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Abstract: Stereocomplex-type polylactide (SC-PLA) created by alternate packing of poly(L-lactide)
(PLLA) and poly(D-lactide) (PDLA) chains in a crystalline state has emerged as a growingly popular
engineering bioplastic that possesses excellent hydrolytic stability and thermomechanical properties.
However, it is extremely difficult to acquire high-performance SC-PLA products via melt-processing
of high-molecular-weight PLLA/PDLA blends because both SC crystallites and homocrystallites
(HCs) are competitively formed in the melt-crystallization. Herein, a facile yet powerful way was
employed to boost SC formation by introducing trace amounts of some epoxy-functionalized small-
molecule modifiers into the enantiomeric blends during reactive melt-blending. The results show
that the SC formation is considerably enhanced with the in situ generation of multi-arm stereo-block
PLA copolymers, based on the reaction between epoxy groups of the modifiers and hydroxyl end
groups of PLAs. More impressively, it is intriguing to find that the introduction of only 0.5 wt%
modifiers can induce exclusive SC formation in the blends upon isothermal and non-isothermal
melt-crystallizations. The outstanding SC crystallizability might be attributed to the suppressing
effect of such unique copolymers on the separation of the alternately arranged PLLA/PDLA chain
segments in molten state as a compatibilizer. Furthermore, the generation of these copolymers
does not result in a significant increase in melt viscosity of the blends. These findings suggest new
opportunities for the high-throughput processing of SC-PLA materials into useful products.

Keywords: polylactide; stereocomplex; crystallization; copolymer; compatibilization

1. Introduction

In the past few decades, biodegradable polylactide (PLA) produced from bio-renewable
feedstocks has aroused great repercussions because of its appealing physicochemical prop-
erties, such as favorable biocompatibility, excellent transparency, and high mechanical
strength and stiffness [1–5]. To date, sustainable PLA has been increasingly utilized in
biomedical materials and disposable commodities (e.g., food packaging and tableware).
Nevertheless, its engineering applications have been greatly limited by the weak resistances
to heat deformation and hydrolytic degradation [6–9]. Fortunately, it has been widely re-
ported that stereocomplex (SC) crystallization between enantiomeric poly(L-lactide) (PLLA)
and poly(D-lactide) (PDLA) chains can substantially increase the competitive edge of PLA
over some petroleum-based engineering plastics (e.g., polycarbonate) [10–13]. Distinctly dif-
ferent from the common homocrystallization (HC), both L- and D-chains are compactly and
alternately packed in the SC crystallization and, thereby, the SC-type PLA (SC-PLA) pos-
sesses superior heat resistance, hydrolytic stability, toughness, and gas barrier [11,14–16].
The melting temperature (Tm) of SC-PLA can be raised to nearly 230 ◦C, which is ca.
60 ◦C higher than that of PLA homopolymers with the same high crystallinity [6,17–19].
However, the SC crystallization is competitive with HC upon cooling from the melt of

Crystals 2022, 12, 210. https://doi.org/10.3390/cryst12020210 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst12020210
https://doi.org/10.3390/cryst12020210
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0003-4927-6422
https://doi.org/10.3390/cryst12020210
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst12020210?type=check_update&version=2


Crystals 2022, 12, 210 2 of 12

PLLA/PDLA blends, especially when the molecular weight (MW) exceeds a critical value
of 1 × 105 g/mol that is essential for attaining the necessary mechanical properties and melt-
processability [20–24]. In general, homocrystallites (HCs) are predominantly formed over
the SC crystallites during the melt-crystallization and processing of high-MW PLLA/PDLA
blends, thus giving rise to the products having drastically decreased properties [21,25–28].
That is to say, the weak SC crystallizability makes it challenging to fabricate useful SC-PLA
products using industrial melt-processing technologies. Accordingly, boosting SC crys-
tallization of PLLA/PDLA blends is of vital importance for practical applications of the
fascinating SC-PLA materials.

Until now, several strategies have been adopted to exploit PLLA/PDLA blends pos-
sessing exceptional SC crystallizability, such as block copolymerization [23,26,29,30] and the
preparation of PLAs with special molecular architectures [31–36]. In comparison with liner
PLLA/PDLA blends, star-shaped and comblike ones have been proven to exhibit markedly
enhanced SC crystallizability, probably owing to the favored interactions between enan-
tiomeric PLA branches and the increased segment mobility [34,37–41]. Nevertheless, such
unique PLAs have not been industrially produced up to now, so considerable efforts have
recently been devoted to gain exclusive SC crystallization of commercial linear high-MW
PLLA/PDLA blends by incorporating certain processing additives (e.g., plasticizers [42–44],
compatibilizers [22,45,46], and nucleating agents [47–50]). For example, Yang et al. [51]
first reported that poly (ethylene glycol) (PEG) can facilitate the SC crystallization of
PLLA/PDLA blends by increasing segment mobility and diffusion ability as a plasticizer.
The sole formation of SC crystallites can be obtained in the melt-crystallization of the blends
with 10 wt% PEG having MW of 1000 or 2000 g/mol. Additionally, various miscible poly-
mers (e.g., poly (methyl methacrylate) (PMMA) [52–54], poly(vinyl phenol) (PVPh) [55],
and poly(vinyl acetate) (PVAc) [56]) have been successfully utilized as compatibilizers to
enhance the SC crystallizability and simultaneously suppress the homo-crystallizability
by increasing the intermolecular interactions between L- and D-chains. Unfortunately,
their compatibilization efficiency for PLLA/PDLA blends seems to be very low, hence
at least 30–75 wt% compatibilizers are required for the exclusive SC formation. In this
case, the physicochemical properties and sustainable attributes of the SC-PLA could be
significantly deteriorated. Very recently, we demonstrated that the introduction of trace
amounts (e.g., 0.3–0.5 wt%) of epoxy-functionalized oligo(styrene-acrylic) (ESA) into the
blends leads to the in situ generation of comb-like PLA-graft-ESA copolymers containing
long PLLA/PDLA branches in the reactive melt-blending process, and these copolymers
can behave as highly efficient compatibilizers to stimulate exclusive SC formation [57]. This
indicates that reactive blending is a relatively facile and low-cost strategy to remarkably
enhance the SC crystallizability of the high-MW enantiomeric blends without sacrificing
their valuable properties. However, the generation of such comb-like copolymers with
densely grafted long PLA branches also causes a remarkable rise in melt viscosity of the
blends due to the greatly increased chain entanglement density [38,58]. This is benefi-
cial to the melt-processing requiring high viscosity and melt strength (e.g., film molding,
blow molding, and foaming), but extremely detrimental to that demanding relatively high
melt flowability (e.g., thin-wall injection molding). Therefore, any strategy that could
substantially enhance the SC crystallizability of PLLA/PDLA blends without evidently
increasing their melt viscosity is highly desirable for the high-throughput fabrication of
SC-PLA products using some melt-processing technologies like injection molding.

With this aim in mind, in this contribution, we attempt to construct multi-arm stereo-
block copolymers in high-MW PLLA/PDLA (50/50) blends by introducing trace amounts
of some small-molecule modifiers bearing fewer than five epoxy groups during melt-
blending. It was anticipated that unique stereo-block PLA copolymers having 2–4 arms
could be in situ generated in the reactive blending, based on the reaction between epoxy
groups of the modifiers and hydroxyl end groups of enantiomeric PLLA/PDLA chains
(as illustrated in Figure 1). As compared with the comb-like copolymers, the multi-arm
PLA copolymers formed in the blends could have much less influence on the melt viscosity,
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because the number of PLA chains in each copolymer molecule is significantly decreased.
Beyond that, the SC crystallizability was also expected to be substantially enhanced as
the multi-arm copolymers could also function as compatibilizers to suppress the separa-
tion of alternately arranged PLLA/PDLA chain segments (i.e., the ordered PLLA/PDLA
chain assemblies) after complete melting (as illustrated in Figure 2). The isothermal and
non-isothermal crystallization behaviors of the obtained blends were investigated, high-
lighting the critical role of the arm number of multi-arm PLA copolymers in boosting SC
crystallizability for the first time. Our work could pave a straightforward way towards
PLLA/PDLA blends with outstanding SC crystallizability and melt flowability, pushing
forward the melt-processing and engineering applications of SC-PLA materials.
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Figure 1. Schematic illustration of the reaction between epoxy-functioned small-molecule modifiers
and PLA chains for the in situ generation of multi-arm stereo-block PLA copolymers during melt-
blending. Please note that the structure consisting of an equal number of PLLA and PDLA arms is
only the ideal situation for such copolymers. The copolymers having unequal numbers of PLLA and
PDLA arms could also be generated.
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ability of PLLA/PDLA blends with multi-arm stereo-block PLA copolymers.

2. Materials and Methods
2.1. Materials

PLLA (D-isomer content = 1.5%, trade name 4032D) with a weight molecular weight
(Mw) of 1.7 × 105 g/mol and a polydispersity index (PDI) of 1.7 was purchased from
Nature Works LLC, USA. PDLA (L-isomer content = 1%, Mw = 1.6 × 105 g/mol, PDI = 1.6)
was obtained from Zhejiang Hisun Biomaterial Co. Ltd., Taizhou, China. Neopentyl glycol
diglycidyl ether containing two epoxy groups (named as 2EG) was provided by Shanghai
Aladdin Biochemical Technology Co. Ltd., Shanghai, China. Trimethylolpropane triglycidyl
ether containing three epoxy groups (named as 3EG) and pentaerythritol glycidyl ether
having four epoxy groups (named as 4EG) were purchased from Sigma-Aldrich (Shanghai)
Trading Co. Ltd. and Shanghai Macklin Biochemical Co. Ltd., respectively. Triethylamine
used as the catalyst was obtained from Shanghai Aladdin Biochemical Technology Co. Ltd.,



Crystals 2022, 12, 210 4 of 12

Shanghai, China. The 2EG, 3EG, and 4EG were utilized as the reactive modifiers (named
as RMs), and their chemical structures are presented in Figure 3. All of the materials are
commercially available. Both PLLA and PDLA pellets were pre-dried in a vacuum oven at
60 ◦C to avoid moisture-induced thermal degradation during subsequent melt-processing.
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2.2. Sample Preparation

PLLA/PDLA (50/50) blends with different RMs were prepared by melt-blending
using a Haake Rheomix 600 internal mixer (Karlsruhe, Germany) at a temperature of
200 ◦C, in the presence of 0.3 wt% triethylamine as a catalyst for the reaction between
RMs and PLAs. The rotation speed and blending time were set as 60 rpm and 5 min,
respectively. Prior to the melt-blending, the RMs and catalyst were pre-mixed in absolute
ethanol to ensure their homogeneous dispersion in the blends. To simplify, the achieved
PLLA/PDLA/RM blends were denoted as LD-xEG-y, in which x and y indicate the number
of epoxy groups for each RM (x = 2, 3, 4) and the weight percentage of RMs.

2.3. Characterization and Measurements
2.3.1. Fourier Transform Infrared Spectroscopy (FT-IR)

Nicolet 6700 spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) was used to
characterize the generation of multi-arm PLA copolymers in the blends. The FT-IR spectra
were recorded from 4000 to 400 cm−1 at a resolution of 4 cm−1 for 32 scans.

2.3.2. Rheological Testing

Rheological behaviors were measured using a Discovery HR-1 rheometer (TA Instru-
ments, New Castle, DE, USA) equipped with two parallel plates (25 mm in diameter).
The measurements were performed at 240 ◦C in the frequency sweep mode (0.01–100 Hz),
under the protection of a dry nitrogen atmosphere. The strain used (1%) was within the
linear viscoelastic region.

2.3.3. Differential Scanning Calorimetry (DSC)

Crystallization and melting behaviors were examined using a DSC 8000 (PerkinElmer,
Waltham, MA, USA) under nitrogen atmosphere to avoid the thermal degradation of
PLA chains. Samples of ca. 5–6 mg were sealed in an aluminum crucible before the
examination. For the non-isothermal crystallization, the samples were completely melted
at 250 ◦C for 3 min to erase the thermal history and then cooled to 30 ◦C at a scanning
rate of 10 ◦C/min. In the isothermal crystallization, the samples were quenched (at a
cooling rate of 150 ◦C/min) from 250 ◦C to a pre-set temperature (160 ◦C) and then kept
at this temperature until the crystallization was completed. After the non-isothermal and
isothermal crystallizations, the samples were re-heated to 250 ◦C at a rate of 10 ◦C/min
to examine the melting behaviors. Based on the melting enthalpies of HC (∆Hm,HC) and
SC crystallites (∆Hm,SC) obtained from the DSC heating curves, the crystallinity values of
these crystallites were calculated using the following formulas:

Xc,HC =
∆Hm,HC

∆Hθ
m,HC

(1)
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Xc,SC =
∆Hm,SC

∆Hθ
m,SC

(2)

Xc = Xc,HC + Xc,SC (3)

where Xc,HC and Xc,SC represent the melting enthalpies of infinitely large HCs (93 J/g11)
and SC crystallites (142 J/g11), respectively; while Xc,HC and Xc,SC are the crystallinity
values of homocrystallites and SC crystallites, respectively; and Xc is the total crystallinity
of the crystallites formed in the PLLA/PDLA blends.

The fraction of SC crystallites in the crystalline phase was estimated by the following
expressions:

fsc =
Xc,SC

Xc,SC + Xc,HC
× 100% (4)

2.3.4. Wide-Angle X-ray Diffraction (WAXD)

WAXD patterns were collected using an X’Pert Pro MPD X-ray diffractometer (PAN
alytical, Holland) at room temperature. The diffractometer was equipped with a CuKα

radiation (λ = 0.154 nm) working at 40 kV and 40 mA. The scanning diffraction angle (2θ)
ranged from 5◦ to 40◦.

3. Results and Discussion
3.1. Generation of Multi-Arm Stereo-Block PLA Copolymers in PLLA/PDLA Blends

The PLLA/PDLA blends without and with epoxy-functioned modifiers (RMs) were
prepared by reactive melt-blending under the catalysis of 0.3 wt% triethylamine at 200 ◦C,
where multi-arm stereo-block PLA copolymers could be in situ generated (as illustrated
in Figure 1) along with the stereocomplexation of enantiomeric PLA chains [38,57]. The
coupling reaction between epoxy groups of the RMs and hydroxyl end groups of the PLAs
was verified by FT-IR. Figure 4 gives the full and enlarged FT-IR spectra of PLLA/PDLA
blends with various amounts of RM having four epoxy groups (i.e., 4EG). For assigning
the characteristic bands, the FT-IR spectra of pure PLLA/PDLA blend and 4EG were also
measured. Expectedly, the characteristic absorption peak at 908 cm−1, belonging to the
epoxy groups in 4EG, disappears after reactive blending. This means that most epoxy
groups of RMs could be completely reacted with the end groups of PLAs to generate
multi-arm stereo-block PLA copolymers in the blending.
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The generation of such multi-arm PLA copolymers can be further confirmed by
rheological testing, as shown in Figure 5. The storage modulus in the low-frequency region
is highly sensitive to the presence of long-chain-branched and/or multi-arm structures in
polymer melts owing to the increased interchain entanglement density [33,59]. It can be
clearly seen from Figure 5a that adding a small amount of 4EG leads to an evident increase
in the storage modulus of PLLA/PDLA blend at low frequencies (0.01–1 Hz). Moreover,
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the discrepancy becomes more obvious with the increasing 4EG content up to 0.5 wt%.
These results suggest that the multi-arm PLA copolymers have been successfully generated
in the PLLA/PDLA/RM blends.
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Furthermore, it is noteworthy that the melt viscosity of PLLA/PDLA blends in the
shear rate range of 50–100 Hz (close to that in practical melt-processing including extrusion
and injection molding, as highlighted in Figure 5b) is not pronouncedly increased with
the generation of the multi-arm PLA copolymers, which is distinctly different from that
observed in the blends with long-chain-branched PLA copolymers [8,60]. For example,
the melt viscosity of PLLA/PDLA (50/50) blend at 100 Hz is only slightly enhanced from
3.1 Pa·s to 4.2 Pa·s with the addition of 0.5 wt% 4EG. This is highly favorable for the
high-throughput processing of PLLA/PDLA blends in the industry.

3.2. Non-Isothermal Crystallization of PLLA/PDLA Blends

To explore the role of the multi-arm stereo-block PLA copolymers generated in enhanc-
ing the SC crystallizability of PLLA/PDLA blends, the non-isothermal melt-crystallization
behaviors of the racemic blends without and with various amounts of 4EG were systemati-
cally analyzed using DSC and WAXD. Figure 6a,b exhibit their DSC cooling and the second
heating curves, respectively. The crystallinity values of HCs (Xc,HC) and SC crystallites
(Xc,SC) calculated from the DSC heating curves are plotted as a function of 4EG content
and shown in Figure 6c. As expected, the generation of multi-arm PLA copolymers has
a significant effect on the non-isothermal crystallization of the blends (Figure 6a). For
the PLLA/PDLA blend without any RMs, the SC crystallization and HC are found to
successively occur at ca. 126 ◦C and 110 ◦C, respectively, upon cooling from the blend
melts. The formation of both HC and SC crystallites in the melt-crystallization process
can be checked by the appearance of two characteristic melting peaks in the second heat-
ing curve at ca. 172 ◦C and 218 ◦C (Figure 6b), assigned to the melting of HC and SC
crystallites, respectively. However, with the generation of multi-arm PLA copolymers
in PLLA/PDL/4EG blends, the melting peak of SC crystallites enlarges evidently, while
that of HC reduces remarkably, indicating that the SC crystallizability is greatly enhanced
and the homo-crystallizability is notably suppressed at the same time (Figure 6a–c). With
regard to the decrease in the crystallization temperature (Tc,SC) with the increasing 4EG
content, it could be attributed to the disturbance effect of the multi-arm structures on the
crystallization [59]. More impressively, the SC crystallites can be exclusively formed with
further increasing 4EG content up to 0.5 wt%. These results vividly demonstrate that the
generation of sufficient amounts of multi-arm PLA copolymers can substantially promote
the SC crystallization of racemic PLLA/PDLA blends.
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(d) WAXD patterns of the melt-crystallized blends.

WAXD patterns provide further evidence for the multi-arm PLA copolymers’ induced
enhancement in the SC crystallizability, as shown in Figure 6d. Expectedly, besides the
characteristic diffraction peaks of SC crystallites appearing at around 12.1◦, 21.0◦, and
24.1◦, the strong diffraction peaks of HCs can be observed in the WAXD pattern of the
PLLA/PDLA blend without 4EG at 16.8◦, 18.9◦, and 22.4◦ [61], respectively. Nevertheless,
in the case of PLLA/PDLA/4EG blends, the characteristic peaks of SC crystallites become
stronger with the increasing 4EG content. Meanwhile, the diffractions of HC decrease
markedly and diminish completely when the 4EG content reaches 0.5 wt%, indicating that
the multi-arm stereo-block PLA copolymers generated in the blends have a strong ability
to stimulate exclusive SC formation during the non-isothermal crystallization process.

3.3. Isothermal Crystallization of PLLA/PDLA Blends

To reveal the mechanism for the enhanced SC crystallizability of PLLA/PDLA blends
with the generation of stereo-block PLA copolymers with unique multi-arm structures,
the isothermal crystallization behaviors of the racemic blends without and with 0.5 wt%
4EG were studied at a high temperature of 160 ◦C, suitable for SC formation [18,62].
Figure 7 presents their DSC curves collected during isothermal crystallization and subse-
quent heating runs. Clearly, the PLLA/PDLA(50/50) blend exhibits not only a relatively
slow crystallization process (the peak-time (tp) is as high as 5.1 min, Figure 7a), but also the
simultaneous formation of both HC and SC crystallites in the crystallization (Figure 7b),
which is an indicator of the inferior SC crystallizability. Fascinatingly, with the addition
of 0.5 wt% 4EG into the blend, tp is significantly decreased to 2.3 min and the exclu-
sive SC crystallization is triggered. This proves that the unique PLA copolymers enable
the PLLA/PDLA blends to exclusively crystallize into SC crystallites at an accelerated
crystallization rate.
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It has been well established that the survival of alternately arranged PLLA/PDLA
chain segments in PLLA/PDLA blend melts plays a key role in their SC crystallization
process because they can serve as a nucleation precursor to accelerate crystallization
and stimulate exclusive SC formation [28,63]. In general, complete melting of high-MW
PLLA/PDLA blends could lead to the separation of enantiomeric PLA chains into PLLA-
and PDLA-rich domains, thus the SC formation in the phase-separated melts is kinetically
limited by the prolonged chain diffusion pathway as compared with the formation of
HCs [21,64]. However, the multi-arm stereo-block PLA copolymers could behave as
compatibilizers to effectively suppress the separation of the ordered PLLA/PDLA segment
assemblies, probably because their long PLA arms can readily interact with the PLLA
and PDLA segments. Therefore, the generation of such PLA copolymers can impart the
PLLA/PDLA blends with substantially enhanced SC crystallizability.

3.4. Crucial Role of the Arm Number of Multi-Arm Stereo-Block PLA Copolymers in Enhancing
SC Crystallizability of PLLA/PDLA Blends

Considering that the arm number of multi-arm stereo-block PLA copolymers gen-
erated in PLLA/PDLA blends could play an important role in facilitating the SC crys-
tallization, the crystallization behaviors of the racemic blends with different RMs were
comparatively investigated. Figure 8 shows the DSC heating curves of these blends af-
ter non-isothermal melt-crystallization. It is interesting to find that the formation of SC
crystallites in the melt-crystallized blends is markedly enhanced with the increasing num-
ber of epoxy groups in each RM (Figure 8a–c). As compared with PLLA/PDLA/2EG
and PLLA/PDLA/3EG blends, more SC crystallites are formed in the crystallization of
PLLA/PDLA/4EG blends with the same RM content (Figure 8d). More interestingly, the
introduction of RMs with relatively high epoxy equivalent weights leads to the multi-arm
PLA copolymers having a stronger ability to promote SC formation and, finally, exclusive
SC formation can be obtained when the content of 4EG is higher than 0.3 wt%. These results
suggest that increasing the arm number of the multi-arm PLA copolymers is favorable for
the SC crystallization of PLLA/PDLA racemic blends by improving the suppressing effect
on the separation of the ordered PLLA/PDLA segment assemblies in molten state.
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4. Conclusions

To summarize, small-molecule modifiers bearing several epoxy groups were success-
fully used to markedly enhance the SC crystallizability of PLLA/PDLA blends through in
situ generation of multi-arm stereo-block PLA copolymers in reactive melt-blending. With
the generation of such PLA copolymers with unique structures, the formation of SC crystal-
lites is remarkably enhanced under both non-isothermal and isothermal melt-crystallization
conditions. Notably, the exclusive SC formation can be achieved in the melt-crystallized
blends containing only 0.5 wt% modifiers, suggesting a strong stabilizing effect of the
copolymers on the alternately arranged PLLA/PDLA chain segments in molten state as
effective compatibilizers. Moreover, the copolymers having relatively more arms are found
to exhibit superior compatibilizing efficiency, as evidenced by the enhanced SC formation
at lower modifier loadings. Most impressively, the generation of these copolymers does
not greatly increase the melt viscosity of the racemic blends, which makes it possible
to rapidly transform the blends into high-performance SC-PLA products via industrial
melt-processing.
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