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Abstract: Strange metal behavior refers to a linear temperature dependence of the electrical resistivity
that is not due to electron–phonon scattering. It is seen in numerous strongly correlated electron
systems, from the heavy fermion compounds, via transition metal oxides and iron pnictides, to
magic angle twisted bi-layer graphene, frequently in connection with unconventional or “high
temperature” superconductivity. To achieve a unified understanding of these phenomena across
the different materials classes is a central open problem in condensed matter physics. Tests whether
the linear-in-temperature law might be dictated by Planckian dissipation—scattering with the rate
∼ kBT/h̄—are receiving considerable attention. Here we assess the situation for strange metal heavy
fermion compounds. They allow to probe the regime of extreme correlation strength, with effective
mass or Fermi velocity renormalizations in excess of three orders of magnitude. Adopting the same
procedure as done in previous studies, i.e., assuming a simple Drude conductivity with the above
scattering rate, we find that for these strongly renormalized quasiparticles, scattering is much weaker
than Planckian, implying that the linear temperature dependence should be due to other effects. We
discuss implications of this finding and point to directions for further work.

Keywords: heavy fermion compounds; strange metals; Planckian dissipation; quantum criticality;
Kondo destruction

1. Introduction

A first step in understanding matter is to delineate the different phases in which
it manifests. To do so, a characteristic that uniquely identifies a phase must be found,
and using its order has worked a long way. How this classification should be extended
to also incorporate topological phases [1] is a matter of current research. Here, we focus
on topologically trivial matter and thus take order-parameter descriptions [2] as a starting
point and consider the case of second-order phase transitions. As an order parameter
develops below a transition (or critical) temperature, the system’s symmetry is lowered (or
broken). Cornerstones are the power law behavior of physical properties near the critical
temperature, with universal critical exponents, and the associated scaling relationships.
Combined with renormalization-group ideas [3], this framework is now referred to as the
Landau–Ginzburg–Wilson (LGW) paradigm. It has also been extended to zero temperature.
Here, phase transitions—now called quantum phase transitions [4]—can occur as the balance
between competing interactions is tipped. To account for the inherently dynamical nature of
the T = 0 case, a dynamical critical exponent needs to be added. This increases the effective
dimensionality of the system, which may then surpass the upper critical dimension for
the transition, so that the system behaves as noninteracting, or “Gaussian”. Interestingly,
however, cases have been identified where this expectation is violated [5–8], evidenced for
instance by the observation of dynamical scaling relationships [9] that should be absent
according to the above rationale. We will refer to this phenomenon as “beyond order
parameter” quantum criticality. It appears to be governed by new degrees of freedom
specific to the quantum critical point (QCP). This is a topic of broad interest both in
condensed matter physics and beyond, but a general framework is lacking. We will here
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discuss it from the perspective of heavy fermion compounds, where it can manifest as
Kondo destruction quantum criticality [5,6]. We will in particular discuss materials that
display linear-in-temperature “strange metal” electrical resistivity, as well as the proposed
relation [10,11] to Planckian dissipation. We will allude to similar phenomena in other
material platforms and point to directions for further research to advance the field.

2. Simple Models for Strongly Correlated Electron Systems

Strongly correlated electron systems host electrons at the brink of localization. The sim-
plest model that can capture this physics is the Hubbard model

H = −t ∑
〈ij〉,σ

(d†
iσdjσ + d†

jσdiσ) + U ∑
i

d†
i↑di↑d†

i↓di↓ . (1)

The hopping integral t transfers electrons from site to site and thus promotes itineracy,
whereas the onsite Coulomb repulsion U penalizes double occupancy of any site, thereby
promoting localization. Thus, with increasing U/t, a (Mott) metal–insulator transition
is expected. This simple model is suitable for materials where transport is dominated
by one type of orbital with moderate nearest neighbor overlap, leading to one relatively
narrow band. Well-known examples are found in transition metal oxides, for instance the
cuprates. Here, the relevant orbitals are copper d orbitals, kept at distance by oxygen atoms.
The creation and annihilation operators are called d and d† here.

If two different types of orbitals interplay—one much more localized than the other—a
better starting point for a theoretical description is the (periodic) Anderson model that,
for the one-dimensional case, reads [12,13]

H = ∑
k,σ

εkc†
kσckσ + ∑

j,σ
ε f f †

jσ f jσ + U ∑
j

f †
j↑ f j↑ f †

j↓ f j↓ + ∑
j,k,σ

Vjk(e
ikxj f †

jσckσ + e−ikxj c†
kσ f jσ) . (2)

Orbitals with large overlap, with the associated creation and annihilation operators
c and c†, form a conduction band with dispersion εk. Orbitals with vanishing overlap
situated at the positions xj are associated with the operators f and f †. They are assumed
to be separated by a distance greater than the f orbital diameter and thus no hopping
between them is considered. However, the hybridization term V allows the f electrons to
interact. This model is particularly well suited for the heavy fermion compounds, which
contain lanthanide (with partially filled 4 f shells) or actinide elements (with partially filled
5 f shells) in addition to s, p, and d electrons. For the so-called Kondo regime, where f
orbitals effectively act as local moments, the Anderson model can be transformed into the
Kondo (lattice) model

H = ∑
k,σ

εkc†
kσckσ − J ∑

i

~Si · c†
i,σ~σσ,σ′ciσ′ , (3)

where the interaction between the localized and itinerant electrons is expressed in terms of
an antiferromagnetic exchange coupling J. ~S is the local magnetic moment of the f orbital
and~σσ,σ′ are the Pauli spin matrices. One of the possible ground states of this model is a
paramagnetic heavy Fermi liquid with a large Fermi surface, which contains both the local
moment and the conduction electrons. The resonant elastic scattering at each site generates
a renormalized band at the Fermi energy. Its width is of the order of the Kondo temperature
TK, which can be orders of magnitude smaller than the noninteracting band width. In the
(typically considered) simplest case (with a uniform and k independent hybridization), this
band extends across essentially the entire Brillouin zone.

In popular terms, this heavy fermion band could be seen as the realization of a nearly
perfect “flat band” (an early description of an interaction-driven truly flat band, with zero
energy, is given in [14] and its relevance for strange metal physics is discussed in [15,16]).
Flat bands have also been predicted [17] and later identified in magic angle twisted bi-layer
graphene (MATBG) [18] as a result of moiré band formation, and are expected in lattices
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with specific geometries [19,20] such as the kagome lattice [21,22] through destructive phase
interference of certain hopping paths. Whereas the theoretical description of these latter
flat band systems may be simpler than solving even the simplest Hamiltonians for strongly
correlated electron systems, such as (1)–(3), the inverse might be true for the challenge
on the experimental side. Heavy fermion compounds with a large variety of chemical
compositions and structures [23–25] can be quite readily synthesized as high-quality (bulk)
single crystals; the heavy fermion “flat bands” are robust (not fine tuned), naturally extend
essentially across the entire Brillouin zone, and are pinned to the Fermi energy. Albeit,
they form in the Kondo coherent ground state of the system, which is typically only fully
developed at low temperatures. To realize such physics via a complementary route that
might bring these properties to room temperature is an exciting perspective. Bringing
together these different approaches bears enormous potential for progress. Indeed, for both
twisted trilayer graphene [26] and MATBG [27] the connection to heavy fermion physics
has very recently been pointed out. Another topic discussed across the various platforms is
“strange metal” physics, which we address next.

3. Strange Metal Phase Diagrams

Metals usually obey Fermi liquid theory, even in the limit of strong interactions.
This is impressively demonstrated by the large body of heavy fermion compounds that,
at sufficiently low temperatures, display the canonical Fermi liquid forms of the electronic
specific heat

Cp = γT , (4)

the Pauli susceptibility
χ = χ0 , (5)

and the electrical resistivity
ρ = ρ0 + AT2 , (6)

where ρ0 is the residual (elastic) resistivity. Theoretically, the prefactors γ, χ0, and A
all depend on the renormalized electronic density of states N∗ = N/N0, or the related
renormalized (density-of-states) effective mass m∗ = m/m0 ∼ N∗, to first approximation
as γ ∼ m∗, χ0 ∼ m∗, and A ∼ (m∗)2. N0 and m0 are the free electron quantities. Indeed,
in double-logarithmic plots of γ vs. χ0 (Sommerfeld-Wilson) and A vs. γ (Kadowaki-
Woods), experimental data of a large number of heavy fermion compounds fall on universal
lines, thereby confirming the theoretically expected universal ratios [28]. The scaling works
close to perfectly if corrections due to different ground state degeneracies [29] and effects
of dimensionality, electron density, and anisotropy [30] are taken into account.

More surprising, then, was the discovery that this very robust Fermi liquid behavior
can nevertheless cease to exist. This can have multiple reasons, but the predominant
and best investigated one is quantum criticality [4,25,31,32]. In the standard scenario for
quantum criticality of itinerant fermion systems [33–35], a continuously vanishing Landau
order parameter (typically of a density wave) governs the physical properties. Its effect on
the electrical resistivity is expected to be modest because (i) the long-wavelength critical
modes of the bosonic order parameter can only cause small-angle scattering, which does
not degrade current efficiently, and (ii) critical density wave modes only scatter those areas
on the Fermi surface effectively that are connected by the ordering wavevector. Fermions
from the rest of the Fermi surface will short circuit these hot spots [36]. For itinerant
ferromagnets, ρ ∼ T5/3 is theoretically predicted [4] and experimentally observed [37].
For itinerant antiferromagnets, this type of order-parameter quantum criticality should
result in ρ ∼ Tε with 1 ≤ ε ≤ 1.5, depending on the amount of disorder [36]. Whereas
this may be consistent with experiments on a few heavy fermion compounds, a strong
dependence of ε with the degree of disorder has, to the best of our knowledge, not been
reported. More importantly, for relatively weak disorder, the current is dominated by the
contributions from the cold regions of the Fermi surface which stay as quasiparticles and
the resistivity would have the T2 dependence of a Fermi liquid [38].
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Instead, a number of heavy fermion compounds exhibit a linear-in-temperature elec-
trical resistivity

ρ = ρ′0 + A′T , (7)

a dependence dubbed “strange metal” behavior from the early days of high-temperature su-
perconductivity on [39]. In Figure 1a–d we show four examples, in the form of temperature–
magnetic field (a,b,d) or temperature–pressure (c) phase diagrams with color codings that
reflect the exponent ε of the temperature-dependent inelastic electrical resistivity, ∆ρ ∝ Tε,
determined locally as ε = ∂(ln ∆ρ)/∂(ln T). In all cases, fans of non-Fermi liquid behavior
(ε 6= 2) appear to emerge from QCPs, with ε close to 1 in the center of the fan and extending
to the lowest accessed temperatures (at least in a,c,d).

  

Figure 1. Cont.
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Figure 1. Color-coded phase diagrams featuring strange metal behavior in various materials plat-
forms. (a) YbRh2Si2 (left) and YbRh2(Si0.95Ge0.05)2 (right), from [40]. (b) CeRu2Si2, from [41].
(c) CeRhIn5, from [42]. (d) Ce3Pd20Si6, from [43]. (e) SrRu3O7. Note that the temperature scale is cut
at 4.5 K. At lower temperatures, deviations from linear behavior towards larger powers are observed;
from [44]. (f) La2−xSrxCuO4, from [45]. (g) BaFe2(As1−xPx)2, from [46]. (h) Magic-angle twisted
bi-layer graphene, adapted from [47].

The most pronounced such behavior is found in YbRh2Si2 (Figure 1a, left). Be-
low 65 mK, the system orders antiferromagnetically [48]. As magnetic field (applied
along the crystallographic c axis) continuously suppresses the order to zero at 0.66 T [40],
linear-in-temperature resistivity, with A′ = 1.8µΩcm/K and ρ′0 = 2.43µΩcm, extends
from about 15 K [48] down to the lowest reached temperature (below 25 mK) [40]. Re-
cently, this range was further extended down to 5 mK, showing A′ = 1.17µΩcm/K for
a higher-quality single crystal (ρ′0 = 1.23µΩcm) [49], thus spanning in total 3.5 orders of
magnitude in temperature. This happens in a background of Fermi liquid behavior away
from the QCP. A linear-in-temperature resistivity is also seen in the substituted material
YbRh2(Si0.95Ge0.05)2. Its residual resistivity is about five times larger than that of the stoi-
chiometric compound. That this sizeably enhanced disorder does not change the power ε
indicates that the order-parameter-fluctuation description of an itinerant antiferromagnetic
quantum critical point [36] is not appropriate here. This point will be further discussed in
Section 7.

For CeRu2Si2 (Figure 1b), the situation is somewhat more ambiguous. Linear-in-
temperature resistivity does not cover the entire core region of the fan; both above 2 K and
below 0.5 K, crossovers to other power laws can be seen [41]. In CeRhIn5 (Figure 1c), at the
critical pressure of 2.35 GPa, linear-in-temperature resistivity extends from about 15 K down
to 2.3 K, the maximum critical temperature of a dome of unconventional superconductiv-
ity [42]. That the formation of emergent phases such as unconventional superconductivity
tends to be promoted by quantum critical fluctuations is, of course, of great interest in
its own right even if, pragmatically, it can be seen as hindering the investigation of the
strange metal state. Finally, Ce3Pd20Si6 exhibits two consecutive magnetic field-induced
QCPs, with linear-in-temperature resistivity emerging from both [43]. Other heavy fermion
systems show similar behavior, though color-coded phase diagrams may not have been
produced. A prominent example is CeCoIn5. Its electrical resistivity was first broadly
characterized as being linear-in-temperature below 20 K down to the superconducting
transition temperature of 2.3 K [50]. Both magnetic field [51,52] and pressure [53] suppress
the linear-in-temperature dependence and stabilize Fermi liquid behavior, in agreement
with temperature over magnetic field scaling of the magnetic Grüneisen ratio indicating
that a quantum critical point is situated at zero field [54]. Indeed, small Cd doping stabilizes
an antiferromagnetic state [55].

In Figure 1e–h, we show resistivity-exponent color-coded phase diagrams of other classes
of strongly correlated materials, a ruthenate, a cuprate, an iron pnictide, and a schematic phase
diagram of MATBG. Extended regions of linear-in-temperature resistivity are also observed.
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Before we discuss this strange metal behavior in more detail in Section 5, we take a closer look
at the Fermi liquid regions of the heavy fermion phase diagrams.

4. Fermi Liquid Behavior near Quantum Critical Points

The low energy scales and associated low magnetic ordering temperatures typically
found in heavy fermion compounds call for investigations of these materials at very low
temperatures. Indeed, since early on, measurements down to dilution refrigerator tempera-
tures have been the standard. Because scattering from phonons is strongly suppressed at
such low temperatures, this is ideal to study non-Fermi liquid and Fermi liquid behavior
alike. The phase diagrams in Figure 1a–d all feature Fermi liquid regions, at least on
the paramagnetic side of the QCPs. The fan-like shape of the quantum critical regions
dictates that the upper bound of the Fermi liquid regions shrinks upon approaching the
QCP. Nevertheless, high-resolution electrical resistivity measurements still allow to extract
the evolution of the Fermi liquid A coefficient upon approaching the QCP. In Figure 2
we show such dependencies for four different heavy fermion compounds. In all cases,
the A coefficient is very strongly enhanced towards the QCP. In fact, within experimental
uncertainty, the data are even consistent with a divergence of A at the QCP, as indicated by
the power law fits, A ∼ 1/(B− Bc)a, with a close to 1, in Figure 2a,c,d, suggesting that the
effective mass diverges at the QCP.

  

YbRh
2
Si

2 CeRu
2
Si

2

CeCoIn
5

Ce
3
Pd

20
Si

6

a b

dc

Figure 2. Variation of the A coefficient of the Fermi liquid form of the electrical resistiv-
ity, ρ = ρ0 + AT2, across QCPs in various heavy fermion compounds. (a) YbRh2Si2, from [40].
(b) CeRu2Si2, from [56]. (c) CeCoIn5, from [51]. (d) Ce3Pd20Si6, from [43].

This finding challenges the classification of heavy fermion compounds into lighter
and heavier versions, that has been so popular in the early days of heavy fermion studies
and that had culminated in the celebrated Kadowaki–Woods and Sommerfeld–Wilson
plots, with each heavy fermion compound represented by a single point. Which A (γ, χ0)
value should now be used in these graphs? In [32] the use of lines instead of points was
suggested, using the largest and smallest actually measured values (and not extrapolations
beyond them) as end points. The question that remains is whether there is a “background”
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value, away from a quantum critical point, that is characteristic of a given compound. We
will get back to this question in the next section.

5. Strange Metal Behavior and Planckian Dissipation

The occurrence of fans or, in some cases, differently shaped regions of linear-in-
temperature resistivity in the phase diagrams of a broad range of correlated electron
systems, as highlighted in Figure 1, raises the question whether a universal principle may be
behind it. A frequently made argument is that linear-in-temperature resistivity is a natural
consequence of the systems’ energy scales vanishing at a quantum critical point and thus
temperature becoming the only relevant scale. However, both the experimental observation
of power laws ∆ρ ∼ Tε with ε 6= 1 in quantum critical heavy fermion compounds [57–60]
and predictions from order-parameter-fluctuation theories of such laws [36] tell us that this
argument cannot hold in general. We thus have to be more specific and ask whether for
quantum critical systems that do exhibit linear-in-temperature resistivities and, apparently,
require description beyond this order-parameter framework, a universal understanding
can be achieved.

A direction that is attracting considerable attention [10,11,61] is to test whether the
transport scattering rate 1/τ of such systems may be dictated by temperature via

1
τ
= α

kBT
h̄

(8)

with α ≈ 1. Should this be the case and τ be the only temperature-dependent quantity
in the electrical resistivity, then a linear-in-temperature resistivity would follow naturally.
Conceptually, this roots in the insight, gained from the study of models without quasiparti-
cles [4,62–65], that a local equilibration time (after the action of a local perturbation) of any
many-body quantum system cannot be faster than the Planckian time

τP =
h̄

kBT
(9)

associated with the energy kBT via the Heisenberg uncertainty principle [65]. The question
then is how to experimentally test this scenario. The simplest starting point is the Drude
form for the electrical resistivity which, in the dc limit, reads

ρ =
m

ne2
1
τ

, (10)

with a temperature-independent effective mass m and charge carrier concentration n,
and (8) for the scattering rate 1/τ, leading to

ρ = α
m

ne2
kBT

h̄
. (11)

Interpreting this as the inelastic part of the linear-in-temperature electrical resistivity (7),
with dρ/dT = A′, one obtains

α =
n
m

e2h̄
kB

A′ (12)

or, in convenient units format,

α = 2.15 · n(nm−3)

m/m0
· A′(µΩcm/K) , (13)

where m0 is the free electron mass. When this results in α ≈ 1, the dissipation is said to
be “Planckian”. Before looking at experiments, let’s contemplate this for a moment. Rela-
tion (12) is based on the simple Drude model, and combines properties of well defined quasi-
particles (n and m) with a property that characterizes a non-Fermi liquid (A′)—possibly one
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without quasiparticles—that is unlikely to follow the Drude model. Furthermore, as shown
in Section 4, the Fermi liquid A coefficient, which is a measure of m, varies strongly with
the distance to the QCP. Another defining property of at least some of these strange metals
are Fermi surface jumps at the QCP (see Section 7). This adds a nontrivial temperature and
tuning parameter dependence to n. One should thus bear in mind that choosing a simple
Drude model as starting point holds numerous pitfalls. If still doing so, it is unclear which
m and n value to use.

In [10], published quantum oscillation data, in part combined with results from
density functional theory (DFT), were used to estimate m and n for a range of different
materials, including also “bad metals” (see Section 6) and simple metals in the regime
where their resistivity is linear-in-temperature due to scattering from phonons. As an
example, for Sr3Ru2O7, de Haas–van Alphen (dHvA) data [66] measured at dilution
refrigerator temperatures on the low-field side of the strange metal fan (Figure 1e) were
used. Contributions from the different bands, assumed as strictly 2D, were summed up as

σ = τ
e2

h̄ ∑
i

ni
mi

, (14)

i.e., a constant relaxation time was assumed for all bands. Then, the heavy bands with
small carrier concentration play only a minor role. In this way, α = 1.6 was obtained.
The dHvA effective masses of all bands were found to be modest (at most 10m0) and
essentially field-independent [66], even though the A coefficient increases by more than a
factor of 8 on approaching the strange metal regime from the low field side [66]. The dHvA
experiments may thus not have detected all mass enhancement [10,66]. As shown below,
using a larger effective mass would reduce α.

Similar analyses were performed for the other materials [10] and we replot the results
as black points in Figure 3. The x axis of this plot is the Fermi velocity vF which, for a 3D
system, can be brought into the form

vF(m/s) = 3.58 · 105 · [n(nm−3)]1/3

m/m0
. (15)

The y axis is the inverse of vF multiplied by α (13) which, again for a 3D system, can
be written as

α

vF
(s/m) = 6.01 · 10−6 · A′(µΩcm/K) · [n(nm−3)]2/3 . (16)

To further assess how the results for α depend on the choice of the quasiparticle
parameters m and n, we here take a different approach. Instead of quantum oscillation
data, we use global (effective) properties, namely, the A coefficient and the Hall coefficient
RH, and estimate α for a number of strange metal heavy fermion compounds. Because of
the extreme mass renormalizations observed in this class of materials (see Section 4), it is
particularly well suited for this test. Combining

m
m0
· n1/3 =

γmole−f.u.
Vf.u.

3h̄2

NAm0k2
B(3π2)1/3

(17)

with the Kadowaki–Woods ratio A/γ2 = 10−5 µΩcm(mole K/mJ)2, which is known to be
very well obeyed in heavy fermion compounds [28], we obtain

m
m0
· [n(nm−3)]1/3 = 3.26 · 104

√
A(µΩcm/K2)

Vf.u.(Å
3
)

. (18)

The rationale for using A instead of γ is that precise resistivity measurements are most
abundant in the literature (also under challenging conditions such as high pressure and
magnetic field) and that the resistivity is much less sensitive to extra contributions from
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phase transitions than the specific heat. In addition, and unlike γ, the A coefficient picks up
effective mass anisotropies, which further improves our analysis. In all cases where reliable
γ values were available [43,67–69], the agreement with our A coefficient γ was satisfactory.

A note is due on the determination of the charge carrier concentration n. It is commonly
extracted from the Hall coefficient RH, using the simple one-band relation RH = 1/ne.
Heavy fermion compounds are typically multiband systems, and thus compensation effects
from electron and hole contributions can occur [70]. To limit the effect of anomalous Hall
contributions, low-temperature data should be used [71]. Quantum oscillation experiments
can determine the carrier concentration of single bands. However, heavy bands are hard to
detect and it is unclear how to sum up contributions from different bands. An alternative is
to determine n via the superfluid density [72], as was done previously [49,73], using the
relation (in cgs units)

n =

(
ξ0 · Tc · γ

7.95 · 10−24

)3/2
, (19)

where ξ0 is the superconducting coherence length, Tc is the superconducting transition
temperature, and γ is the normal-state Sommerfeld coefficient, which can be rewritten as

n(nm−3) = 3020 ·
(

ξ0(nm) · Tc(K) · γ(Jmol−1K−2)

Vf.u.(Å
3
)

)3/2

. (20)

This may be used as a lower bound of the carrier concentration in the normal state.
Table 1 lists the materials we inspected, with their A coefficients (or, when unavailable,

γ), the best estimate of the charge carrier concentration n following the above discussion
(see Table 2 for details), and the strange metal A′ coefficient. m/m0 as calculated via (18),
or (17), is also listed.

Table 1. Parameters used for Figures 3 and 4. The red (or blue) square represents the largest A
coefficient (measured closest to the QCP), the shaded red (or blue) lines the range of A coefficient
measured upon moving away from the QCP. The Sommerfeld coefficient γ is estimated from A
via the Kadowaki–Wood ratio, unless A data are unavailable. The charge carrier concentrations
n and their error bars (where applicable) are taken from Table 2. For CeCoIn5, several values are
listed because the A coefficient is different for in-plane (Ha) and out-of-plane (Hc) field, and the A′

coefficient is different for in-plane (ja) and out-of-plane (jc) currents. For YbAgGe, the A′ coefficient
changes with field; the two extreme A′ values are denoted by the two red squares. For CeCoIn5

(j ⊥ c), Figure 3 shows the range A′ = (0.8± 0.2)µΩcm/K from [74]. Data for Ce3Pd20Si6 refer to
the second QCP (near 2 T, see Figure 1d) because for the lower field QCP no full data set on single
crystals is published [43,75].

Compound A (µΩcm/K2) γ (J/molK2) m/m0 n (nm−3) A′ (µΩcm/K)

Ce2IrIn8 – 0.65 [76] 183 2.5 8.8 [76]
Ce3Pd20Si6 5–120 [43] 0.707–3.46 136–665 1.7 18.3 [43]

CeCoIn5 (ja, Ha) 12.4–28.3 [67] 1.11–1.68 310–470 12.4 0.8 [77]
CeCoIn5 (ja, Hc) 1.72–11.5 [67] 0.414–1.07 116–300 12.4 0.8 [77]
CeCoIn5 (jc, Hc) 1.72–11.5 [67] 0.414–1.07 116–300 12.4 2.475 [77]

CeRu2Si2 0.1–3.4 [56] 0.1–0.583 53–310 11.6 0.91 [41]

UPt3 – 0.425–
0.625 [78] 223–329 21.4 1.1 [10]

YbAgGe (H//a) – 0.87–1.4 [79] 1300–2100 1.6 27–59 [80]
YbRh2Si2 1.7–33.8 [68] 0.41–1.85 250–1100 10 1.83 [68]

All these data are then included in Figure 3 in the following way. The vF (15) and
α/vF (16) value resulting from the largest measured A coefficient (or γ value) for each
compound is shown as red square. The shaded red lines represent the published ranges of
A coefficient (or γ value). The error bars represent uncertainties in the determination of the
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charge carrier concentration (see Table 1). Lines for α = 1, 0.1, and 0.01 are also shown. It is
clear that none of the shaded red lines overlaps with the α = 1 line. The discrepancy with
the points extracted from quantum oscillation experiments [10] is quite striking.

Table 2. Charge carrier concentrations (in nm−3) determined as follows: (i) nsc from the supercon-
ducting coherence length ξ0, the superconducting transition temperature Tc, and the normal-state
Sommerfeld coefficient γ, all in zero field, via (20); (ii) nH from the Hall coefficient at the lowest
temperatures, where anomalous contributions are minimal, via RH = 1/ne; (iii) nqo from quantum
oscillation experiments reviewed in [10], by summing up the carrier concentrations from all detected
bands. For CeCoIn5, the γ coefficient is taken at 2.5 K, without taking into account the logarithmic
divergence. The error bar in n used for CeCoIn5 (j ⊥ c) in Figure 3 reflects the range of the parameters
given in [74]. YbRh2Si2 is close to being a compensated metal, resulting in a strong sensitivity of n
to small differences in the residual resistivity. The largest reported RH value, which corresponds to
nH = 26.0 [71], has the lowest compensation and is thus most accurate. Nevertheless, the RH value
of LuRh2Si2 is even larger, corresponding to nH = 11.6 nm−3 [70], suggesting that there is still some
degree of compensation in the sample of [71]. We list the average of both values, 18.8 nm−3, as best
nH estimate. For the plots, we use the approximate average of nsc and nH, i.e., 10 nm−3, with an
asymmetric error bar δn+ = 10 nm−3 and δn− = −5 nm−3 (see Table 1). Similar compensation
effects are also encountered in UPt3 [81]. Bold fonts indicate the values used for the α estimates (see
Table 1).

Compound ξ0 (nm) Tc (K) γ (J/molK2) nsc nH nqo

Ce2IrIn8 - - - - 2.5 [82] -
Ce3Pd20Si6 - - - - 1.7 [43] -

CeCoIn5 5.6 [83] 2.3 [50] 290 [50] 10.8 10.1 [84]–12.5 [74] 12.4 [10]
CeRu2Si2 - - - - 3.1 [41]–7.8 [85] 11.6 [10]

UPt3 12 [86] 0.52 [86] 0.43 [78] 22.4 9 [85] 21.4 [10]
YbAgGe - - - - 1.6 [87] -
YbRh2Si2 97 [49] 0.0079 [49] 1.42 [49] 4.86 18.8 [70,71] -
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Figure 3. Planckian dissipation plot of [10] revisited. Double-logarithmic plot of Fermi velocity vF

vs. ne2/(kBkF)(dρ/dT) = α/vF with data from [10] (black points) and data of the heavy fermion
compounds listed in Table 1 and analyzed here. The red squares result from the largest measured
A coefficient (or γ value) for each compound near the strange metal regime, the shaded red lines
from the published ranges of A coefficient (or γ value), and the error bars from uncertainties in the
determination of the charge carrier concentration n and sometimes other parameters (see Table 1).
The full, dashed, and dotted line represent α = 1, 0.1, and 0.01, respectively.
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In Figure 4 we present these results in a different form, as α vs. (m/m0)/n. The red
squares and red shaded lines have the same meaning as in Figure 3. The dashed lines are
extrapolations of the shaded lines to α = 1. We can thus directly read off the values of
(m/m0)/n for which a given compound would, in this simple framework, be a Planckian
scatterer. In all cases, this is for effective masses significantly smaller than even the smallest
measured ones in the Fermi liquid regime.

What are the implications of this finding? We first comment on the discrepancy
with the results from [10]. Apparently, averaging the contributions from different bands
detected in quantum oscillation experiments via (14) leads to sizeably larger Fermi velocities
(sizeably smaller effective masses) than our A coefficient approach. In heavy fermion
compounds, a coherent heavy fermion state forms at low temperatures, and the Fermi
liquid A coefficient is known to be a pertinent measure thereof. It is thus either the use
of (14) that should be reconsidered or the reliance in quantum oscillation experiments to
detect the heaviest quasiparticles. Clearly, if dissipation in strange metal heavy fermion
compounds is to be Planckian, this would hold only for the very weakly renormalized
quasiparticles, as argued for in [88]. To us, this is a rather puzzling result as heavy fermion
bands get successively renormalized with decreasing temperature and thus one would
have expected that the “background” to effects of quantum critical fluctuations already
contains a sizeable non-critical Kondo renormalization.
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Figure 4. No Planckian dissipation from heavy quasiparticles in heavy fermion compounds. Double-
logarithmic plot of α vs. (m/m0)/n for various strange metal heavy fermion compounds, as given in
Table 1. Red squares and shaded lines have the same meaning as in Figure 3. The dashed lines are to
help reading off the values of (m/m0)/n for which the linear-in-temperature electrical resistivity in
these compounds could be governed by Planckian dissipation. Note that in all cases the “Planckian
dissipation” effective masses obtained in this way are sizeably smaller than even the smallest values
experimentally accessed by tuning the systems away from the strange metal regime (top end of full
shaded lines).

6. Strange Metal Behavior and the Mott–Ioffe–Regel Limit

In a number of strongly correlated electron systems, including quasi-2D conductors
such as the high-Tc cuprates but also 3D transition metal oxides and alkali-doped ful-
lerides, linear-in-temperature resistivity is observed beyond the Mott–Ioffe–Regel (MIR)
limit [89,90]. At this limit, the electron mean free path approaches certain microscopic
length scales such as the interatomic spacing or the wavelength 2π/kF [65,91–94]. Semi-
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classical transport of long-lived quasiparticles might then, at least naively, be expected not
to exist and the resistivity should saturate, in 3D systems of interest to us here to

ρMIR =
h
e2 · L , (21)

where L is the relevant microscopic length scale. Using the Drude resistivity (10) with the
Fermi velocity vF = h̄kF/m, the Fermi wave vector kF = (3π2n)1/3, and the mean free path
` = τvF one obtains

ρ =
h
e2 ·

3π

2
1

k2
F`

=
h
e2 · L · C , (22)

where the value of the constant C depends on details of the electronic and crystal structure.
Assuming C = 1, one gets

ρMIR(µΩcm) = 258 · L(Å) , (23)

In heavy fermion compounds, linear-in-temperature resistivities are limited to low
temperatures (Figure 1a–d) and the A′ coefficients (Table 1) typically result in inelas-
tic resistivities of the order of 10µΩcm at the upper bound of the linear regime. This
is well below the MIR limit. For instance, for YbRh2Si2, using the lattice parameters
a = 4.007 Å and c = 9.858 Å [48] for L in (23) gives ρMIR ≈ 1000µΩcm and ≈ 2500µΩcm,
respectively, much larger than even the total resistivity at 15 K (which is about 30µΩcm
for YbRh2Si2 [48]), the upper bound of linear-in-temperature resistivity for that compound.
In this case, a confusion with a linear-in-temperature resistivity due to electron-phonon
scattering [65,95] can be safely ruled out.

7. Strange Metal Behavior and Fermi Surface Jumps

In Section 5, a simple Drude form was used for the electrical resistivity and all temper-
ature dependence was attributed to the scattering rate. Then, the question was asked which
quasiparticles (with which m/n) to take if the scattering were to be Planckian. The answer
was that this would have to be very weakly interacting quasiparticles, certainly not the
ones close to the QCP from which the strange metal behavior emerges. Here we address
another phenomenon that may challenge a Planckian scattering rate picture: Fermi surface
jumps across these QCPs.

This phenomenon was first detected by Hall effect measurements on YbRh2Si2 [71,96]
(Figure 5a). Let us first recapitulate the experimental evidence for a Fermi surface jump
across a QCP, as put forward in these works. Hall coefficient RH (or Hall resistivity ρH)
isotherms are measured as function of a tuning parameter δ (in case of YbRh2Si2 the mag-
netic field) across the QCP. A phenomenological crossover function, R∞

H − (R∞
H − R0

H)/[1 +
(δ/δ0)

p] [71], is fitted to RH(δ) [or to dρH/dB(δ)] and its full width at half maximum
(FWHM) is determined as a reliable measure of the crossover width. Only if this width
extrapolates to zero in the zero-temperature limit a Hall coefficient jump is established.
Of course, the jump size must remain finite in the zero temperature limit. To identify a
Fermi surface jump, other origins of Hall effect changes must be ruled out, for instance
anomalous Hall contributions from abrupt magnetization changes at a metamagnetic/first
order transition [97]. All this was done for YbRh2Si2 [71,96]. For Ce3Pd20Si6, using a very
similar procedure, two Fermi surface jumps were found at the two consecutive QCPs
(Figure 1d) [43,75]. The crossover at the first QCP [75] is shown in Figure 5b. It is also
important to remind oneself that no Fermi surface discontinuity is expected at a conven-
tional antiferromagnetic QCP as described by the spin-density-wave/order-parameter
scenario [6]. Band folding of the (even at T = 0) continuously onsetting order parameter
can in that case only lead to a continuously varying Hall coefficient, as seen for instance in
the itinerant antiferromagnet Cr upon the suppression of the order by doping or pressure
(see [98] for more details and the original references).
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Figure 5. Fermi surface jumps as evidenced by Hall effect measurements in several strange metals.
(a) YbRh2Si2, from [32,96]. (b) Ce3Pd20Si6, from [75]. (c) Substitution series of three high-Tc cuprates,
from [99]. (d) MATBG, from [100].

These jumps are understood as defining signatures of a Kondo destruction QCP, first
proposed theoretically [5,6,101] in conjunction with inelastic neutron scattering experiments
on CeCu5.9Au0.1 [9]. At such a QCP, the heavy quasiparticles, composites with f and
conduction electron components, disintegrate. The Fermi surface jumps because the
local moment, which is part of the Fermi surface in the paramagnetic Kondo coherent
ground state [102], drops out as the f electrons localize. As such, Kondo destruction
QCPs are sometimes referred to as f -orbital selective Mott transitions. More recently,
THz time-domain transmission experiments on YbRh2Si2 thin films grown by molecular
beam epitaxy revealed dynamical scaling of the optical conductivity [103]. This shows
that the charge carriers are an integral part of the quantum criticality, and should not be
seen as a conserved quantity that merely undergo strong scattering (as in order-parameter-
fluctuation descriptions with intact quasiparticles). We also note that a Drude description
of the optical conductivity fails rather drastically in the quantum critical regime [103]. It
is thus unclear how this physics could be captured by the simple Planckian scattering
approach described above.

Interestingly, Hall effect experiments in other strange metal platforms also hint at Fermi
surface reconstructions. Two examples are included in Figure 5: a series of substituted high-
Tc cuprates [99] (panel c) and MATBG as function of the total charge density induced by the
gate [100] (panel d). Evidence for related physics has also been found in the pnictides [104].
The physics here appears to be related to the presence of d orbitals with a different degree
of localization, with one of them undergoing a Mott transition, such as described by multi-
orbital Hubbard models [105,106]. It may well be that Fermi surface jumps are an integral
part of strange metal physics, and should be included as a starting point in its description.

8. Summary and Outlook

We have revisited the question whether the strange metal behavior encountered in
numerous strongly correlated electron materials may be the result of Planckian dissipation.
For this purpose, we have examined strange metal heavy fermion compounds. Their
temperature–tuning parameter phase diagrams are particularly simple: Fans of strange



Crystals 2022, 12, 251 14 of 18

metal behavior emerge from quantum critical points, in a Fermi liquid background. This,
together with the extreme mass renormalizations found in these materials, makes them a
particularly well-suited testbed.

As done previously, we use the Drude form of the electrical conductivity as a starting
point, but complementary to a previous approach based on quantum oscillation data,
we here rely on the Fermi liquid A coefficient as precise measure of the quasiparticle
renormalization. We find that for any of the measured A coefficients, the slope of the
linear-in-temperature strange metal resistivity A′ is much smaller than the value expected
from Planckian dissipation. We also propose a new plot that allows to read off the ratio of
effective mass to carrier concentration that one would have to attribute to the quasiparticles
for their scattering to be Planckian. It corresponds to very modest effective masses. While
this could be something like a smooth background to quantum critical phenomena, the fact
that the strange metal regime occurs entirely below the temperature for the initial onset of
the dynamical Kondo correlations suggests that this background should already incorporate
the non-critical Kondo correlations and thus correspond to a relatively heavy mass.

We have also pointed out that several heavy fermion compounds exhibit Fermi surface
jumps across strange metal quantum critical points and that this challenges the Drude
picture underlying the Planckian analysis. Indications for such jumps are also seen in other
platforms and may thus be a common feature of strange metals. Further careful studies that
evidence a sharp Fermi surface change in the zero temperature limit, such as providing for
some of the heavy fermion compounds, are called for. On the theoretical side, approaches
that discuss the electrical resistivity as an entity and do not single out a scattering rate as
the only origin of strangeness, are needed.
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