs in perovskite solar cells because of its
excellent characteristics, such as energy level matching with perovskite, good film-forming ability,
and high solubility. However, the accumulation and hydrolysis of the common additive Li-TFSI
in Spiro-OMeTAD can cause voids/pinholes in the hole transport layer (HTL), which reduces the
efficiency of the PSCs. In order to improve the functional characteristics of HTMs, in this work, we
first used CsI as a dopant to modify the HTL and reduce the voids in the HTL. A small amount of CsI
is introduced into Spiro-OMeTAD together with Li-TFSI and 4-tert-butylpyridine (TBP). It is found
that CsI and TBP formed a complex, which prevented the rapid evaporation of TBP and eliminated
some cracks in Spiro-OMeTAD. Moreover, the uniformly dispersed TBP inhibits the agglomeration of
Li-TFSI in Spiro-OMeTAD, so that the effective oxidation reaction between Spiro-OMeTAD and air
produces Spiro-OMeTAD+ in the oxidation state, thereby increasing the conductivity and adjusting
the HTL energy. Correspondingly, the PCE of the planar PSC of the CsI-modified Spiro-OMeTAD is
up to 13.31%. In contrast, the PSC without CsI modification showed a poor PCE of 10.01%. More
importantly, the PSC of Spiro-OMeTAD treated with CsI has negligible hysteresis and excellent
long-term stability. Our work provides a low-cost, simple, and effective method for improving the
performance of hole transport materials and perovskite solar cells.

Keywords: perovskite solar cells; hole transfer material; Spiro-OMeTAD; additive; agglomeration

1. Introduction

Organic-inorganic hybrid perovskite has attracted much attention because of its low
exciton binding energy, high absorption coefficient, wide spectral range, and long exci-
ton diffusion length. It is a potential candidate material for next-generation photovoltaic
devices [1–6]. Organic-inorganic hybrid lead halide perovskite solar cells (PSCs) have
the characteristics of good solution processability, low cost, and high energy conversion
efficiency [7,8] whicd considered to be a new generation of photovoltaic technology [9,10].
To achieve efficient and stable PSCs, researchers have conducted many explorations, includ-
ing designing device structures, [11] controlling perovskite film crystallization, regulating
the molecular structure of perovskite-type perovskites, and interface engineering. In the
typical structure of PSC, the electron transport layer (ETL) and hole transport layer (HTL)
play a crucial role in charge extraction and transport and determine the final photovoltaic
performance of PSCs. In planar structure PSCs, the perovskite active layer is sandwiched
between the hole and electron transport layer to enhance the transport and extraction of
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photogenerated carriers. In particular, the hole transport layer can facilitate hole extraction
and shield anode electrons [12–15]. Perovskite/HTL interface is also playing a key role in
maximizing the photovoltaic performance of PSCs [16,17]. Spiro-OMeTAD is one of the
earliest small-molecule hole transport materials used in perovskite cells and is often used as
a reference for comparison with newly developed HTMs. The undoped Spiro-OMeTAD has
relatively low hole mobility and conductivity, which are in the order of 10−4 cm2 V−1 s−1

and 10−5 S cm−1, respectively [18,19].
The chemical P-type doping strategy has been proved to be an effective method to im-

prove the charge transport capacity of Spiro-OMeTAD [20]. In general, 4-tert-butylpyridine
(TBP) and (trifluoromethanesulfonyl)imide (Li-TFSI) are doped in Spiro-OMeTAD to im-
prove the electrical conductivity. Then, Spiro-OMeTAD is oxidized in air to generate more
Spiro-OMeTAD+ cation radicals, thus improving the mobility of HTL and regulating the en-
ergy level of Spiro-OMeTAD [21–23]. Li-TFSI is used as a catalyst to promote the oxidation
reaction of Spiro-OMeTAD in air. Another additive (TBP) is used to regulate the solubility
of Li-TFSI so that Li-TFSI is evenly distributed in HTL [24]. However, the addition of
Li-TFSI and TBP has led to some nasty problems. Li-TFSI is hygroscopic and can easily
absorb moisture from the air, which leads to the accumulation of Li-TFSI and reduces the
film hole transport performance. Meanwhile, with the gradual evaporation of TBP, some
bubbles and voids are left inside HTL, which will further aggravate the accumulation of
Li-TFSI, thus inhibiting the charge transmission and collection. Many studies have been
proposed to enhance the electrical conductivity and hole mobility of HTL, e.g., cobalt
complex (FK209) [25], (SnCl4) [26], perfluoro-tetracyanoquino-dimethane (F4-TCNQ) [27],
tetrabutylammonium (TBA) [28] and polymer poly(4-vinylpyridine) (P4VP) [29]. At the
same time, it will not only affect the efficiency of the equipment but will also be expensive.
Therefore, further efforts to find other HTMs with excellent chemical stability and high
hole mobility are necessary to achieve the detector’s high efficiency and long-term stability.

This work uses a simple doped method to develop low-cost HTL doping with high hole
mobility and stability. A small amount of CsI is introduced into Spiro-OMeTAD, together
with Li-TFSI and TBP as additives. After the study, it is found that CsI and TBP formed a
complex, which inhibited the agglomeration of Li-TFSI in Spiro-OMeTAD, thus preventing
the rapid evaporation of TBP from leaving some cracks in Spiro-OMeTAD. Compared
with Spiro-OMeTAD, which only added Li-TFSI and TBP additives, the Spiro-OMeTAD
morphology and hole transport performance are improved after CsI doping. The solar
cells made with the optimized Spiro-OMeTAD material showed excellent performance.
The results show that due to the improvement of fill factor (FF), short-circuit current density
(JSC), and other parameters, the stable output efficiency of PSCs is 13.31%. The CsI and TBP
complexes can also inhibit the aggregation and crystallization of Li-TFSI, reducing voids
and pinholes. The uniform and dense Spiro-OMeTAD film can effectively avoid moisture
infiltration, thereby preventing the decomposition of perovskite.

2. Materials and Methods

Materials: Molybdenum (VI) oxide (MoO3, 99.97%), N, N-dimethylformamide (DMF,
99.8%), Dimethyl sulfoxide (DMSO, ≥99.9%, ACS reagent), bis(trifluoromethane) sulfon-
amide lithium salt (Li-TFSI), chlorobenzene (CB, 99.9%)and 4-tert-Butylpyridine (TBP,
96%), Acetonitrile (99. 9%, Superdry) are purchased from Sigma-Aldrich. Lead iodide
(PbI2, 99.99%) and 2, 2′, 7, 7′-tetrakis (N, N-di-p-methoxyphenylamine)9, 9′-spirobifluorene
(Spiro-OMeTAD, 99.8%) are purchased from Xi’an Polymer Light Technology Corp, Xi'an,
China. Indium-tin oxide (ITO) transparent conductive film glass and Methylammonium
iodide (MAI, ≥99.9%) are purchased from Advanced Election Technology CO.,Ltd, Liaon-
ing, China. Tin (IV) oxide (SnO2), 15% in H2O colloidal dispersion, is purchased from Alfa
Aesar, Shanghai, China. All chemicals and solvents are used as received without further
purification unless otherwise stated.

Device Fabrication: All PSCs are fabricated on commercial ITO, with patterned glass
electrodes less than 10 Ω sq−1. The patterned ITO substrate is thoroughly cleaned in
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detergent, acetone, 2-propanol, and deionized water for the sequence in an ultrasonic bath
for 15 min. Then, the substrate is treated with UV-ozone for 15 min.

SnO2 Film Preparation: SnO2 aqueous solution (15%) is diluted with deionized water
at a volume ratio of 1:6. In an air environment, drop the diluted SnO2 solution on the ITO
substrate and spin at 4000 rpm for 50 s. Finally, the film is annealed at 150 ◦C for 30 min.
After cooling, the substrates are first treated with UV-ozone for 5 min and transferred into
a nitrogen-filled glove box for device fabrication (O2 < 0.01 ppm, H2O < 0.01 ppm).

Perovskite Film Preparation: PbI2 (553.7 mg) and MAI (190.7 mg) are dissolved in N,N-
dimethylformamide (DMF, 0.8 mL) and Dimethyl sulfoxide (DMSO, 0.2 mL). The mixtures
are kept stirred at 70 ◦C for one night and filtered through a 0.22 µm filter before use.
An amount of 200 µL of 70 ◦C CH3NH3PbI3 solutions are dispensed onto the SnO2 layer
and spin-coated at 3000 rpm for 13 s. The spin speed is then increased to 5000 rpm, and
after 5 s, 300 µL of anti-solvent chlorobenzene is dispensed onto the middle of the spinning
perovskite film in less than 2 s. Finally, the films are left to spin at 5000 rpm for 50 s.
The CH3NH3PbI3 perovskite film spin-coating is done at room temperature (25 ◦C) and
annealed at 100 ◦C for 15 min.

Spiro-OMeTAD Film Preparation: First, 0.0 wt%, 0.2 wt%, 0.4 wt%, 0.6 wt%, and
0.8 wt% of CsI is dissolved in 1 mL TBP (mass ratio, CsI/TBP), respectively, and then stirred
for 30 min (min) to obtain TBP and CsI mixed solution. Then, 72.3 mg of Spiro-OMeTAD
is dissolved in 1 mL of chlorobenzene that contains 17.5 µL Li-TFSI (520 mg mL−1 in
acetonitrile) and 28.8 µL of the above TBP and CsI mixed solution to obtain Spiro-OMeTAD
precursor solution. Then Spiro-OMeTAD precursor solution is spin-coated on perovskite
film at 3000 rpm for 40 s and then stored in an air environment (25 %RH and 25 ◦C) for 8 h.

Finally, molybdenum oxide (≈10 nm) and copper (≈100 nm) are thermally evaporated
onto the active layer sequentially under vacuum pressure <10−4 Pa.

3. Results and Discussion

In this study, five types of Spiro-OMeTAD hole transport layer (HTL) are prepared:
Spiro-OMeTAD with Li-TFSI, TBP and without CsI (=HTL 0.0 wt%), Spiro-OMeTAD with
Li-TFSI, TBP and 0.2 wt% CsI (=HTL 0.2 wt%), Spiro-OMeTAD with Li-TFSI, TBP and
0.4 wt% CsI (=HTL 0.4 wt%), Spiro-OMeTAD with Li-TFSI, TBP and 0.6 wt% CsI(=HTL
0.6 wt%), and Spiro-OMeTAD with Li-TFSI, TBP and 0.8 wt% CsI (=HTL 0.8 wt%).
Accordingly, five types of perovskite solar cells (PSC 0.0 wt%, PSC 0.2 wt%, PSC 0.4 wt%,
PSC 0.6 wt%, and PSC 0.8 wt%) are manufactured based on the above five HTLs, and their
performance is tested. The manufacturing process of PSCs is shown in Figure 1a. First,
the electron transport layer (SnO2), photosensitive layer (MAPbI3), and hole transport
layer (Spiro-OMeTAD) are gyro-coated on patterned ITO substrates successively.Finally,
the device is transferred to a vacuum chamber at 2 × 10−4 Pa for electrode modified layer
(MoO3) evaporation and electrode (Cu). The Experimental Section completely describes
the fabrication process of the device. All devices are manufactured under the same con-
ditions, so each layer has the same thickness. As shown in Figure 1b, the device with the
ITO/SnO2/MAPbI3/Spiro-OMeTAD (with or without CsI)/MoO3/Cu structure.

3.1. Spiro-OMeTAD: CsI Films Characterization

Carrier transport in PSCs is closely related to the crystal structure and morphology
of HTMs, which affects the performance parameters of the detector [30]. Five types of
PSCs are prepared by spin-coating SnO2, organic-inorganic hybrid MAPbI3 layer, and
Spiro-OMeTAD (with or without CsI) on ITO coated glass, respectively (Figure 1a,b).
The materials have suitable energy level matching, and the energy level diagram of the
device is shown in Figure 1c.
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To further investigate the impact of CsI in governing the morphology and microstruc-
ture of the HTL, scanning electron microscope (SEM) and atomic force microscopy (AFM)
is conducted (Figures S1–S6). Figure S1a–e show the top-view SEM images of fresh Spiro-
OMeTAD film (HTL 0.0 wt%, HTL 0.2 wt%, HTL 0.4 wt%, HTL 0.6 wt%, and HTL 0.8 wt%)
after spin coating, respectively. As shown in Figure S1a–e, the fresh Spiro-OMeTAD films
after spin coating all had a dense and uniform surface. It shows that the addition of CsI
will not damage the film-forming properties of Spiro-OMeTAD. In order to improve the
hole mobility and conductivity of Spiro-OMeTAD, the spin-coated Spiro-OMeTAD films
are oxidized in air. Figure S1f–k shows the top view SEM image of the corresponding
Spiro-OMeTAD films after oxidizing in the air for 8 h. As can be seen from Figure 2a and
Figure S1f, the Spiro-OMeTAD film that is not optimized by CsI showed obvious aggrega-
tion. In contrast, other Spiro-OMeTAD films optimized by CsI remain relatively uniform
after oxidation (Figure S1g–k). HTL 0.4 wt% maintains the best uniform and dense film after
oxidation (Figure 2b and Figure S1h). Figure 2c shows the SEM image of the cross-sectional
view of the device based on HTL 0.0 wt%. There are black aggregates and cracks randomly
distributed within the HTL 0.0 wt%, which will seriously hinder the transmission of holes
and reduce the device’s performance. In contrast, Figure 2d is a cross-sectional SEM image
of a device based on HTL 0.4 wt%, showing a compact multilayer structure with a clear
interface. All devices are manufactured under the same conditions, so each functional
layer has the same thickness. The thickness of each functional layer of the PSCs can be
measured. The cathode electrode (ITO) is about 170 nm, the SnO2 is 20 nm, the perovskite
photoactive layer (MAPbI3 or CH3NH3PbI3) is 460 nm, Spiro-OMeTAD is 160 nm, and the
copper electrode is 80 nm.

In addition, 3D AFM images confirm that the introduction of CsI significantly improves
the films’ morphology (Figure S1i–p). Figure 2e,f show high-resolution AFM images of
HTL 0.0 wt% and HTL 0.4 wt%. For the HTL 0.0 wt%, the arithmetic average (Ra) and
the root mean square (Rq) are 6.19 nm and 5.13 nm, respectively. On the contrary, when
the Spiro-OMeTAD is doped with 0.4 wt% CsI, the film is smooth, Ra is 1.77 nm, and Rq
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is 2.21 nm. Table S1 shows that with the increase of CsI doped, Ra of Spiro-OMeTAD
decreased from 5.13 nm to 1.77 nm (CsI 0.4 wt%), and the Rq decreased from 6.19 nm to 2.21
nm (CsI 0.4 wt%), respectively. When the doping content reaches 0.4 wt%, the minimum
surface roughness, in addition, if the doped amount continues to increase, it will lad to
the over-precipitation of CsI, resulting in the film’s roughness. Due to the low solubility
of CsI in chlorobenzene, CsI crystals will precipitate when TBP solution containing a
high concentration of CsI is added to the chlorobenzene solution of Spiro-OMeTAD. The
precipitated CsI crystals will increase the roughness of the Spiro-OMeTAD film.

Energy-dispersive X-ray energy spectrum (EDS) analysis of the aggregation cen-
tre(Figure 3a,c) revealed the presence of fluorine (F) and sulfur (S), which indicated that
Li-TFSI is not uniformly dispersed in the Spiro-OMeTAD, leading to the aggregation of
the Spiro-OMeTAD. When 0.4 wt% CsI is added, the Spiro-OMeTAD aggregates disappear
and show a uniform surface. EDS could also detect that caesium and iodine elements are
evenly dispersed in the Spiro-OMeTAD (Figure 3b,d). These results confirmed that the
introduction of CsI prevents the aggregation of Li-TFSI and Spiro-OMeTAD.
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Figure 2. Top-view SEM images of Spiro-OMeTAD film oxidized at room temperature for 8 h HTL
0.0 wt% (a) and HTL 0.4 wt% (b). Cross-sectional SEM images of PSCs based on HTL 0.0 wt% (c)
and HTL 0.4 wt% (d). 3D AFM images of HTL 0.0 wt% (e) and HTL 0.4 wt% (f). Films for the AFM
testing in tapping mode. The red circles in panels (a) and (c) represent the aggregated regions of the
Spiro-OMeTAD films.

It has been reported that Li-TFSI plays a catalytic role in forming oxidation Spiro-
OMeTAD in the ion-doped Spiro-OMeTAD system. Therefore, the uniform distribution of
Li-TFSI in HTL can effectively oxidize Spiro-OMeTAD and form more oxidation state Spiro-
OMeTAD+, thus improving the hole mobility and overall device performance. In order
to determine the interactions in HTL solutions, especially between TBP and CsI, experi-
mental analyses are performed. Under white light, TBP is a yellowish liquid, while under
ultraviolet light, TBP emits blue fluorescence. This blue fluorescence disappeared when
CsI is added to TBP (Figure 4b). The pure TBP and TBP liquids containing CsI are analyzed
by UV-visible spectroscopy. Strong absorption at 386 nm is observed in the absorption
spectrum (Figure 4c). These observations indicate an interaction between TBP and CsI
molecules. We suspect that CsI introduced into HTL forms a complex of CsI·xTBP that
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prevents rapid evaporation of TBP. It is well known that the central role of TBP is to dis-
perse Li-TFSI and prevent their agglomeration [24,31]. Figure 5 shows the effect of CsI
on preventing Li-TFSI aggregation. When Spiro-OMeTAD containing Li-TFSI and TBP is
spin-coated, TBP in the film would evaporate quickly, resulting in Li-TFSI agglomeration.
The rapid evaporation of TBP leaves a void inside the HTL, which inhibited charge transfer.
The accumulation of Li-TFSI will causes moisture in the air to enter the interior of Spiro-
OMeTAD and destroyed its structure easily [32]. CsI·xTBP inhibited the agglomeration
Li-TFSI and formed uniform and dense Spiro-OMeTAD film, which effectively inhibited
the invasion of moisture. It has been reported that Li-TFSI plays a catalytic role in form-
ing oxidation Spiro-OMeTAD in the ion-doped Spiro-OMeTAD system [33]. Therefore,
the uniform distribution of Li-TFSI in HTL can effectively oxidize Spiro-OMeTAD and
form more oxidation state Spiro-OMeTAD+, thus improving the hole mobility and overall
device performance.
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The water contact angle is measured to investigate the hydrophobicity of Spiro-
OMeTAD films further. When 5 microliters of water are placed on the surface of the HTL 0.0
wt%, the water contact angle gradually decreases from 73◦ to 43◦ in 2 min (Figure S5a–c).
In addition, water gradually penetrates the perovskite layer and hydrolyzes the perovskite
in 2 min. In contrast, within 2 min, the contact angle of the Spiro-OMeTAD film treated
with 0.4 wt% CsI remained at 81◦, and there is no perovskite hydrolysis (Figure S5d). The
above experimental results indicate that Spiro-OMeTAD film optimized by 0.4 wt% CsI can
inhibit moisture infiltration.

To better understand the effect of the dopants on the energy level of HTLs, ultra-
violet photoemission spectra (UPS) are performed. As shown in Figure 6a, the energy
level of HTLs can be obtained by the following equations: [34,35]. ECB = EVB + Eg;
EVB = EF − Eonset (onset energy); EF = Ecutoff (cutoff energy) −21.22 eV. The ECB, EVB, EF,
and Eg represent the conduction band maximum, valence band maximum, the Fermi level,
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and energy bandgap, respectively. The exact energy level values for the different HTLs are
summarized in Table 1. After 0.4 wt% CsI doping, the Fermi level value of Spiro-OMeTAD
film increases from −4.92 eV to –4.88 eV, indicating the formation of extensive p-type
oxidized Spiro-OMeTAD+ cations. Figure 7a shows the energy levels of perovskite, HTL
0.0 wt%, and HTL 0.4 wt% layers. After 0.4 wt% CsI is added, the EVB of Spiro-OMeTAD
film decreased from −5.21 eV to −5.24 eV. It is worth noting that the addition of CsI shifts
downward the EVB of the HTL, which is closer to the EVB of perovskite, thus enabling more
effective hole extraction and transportation between perovskite and HTL.
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Figure 4. (a) Molecular structures of Spiro-OMeTAD, Li-TFSI, and TBP. (b) Optical image of TBP and
CsI dissolved in TBP under white light (left) and ultraviolet light (right). (c) UV-visible absorption
spectra of CsI, TBP, and CsI dissolved in TBP.
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Table 1. The calculated values of energy level of the HTLs doped with and without CsI.

HTL Eonset (eV) Ecutoff (eV) EF (eV) Eg (eV) EVB (eV) ECB (eV)

HTL 0.4 wt% 0.29 16.30 −4.92 −2.990 −5.21 −2.220

HTL 0.0 wt% 0.36 16.34 −4.88 −2.998 −5.24 −2.242Crystals 2022, 12, x FOR PEER REVIEW 8 of 18 
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Figure 6. (a) UPS diagrams of HTL 0.0 wt% and HTL 0.4 wt% films: Eonset area (left), Ecutoff area
(right). (b) Ultraviolet-visible absorption spectra of Spiro-OMeTAD doped with different CsI content.
(c) magnified image of the oxidized Spiro-OMeTAD peak at 440–560 nm. (d) Tauc plots of the HTL
0.0 wt%t and HTL 0.4 wt%.
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Figure 7. (a) Energy levels of the perovskite, HTL 0.0 wt% and HTL 0.4 wt% layers. (b) PL spec-
tra of perovskite and perovskite/Spiro-OMeTAD with different concentrations of CsI. (c) Time-
resolved photoluminescence (TRPL) of perovskite and perovskite/HTL 0.0 wt% and perovskite/HTL
0.4 wt% layers.

To understand the properties of Spiro-OMeTAD: CsI (0.0, 0.2, 0.4, 0.6, 0.8 wt%) films
with different doped concentrations, the UV-visible absorption spectra of Spiro-OMeTAD:
CsI is characterized in the wavelength range from 300 to 800 nm. As shown in Figure 6b,
all spectra are intensity normalized to the prominent peak at 390 nm [36,37]. The peaks of
all samples near 390 nm can be attributed to Spiro-OMeTAD absorption, corresponding
to the p-p* electron transition of Spiro-OMeTAD [38]. The broad peak around 500 nm
shown in Figure 6c is the indicator for the generation of oxidized Spiro-OMeTAD (Spiro-
OMeTAD+) [39–41]. However, HTL 0.4 wt% has the highest absorption peak near 500 nm,
indicating that this concentration can effectively oxidize Spiro-OMeTAD. The formation
of oxidized state Spiro-OMeTAD is beneficial to improving the hole’s mobility [42]. The
evenly distributed Li-TFSI promoted the oxidation of Spiro-OMeTAD, which improves
the hole mobility and the device’s overall performance. The doping of inorganic ions
can improve the conductivity and carrier mobility of organic semiconductor materials
and improve device stability [43,44]. As shown in Figure 6d, the energy bandgap (Eg) of
HTL 0.4 wt% and HTL 0.0 wt% are 2.990 eV and 2.998 eV, respectively, and the difference
is within the margin of error, indicating that adding CsI brings no noticeable impact on
the bandgaps.

Photoluminescence (PL) spectroscopies further investigate the charge carrier dynamics
of ITO/perovskite/HTL devices. Electron-hole pair be generated when the perovskite
excites by laser, the radiation combination of the electron-hole pair will produce fluores-
cence. The hole extraction ability of HTL can be determined by comparing the fluorescence
quenching effect of perovskite/Spiro-OMeTAD films [45]. As shown in Figure 7b the fluo-
rescence intensity of Spiro-OMeTAD film doped with CsI is lower than that of the undoped
film (HTL 0.0 wt%). HTL 0.4 wt% has the lowest fluorescence intensity. The results indicate
that CsI doped could effectively improve the hole extractive ability of Spiro-OMeTAD films.

The process of hole extraction is analyzed by time-resolved photoluminescence (TRPL)
decay spectra (Figure 7c). A bi-exponential equation can fit the TRPL decay curves:

I(t) = A1× exp(−t/τ1)+A2× exp(−t/τ2)+B (1)

Charge carrier average lifetime (τav) are 38.12 ns, 16.40 ns, and 10.06 ns for the pristine
perovskite, perovskite/HTL 0.0 wt%, and perovskite/HTL 0.0 wt%, respectively (Table S2).
The above indicates that CsI doped HTL has a faster and more efficient hole extraction
ability, thus improving the photoelectric performance of the device [23,46]. Hole extraction
rate kHT= 1/ τ− 1/ τ0 where τ0 and τ represent the PL lifetime of the pristine perovskite
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and perovskite/HTL films, respectively. The hole extraction rate of perovskite/HTL 0.4 wt%
is 7.32× 107 s−1, which is higher than perovskite/HTL 0.0 wt% (3.4× 107 s−1). HTL 0.4 wt%
has a higher charge-carrier extraction ability, indicating that CsI doped can improve the
perovskite/HTL interface and reduce defects of HTL.

In order to study the carrier behaviour of the CsI-doped Spiro-OMeTAD film, a pure
hole device is fabricated. Figure 8a shows the pure hole device’s current density–voltage
curves in the 0–2 V voltage range, and Figure 8b shows the corresponding J1/2-V curves.
Under the same voltage, the current density of CsI doped devices is much higher than the
undoped ones. The device doped with 0.4 wt% CsI shows the highest current density in the
whole bias range. The above indicates that the introduction of CsI improves the interface
contact between the perovskites/HTL/electrode and makes the charge transfer faster. The
mobilities of different HTLs are measured by space-charge-limited current (SCLC).

J =
9
8

εrε0µ
V2

L3 (2)

where εr = 3 is the dielectric constant of the Spiro-OMeTAD film, ε0 is the permittivity of
free space, L = 200 nm is the thickness of Spiro-OMeTAD film, µ is the hole mobility, and V
is the partial voltage. Based on the slope and intercept of the J1/2-V curves, we calculated
the mobility of HTL by Equation (2). The hole mobility of HTL 0.4 wt% is 4.29 × 10−3

cm2 V−1 s−1, which is higher than the 2.12×10−4 cm2 V−1 s−1 of HTL 0.0 wt%. The above
results verify that the introduction of CsI affects carrier behaviour. The above results verify
that CsI improves the hole mobility of Spiro-OMeTAD, which helped the device achieve
efficient hole transport and extraction, reducing dark currents and improving detection.
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nm)/Spiro-OMeTAD (200 nm)/MoO3 (10 nm)/Cu.

3.2. Performance of the PSCs

In order to further study the effect of doped CsI on the MAPbI3/HTL/MoO3/Cu
interface, electrochemical impedance spectroscopy (EIS) measurement is performed on
PSCs. Figure 9a shows the EIS spectrum of PSCs, and the inset is the equivalent circuit used
to fit the data. The semicircle at high frequency is considered the charge transfer resistance
(Rt) of the interface between MAPbI3/HTL and HTL/MoO3/Cu [47]. It is evident that
the Spiro-OMeTAD doped with CsI has a lower Rt than the Spiro-OMeTAD without CsI
doping. Among them, the semicircle of PSC 0.4 wt% is the smallest, indicating that the
Spiro-OMeTAD film is the smoothest at this doping concentration, which is beneficial to
the rapid transmission and extraction of holes. This result is consistent with Figure 9b, and
the decreased Rt lad to higher FF and VOC of PSCs.
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Figure 9. (a) Nyquist plots of the PSCs based on different Spiro-OMeTADs. (b) J-V characteristics
of devices with HTLs doping with different concentrations of CsI measured under AM 1.5 G solar
irradiance (100 mW cm−2). (c) The EQE curve of the PSCs is based on Spiro-OMeTAD with different
CsI doping concentrations. (d) J-V characteristics of PSC 0.0 wt% and PSC 0.4 wt%, measured at both
forward and reverse scanning directions.

The optimal current-voltage (J-V) characteristic curve of devices based on the Spiro-
OMeTAD with various doping concentrations of CsI (0.0, 0.2, 0.4, 0.6, 0.8 wt%) under
simulated AM 1.5 G solar irradiation (100 mW cm−2) are displayed in Figure 9b, and
their relevant photovoltaic parameters are summarized in Table 2. Compared with the
PSC 0.0 wt%, the PSC optimized with different proportions of CsI result in significant
increments in open-circuit voltage (VOC), short-circuit current (JSC) and fill factor (FF).
In particular, PSC 0.4 wt% achieved the highest PCE value of 13.31% with a VOC of 1.07 V,
a JSC of 23.09 mA cm−2, and a fill factor of 0.58. In contrast, the non-CsI-optimized device
(PSC 0.0 wt%) has a PCE value of 10.02%, a VOC of 1.00 V, a JSC of 19.76 mA cm−2, and a fill
factor of 0.50. The increased JSC and FF of PSCs are attributed to the optimized HTL [48],
efficiently transporting holes from the perovskite layer. After the addition of CsI, the
enhancement of the hole transportability of HTL reduces the accumulation of interface
charges, thereby increasing the VOC of the device.
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Table 2. Photovoltaic data of PSCs based on Spiro-OMeTAD doped different CsI concentrations.

Devices Voc (V) Jsc
(mA cm−2) FF PCE (%) Rt

(Ω)
EQE
(%)

Integrated
Jsc (mA cm−2)

PSC 0.0 wt% 1.00 19.76 0.50 10.02 105.12 76 19.71
PSC 0.2 wt% 1.03 20.01 0.53 10.98 30.61 80 20.06
PSC 0.4 wt% 1.07 21.62 0.58 13.31 21.87 88 21.63
PSC 0.6 wt% 1.05 21.30 0.54 12.12 22.45 83 21.29
PSC 0.8 wt% 1.04 20.80 0.54 11.71 23.11 81 20.81

In order to explore the reproducibility of device efficiency, we made 20 PSC devices
without CsI and with CsI optimization and measured them. Figure S6 shows the statistics of
all devices. The PCE distribution of CsI optimized devices is concentrated in a small range
of 12.68~13.31%, higher than the PCE distribution of devices without CsI (8.71~10.02%),
indicating that our PSCs production process has good repeatability. As shown in Figure S6,
the PCE first increases with CsI doping concentration. This is because doping CsI helps
improve the charge transport performance of HTL. Moreover, a further increase in the CsI
concentration will decrease short-circuit current density, open-circuit voltage, and influence
factor. The accumulation of interface charge is one of the main reasons of the decrease
in the light pressure of the device. We believe that the decrease in VOC can be attributed
to the increase in SnO2/perovskite/HTL interface charge recombination. The previous
analysis shows that an appropriate amount of CsI doping concentration can improve the
hole mobility of Spiro-OMeTAD (Figure 8 and Table 3), which is conducive to the charge
transport of HTL. When the doped CsI concentration is 0.4 wt% (mass ratio, CsI/TBP),
PSCs have the best PCE. As the CsI concentration further increases, the PCE of the device
decreases. This is because excessive CsI that does not form a complex with TBP may act as
a recombination centereat the interface between perovskite and HTL, thereby increasing
the hole concentration in HTM and reducing the driving force for hole extraction, resulting
in a device Performance deteriorating. Therefore, the doping amount of CsI concentration
of about 0.4 wt% (mass ratio, CsI/TBP) may be the balance point of hole extraction, hole
transport, and interface recombination.

Table 3. The mobility of HTL consisting of Spiro-OMeTAD and different amounts of CsI (0.0, 0.2, 0.4,
0.6, and 0.8 wt%).

Samples HTL
0.0 wt%

HTL
0.2 wt%

HTL
0.4 wt%

HTL
0.6 wt%

HTL
0.8 wt%

Mobility
(cm2 V−1 s−1) 2.11 × 10−4 5.58 × 10−4 4.39 × 10−3 2.42 × 10−3 7.58 × 10−4

Figure 9c shows the EQE curve of solar cells with or without CsI dopants. Obviously,
the CsI-doped Spiro-OMeTAD device exhibits a higher EQE in the 300–800 nm region
than the undoped Spiro-OMeTAD. As mentioned above, this may be due to the high hole
mobility and conductivity of CsI-doped HTL. The integral JSC value obtained from the
EQE curve is basically the same as the value obtained from the J-V characteristics curve,
indicating the validity of our measurement.

As we all know, in the PSCs measurement process, the J-V characteristic curve will
change due to the different scanning directions and scanning rate [49]. As shown in
Figure 9d, we studied the hysteresis in PSCs through reverse and forward scanning.
The hysteresis index (HI) is used to estimate the degree of hysteresis: HI = (PCEreverse
− PCEforward)/PCE reverse. The detailed photovoltaic parameters are shown in Table 4.
From Table 4, we can know that the HI of the PSC 0.0 wt% is 0.082, but it reduced to
0.031 after optimization by CsI. This shows that CsI optimized devices have lower hystere-
sis. The reason for the decrease in hysteresis may be that the conductivity of the HTL is
optimized, the carrier extraction capability of the HTL is enhanced, and the traps at the
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perovskite/HTL interface are passivated so that electron transport and hole transport are
balanced [50].

Table 4. Photovoltaic data of the PSC 0.0 wt% and PSC 0.4 wt% measured in forward and reversed scans.

Devices Scan
Direction

Jsc
(mA cm−2) FF PCE

(%)
Voc
(V) HI

PSC 0.0 wt%
reverse 19.76 0.50 10.02 1.01

0.082forward 19.78 0.48 9.20 0.97

PSC 0.4 wt%
reverse 21.62 0.58 13.38 1.07

0.031forward 21.60 0.57 12.96 1.05

As shown in Figure 10, the stability of Spiro-OMeTAD-doped or non-doped CsI PSCs
is tested for about 30 days (relative humidity: 25%RH, temperature: 25 ◦C). During the 30d
storage period, the PCE 0.0 wt% device value is significantly reduced to 62% of the original
value, while the CsI optimized PCE 0.4 wt% device maintained 91% of its initial PCE value,
showing excellent long-term stability.
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Spiro-OMeTAD HTLs.

The degradation of device performance is a combination of many factors. The deteri-
oration of the perovskite/transport layer interface and the decomposition of perovskite
crystals may lead to the degradation of solar cell performance. Fu et al. found that at higher
operating temperatures, the degradation mainly starts from the inside of the perovskite
absorber rather than the perovskite/charge-selective layer interface or the cell edge [51].
Khadka et al. found that voids at the HTL (ETL)/HaP interface and I2 gas released from
PbI2 crystallites are the main reasons for the degradation of perovskite solar cells [52]. In
this work, we found that the main reason for the performance degradation of solar cells is
that the surface of the hole transport layer of Spiro-OMeTAD not optimized by CsI is rough
and had voids, which allows the intrusion of moisture from the air. Moisture penetrating
the Spiro-OMeTAD hole transport layer will destroy the perovskite layer and cause the
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perovskite to decompose. The hydrolytic reaction of perovskite conforms to the following
stoichiometric equation: [53].

4(CHH3NH3)PbI3↔ 4[CH3NH3·H2O]↔ (CH3NH3)4PbI6·2H2O + H2O (3)

(CH3NH3)4PbI6·2H2O→ 4CH3NH3 I + PbI2 + 2H2O (4)

According to the chemical equation, the water reacts with the perovskite layer, break-
ing the perovskite into PbI2. After optimization, the stability of the PSC 0.4 wt% device
is enhanced. This is because HTL 0.4 wt% has a dense and uniform surface film, which
can effectively prevented moisture intrusion. The dense hole transport layer protects the
perovskite layer and increase the stability of perovskite solar cells.

4. Conclusions

In summary, we use a mixture of Spiro-OMeTAD, Li-TFSI, TBP and CsI as HTL,
showing a cheap and straightforward strategy to improve the photovoltaic performance of
PSCs. CsI and TBP form a complex, which effectively prevents the rapid evaporation of TBP,
reduce the defects between the perovskite/HTL, and makes the surface of Spiro-OMeTAD
uniform and smooth. UV-Vis absorption spectra, PL and TRPL results show that doping
CsI can effectively oxidize Spiro-OMeTAD to Spiro-OMeTAD+, which improves the hole
extraction ability of HTL. In addition, SCLC, UPS, and EIS analysis confirmed that HTM
doped with CsI improves the conductivity of HTL, reduces charge recombination loss,
and achieves an appropriate energy level. In particular, the addition of CsI increases the
short-circuit current density and open-circuit voltage of the PSC, mainly due to the increase
in the extraction rate of holes and the reduction of carrier recombination. Therefore, under
the same conditions, the maximum PCE value of the PSC 0.4 wt% optimized by CsI is
13.31%, while the PCE value of the unoptimized PSC 0.0 wt% device is only 10.01%. At the
same time, the 0.4 wt% CsI-doped device maintained an initial efficiency of 91% within
30 days (humidity: 25%, temperature: 25 ◦C, dark conditions), while the original device
only maintained a efficiency of 62%. This work provides a simple and low-cost method for
improving PSCs’ photovoltaic performance and stability.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12020290/s1, Figure S1: (a–e) Top-view SEM images of
fresh Spiro-OMeTAD film (HTL 0.0wt%, HTL 0.2wt%, HTL 0.4wt%, HTL 0.6wt% and HTL 0.8wt%)
after spin coating. (f–k) Top view SEM image of the corresponding Spiro-OMeTAD film after being
oxidized in air for 8 hours. (l–p) Top view 3D AFM image of the corresponding Spiro-OMeTAD film
after oxidation in air for 8 hours. Figure S2: (a) Elementary characterization of HTL 0.0wt%; (b,c)
EDS mapping of S and F elements in HTL 0.0wt%. Figure S3: (a) Elementary characterization of HTL
0.4wt%; (b–e) EDS mapping of Cs, S, I and F elements in HTL 0.4wt%. Figure S4: Top-view SEM
image of the perovskite film. Figure S5: Water contact angles of ITO/SnO2/perovskite/HTL 0.0wt%
(a-c) and ITO/SnO2/perovskite/HTL 0.4wt% (d). Figure S6: At five concentrations of 0.0, 0.2, 0.4,
0.6 and 0.8 wt% (mass ratio, CsI/TBP). The statistical distribution of Voc (a), Jsc (b), FF (c) and PCE
(d) photovoltaic parameters of 20 PSCs samples under the same test conditions. Table S1: AFM data
of Spiro-OMeTAD doped with different mass ratio of CsI. Table S2: TRPL data of ITO/Perovskite,
ITO/Perovskite/HTL 0.0wt% and ITO/ Perovskite/HTL 0.4wt%.
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