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Abstract: Tl[CB11H12] was prepared with a reaction of Tl2[CO3] with the acid of the monocarba-closo-
dodecaborate anion (H3O)[CB11H12] in aqueous solution as prismatic colorless single crystals by
isothermal evaporation from the clear brine. It crystallizes in a monoclinic primitive structure with the
space group P21/c (a = 685.64(3) pm, b = 1978.21(9) pm, c = 1006.89(5) pm, β = 132.918(3)◦ for Z = 4),
which can be derived from the halite-type arrangement if the closo-carbaborate cages are considered
as spheres. Due to the different atoms in the [CB11H12]− anion, Tl[CB11H12] features interesting
C–Hδ+ ··· δ−H–B interactions near to non-classical hydrogen bridges (“dihydrogen bonds”) and
exhibits considerably different luminescence properties compared to regular closo-hydroborates, such
as Tl2[B10H10], Tl2[B12H12] and Tl3Cl[B12H12]. Tl[CB11H12] shows strong photoluminescence (PL) at
390 nm, while the excitation bands for this broad band are located at 245 and 280 nm. It is caused
by an interconfigurational [Xe]4f145d106s2 (3P1) to [Xe]4f145d106s16p1 (1S0) transition, which is also
known as lone-pair luminescence. The quantum yield is rather low (<10 %), which is likely caused by
the rather large Stokes shift. In addition, temperature-dependent emission spectra were recorded to
determine the thermal quenching curve and the respective quenching temperature.

Keywords: carborates; thallium(I) salts; monocarba-closo-hydroborates; single-crystal X-ray diffraction;
Raman spectra; photoluminescence; stokes shift; thermal quenching

1. Introduction

Dodecahydro-monocarba-closo-dodecaborate monoanions [CB11H12]− feature the
same three-dimensional aromaticity like regular closo-dodecaborate dianions [B12H12]2−,
which explains the striking thermodynamical stability of such species. Despite their high
stability, which makes them easy to handle under atmospheric conditions, structural re-
search on binary inorganic salts with [CB11H12]− anions is still rather uncommon. Up
to now only the crystal structures of the alkali-metal salts A[CB11H12] (A = Li–K and
Cs) [1–4] have been reported, of which Li[CB11H12] and Na[CB11H12] were moved into
the research focus due to their high cationic conductivity [1,2]. Their crystal structures are
often based on simple structure types like the anti-fluorite-type for [B12H12]2− containing
salts A2[B12H12] and the halite-type for those with [CB11H12]− anions. Contrary to the
closo-dodecaborates, monocarba-closo-dodecaborates do not crystallize within the cubic
crystal system at room temperature, although they typically feature phase transitions into
highly disordered cubic phases, as soon as the rotational barrier for the [CB11H12]− anion
is thermally abrogated [1–3,5].

In this study, we present the synthesis and characterization of the previously unknown
thallium(I) salt Tl[CB11H12]. As the combination of cations with electronic lone pairs and
closo-hydroborate anions provided salts with interesting photoluminescence properties,
such as Tl2[B12H12] [6,7], Tl2[B10H10] [6], and Tl3Cl[B12H12] [8], already it was a matter
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of particular interest to see, how the luminescence properties of Tl+ will change, when a
carbon atom is substituted into the closo-borate cage within the [CB11H12]− counter anion.

2. Materials and Methods
2.1. Synthesis

Thallium(I) dodecahydro-monocarba-closo-dodecaborate Tl[CB11H12] was prepared
with a reaction of thallium(I) oxocarbonate Tl2[CO3] (Merck-Schuchardt, Hohenbrunn,
Germany, 99 %) with the acid of the monocarba-closo-dodecaborate anion (H3O)[CB11H12]
in an aqueous solution. The free acid (H3O)[CB11H12] itself was accessed by passing a
concentrated aqueous solution of Cs[CB11H12] (Katchem, Prague, Czech Republic, 97 %)
solution through a column filled with the highly acidic cation exchange resin Amberlite IR-
120 (Merck, Darmstadt, Germany). Colorless prismatic single crystals of Tl[CB11H12] were
obtained by isothermal evaporation from the clear solution of the initial reaction mixture.

2.2. Single-Crystal X-ray Diffraction

The selected single-crystal specimen of Tl[CB11H12] was prepared in a 0.1 mm glass
capillary and measured on a κ-CCD four-circle single-crystal X-ray diffractometer (Bruker-
Nonius, Delft, Netherlands) at room temperature. The diffractometer is equipped with a
1K CCD detector, a Mo-Kα X-ray tube and a graphite monochromator. Structure solution
and refinement were carried out on basis of the SHELX-2013 program package [9].

2.3. Optical Spectroscopy

Raman-spectroscopic measurements were carried out on a XploRA Raman spectro-
scope (Horiba Jobin Yvon, Bensheim, Germany) equipped with a BX51 polarisation mi-
croscope (Olympus, Hamburg, Germany) and two solid-state lasers with wavelenghts of
532 nm (25 mW) and 638 nm (24 mW). For hardware calibration, the T2g mode (521 cm−1)
of a silicon wafer was used.

The emission and excitation spectrum at room temperature as well as the temperature-
dependent emission spectra of Tl[CB11H12] were collected using a fluorescence spectrom-
eter FLS920 (Edinburgh Instruments, Livingston, UK) equipped with a 450 W Xenon
discharge lamp (Osram, Munich, Germany). Additionally, a mirror optic for powder sam-
ples was used. The detection served a R2658P single-photon-counting photomultiplier
tube (Hamamatsu,Herrsching am Ammersee, Germany). Temperature-resolved spectra
were recorded by using a cryostat “MicrostatN” from Oxford Instruments (Abingdon, UK),
wherein the powder sample was mounted.

For the determination of the reflection spectrum, the sample was placed into a Ba[SO4]
coated integrating sphere as part of an FLS920 (Edinburgh Instruments) spectrometer
equipped with a 450 W Xenon lamp, and a cooled (–20 ◦C) single-photon counting photo-
multiplier (Hamamatsu R928). Ba[SO4] was also used as a white reflectance standard. The
excitation and emission band widths were 10.00 and 0.06 nm, respectively. The applied
step width was 1 nm and the integration time was 0.5 s.

3. Results and Discussion
3.1. Crystal Structure

The thallium(I) dodecahydro-monocarba-closo-dodecaborate Tl[CB11H12] crystallizes
in the monoclinic space group P21/c with lattice parameters of a = 685.64(3) pm,
b = 1978.21(9) pm, c = 1006.89(5) pm and β = 132.918(3)◦ for four formula units per unit cell.
Further crystallographic data for the determination of the structure are given in Table 1 and
the corresponding atom sites, thermal displacement parameters and selected inter-atomic
distances can be found in Tables 2–4.
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Table 1. Crystallographic data of Tl[CB11H12] and their determination.

empirical formula Tl[CB11H12]
crystal system monoclinic
space group P21/c (no. 14)

lattice parameters
a/pm 685.64(3)
b/pm 1978.21(9)
c/pm 1006.89(5)
β/◦ 132.918(3)

number of formula units, Z 4
calculated density, Dx/g cm−3 2.307
molar volume, Vm/cm3 mol−1 150.57

diffractometer κ-CCD (Bruker-Nonius)
radiation wavelength Mo-Kα: λ = 71.07 pm

diffraction limit, 2Θmax/◦ 54.92
hkl range, ±hmax, ±kmax, ±lmax 8, 25, 12

F(000)/e− 616
absorption coefficient, µ/mm−1 16.07

extinction coefficient, ε 0.0114(5)
measured reflections 17,476

unique reflections 2283
Rint, Rσ 0.064, 0.038

R1, wR2, GooF 0.034, 0.081, 1.028
Residual electron density

(max., min. / e− 10−6 pm−3) 1.31, –1.14

CCDC number 2221677

Table 2. Fractional atomic coordinates and equivalent isotropic displacement parameters of
Tl[CB11H12] (all atoms occupy the general Wyckoff site 4e).

Atom x/a y/b z/c Ueq/pm2

Tl 0.62389(6) 0.094958(15) 0.73978(4) 627(2)
C1|B11 * 0.4456(14) 0.1820(3) 0.0867(9) 501(2)

H11 0.380 0.218 −0.021 601
C2|B12 * 0.7656(15) 0.1829(4) 0.2906(10) 484(2)

H12 0.916 0.218 0.322 581
B1 0.5088(16) 0.2123(4) 0.2735(10) 493(2)
H1 0.489 0.266 0.293 592
B2 0.2288(14) 0.1606(4) 0.1112(10) 447(2)
H2 0.025 0.180 0.024 536
B3 0.3194(14) 0.1016(4) 0.0286(10) 459(2)
H3 0.175 0.083 −0.112 551
B4 0.6534(15) 0.1166(4) 0.1404(10) 468(2)
H4 0.727 0.108 0.073 562
B5 0.8532(15) 0.1012(4) 0.3737(10) 489(2)
H5 1.057 0.082 0.459 587
B6 0.7650(15) 0.1614(4) 0.4569(9) 489(2)
H6 0.912 0.181 0.596 587
B7 0.4234(14) 0.1461(3) 0.3429(10) 414(2)
H7 0.347 0.156 0.408 497
B8 0.3074(15) 0.0776(4) 0.1926(10) 443(2)
H8 0.156 0.042 0.160 665
B9 0.5716(13) 0.0500(3) 0.2102(9) 417(2)
H9 0.592 −0.003 0.190 500
B10 0.6406(15) 0.0775(4) 0.4084(10) 437(2)
H10 0.707 0.043 0.517 524

* These C-atom sites are both occupied by carbon and boron at an equivalent 1:1 molar ratio. Hydrogen atoms
have been refined with a distance of 110 pm to their respective covalent binding partners (C and B) at 1.2 times of
their equivalent isotropic displacement parameters using the SHELX command AFIX 153 [10,11].
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Table 3. Selected intramolecular distances (d/pm) within the [CB11H12]− anion in Tl[CB11H12].

C1|B11 −C2|B12 170.1(10) C2|B12 −C1|B11 170.1(10)
−B3 171.1(9) −B5 172.8(11)
−B4 171.7(10) −B6 173.0(10)
−B2 171.7(9) −B4 173.7(10)
−B1 172.4(9) −B1 174.7(10)
−H11 110 −H12 110

B1 −C1|B11 172.5(9) B2 −C1|B11 171.7(9)
−C2|B12 174.7(10) −B8 174.9(10)
−B6 175.9(11) −B7 175.1(10)
−B7 176.3(9) −B1 176.9(10)
−B2 176.9(10) −B3 177.3(10)
−H1 110 −H2 110

B3 −C1|B11 171.0(9) B4 −C1|B11 171.7(10)
−B9 175.2(10) C2|B12 173.8(10)
−B4 175.7(10) −B9 175.4(10)
−B2 177.3(10) −B3 175.7(10)
−B8 177.4(10) −B5 176.1(10)
−H3 110 −H4 110

B5 −C2|B12 172.9(11) B6 −C2|B12 173.0(10)
−B4 176.1(10) −B1 175.9(11)
−B9 177.1(10) −B10 177.6(10)
−B10 177.8(10) −B5 178.2(10)
−B6 178.2(10) −B7 179.8(10)
−H5 110 −H6 110

B7 −B2 175.1(10) B8 −B2 174.9(10)
−B1 176.3(10) −B7 176.6(10)
−B8 176.7(10) −B3 177.3(10)
−B10 177.6(10) −B9 178.0(9)
−B6 179.8(10) −B10 178.4(10)
−H7 110 −H8 110

B9 −B3 175.2(10) B10 −B6 177.5(10)
−B4 175.5(10) −B7 177.6(10)
−B5 177.1(10) −B5 177.8(10)
−B8 178.0(9) −B8 178.4(10)
−B10 179.3(9) −B9 179.3(9)
−H9 110 −H10 110

Table 4. Distances (d/pm) between the Tl+ cations and coordinatively relevant hydrogen atoms of
the [CB11H12]− anions in Tl[CB11H12] up to 400 pm.

Tl −H9 272.5
−H7 275.0
−H2 280.7
−H10 285.4
−H5 286.3
−H4 293.3
−H8 293.4
−H3 298.1
−H1 306.5
··· H10 335.4
··· H8 335.9
··· H6 357.6

Due to the quite similar atomic form factors of carbon and boron [12], they cannot
be distinguished in the Fourier syntheses unambigously, which is why the position of
the single carbon atom of the [CB11H12]− anion had to be determined by the structural
differences between the different atom sites within the [CB11H12]− cage as shown in
Figure 1. So C1 shows the shortest intramolecular distances of 170 to 172 pm within the
icosahedron, followed by C2 with values between 170 and 175 pm, whereas the distances
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between the boron atoms B2–B10 range from 175 to 180 pm, which is rather typical for B–B
bond lengths in closo-dodecaborates. In addition to these differences in bond lengths, the
hydrogen atoms H11 and H12 at the corresponding C1 and C2 atoms do not show any
Tl–H interactions, hence predicting a reciprocally polarized Cδ−–Hδ+ bond in comparison
with the Bδ+–Hδ− bonds. Therefore, it can be assumed that only one carbon site of the
carbaborate cage is occupied at a time, due to a orientational disorder of the [CB11H12]−

anion within the crystal structure. This effect was observed for measurements both at room
temperature as well as at −196 ◦C, suggesting a static instead of a dynamic disorder.
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Figure 1. Atom-numbering scheme of the [CB11H12]− anion in Tl[CB11H12] with the atomic positions
C1, C2, B1–B10, H1–H10, H11 and H12, where due to the orientational disorder only one of the two
carbon sites is occupied at a time.

The differences in coordination of the individual hydrogen atoms of the [CB11H12]−

anion are shown in Figure 2. Clearly visible are the missing Tl–H contacts at the two
possible carbon sites, but also the fact that three Tl+ cations are coordinated via edges or
faces of the pseudo-icosahedral cages, but the remaining three on the top and at the right
hand side of Figure 2 graft only terminally. The resulting distorted octahedral coordination
of the [CB11H12]− anion by Tl+ cations thus divides into three more distant terminal Tl+

cations with Tl–H distances from 286 to 307 pm with B–H–Tl angles of 138 to 152◦ and
three closer Tl+ cations coordinated via edges (or faces) at distances from 272 to 298 pm,
but much smaller angles of 109 to 116◦. The three closer Tl+ cations always show a third
contact to the [CB11H12]− anion, which is emphasized as fragmented bond each due to the
very long Tl···H distances of 335–358 pm.

Regarding the coordination environment of the singular Tl+ cation in Tl[CB11H12]
(Figures 3 and 4), it also shows a distorted octahedral coordination of six [CB11H12]− anions
leading to a simple AB structure, if the [CB11H12]− anions are treated as spheres, which is
why the structure can be deduced from the NaCl-type arrangement. Figure 5 shows the
resulting extended unit cell within the crystal structure of Tl[CB11H12], in which bilayers
of [CB11H12]− anions with intercalated Tl+ cations stacked along [010] are found. These
bilayers feature surprisingly short H···H contacts of 247 and 258 (2×) pm that all belong
to C–Hδ+ ··· δ−H–B contacts. These distances are significantly longer than non-classical
dihydrogen bonds covering a typical range between 170 and 220 pm [13–15], however, but
especially 248 pm as the shortest of them appear very close to twice of the van der Waals
radii of hydrogen equaling 240 pm [16] and thus should yield a non-negligible electrostatic
interaction. This also supports the proposed orientational disorder of the [CB11H12]−
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anion, as only the positively partial charged hydrogen atoms bound to carbon show such
short contacts.
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The already known potassium monocarbaborate K[CB11H12] was reported to crystallize
in the space group P21/c as well with a = 997.92(6) pm, b = 1967.82(6) pm, c = 998.41(6) pm
and β = 93.267(2)◦ for eight formula units per unit cell on basis of ab-initio calculations and
Rietveld refinements of X-ray powder diffraction data [2]. According to the shown unit
cells in Figure 6, K[CB11H12] crystallizes isostructurally with Tl[CB11H12] as an ordered
variant with an enlarged unit cell. Doubling the P21/c unit cell of Tl[CB11H12] along the
a-axis leads to the one of K[CB11H12] in the P21/n setting and then can be transformed
into the literature known P21/c cell of K[CB11H12] as shown in Figure 7. As we did not
find any further reflections indicating a larger unit cell along the reciprocal a-axis in the
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reconstructed reciprocal diffraction images of Tl[CB11H12] (Figure 8), it can be stated that
there is no ordering in our measured single-crystalline specimen of Tl[CB11H12]. The
decision, whether rotational or orientational disorder is present, would be subject of further
temperature-dependent investigations. The rotational disorder of the [CB11H12]− anion
around a pseudo-twofold axis, however, mimics roughly the structural arrangement of the
neutral closo-dicarbadodecaborane o-[C2B10H12] (1,2-[C2B10H12]: monoclinic, Pc) [17].
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3.2. Raman Spectrum

The single-crystal Raman spectrum of Tl[CB11H12] (Figure 9) appears almost identical
to the known Raman spectrum of Cs[CB11H12] already described in the literature [3,18].
A sharp band with slight splitting can be seen at 3047 cm−1, which originates from the
C–H valence vibration [19]. This confirms the presence of carbon in the dodecaborate cage
and also supports the assumption of alternating occupation of the C1 and C2 positions.
Subsequently, in the region of the asymmetric breathing vibration of the carbaborate cage
from 2600 to 2400 cm−1, a splitting into several signals at 2583, 2563 and 2517 cm−1

is observed. On the basis of density functional theory calculations, the interaction-free
carbaborate anion [CB11H12]− should even show seven different B–H stretching vibrations
or vibration combinations according to its ideal C5v symmetry [18]. In the solid state and
coordinated to cations, both further splitting or reduction of the number of bands is possible.
Next, from 1200 to 850 cm−1, the B–H and C–H bending-vibration area can be observed,
which is followed by the symmetric breathing mode of the carbaborate cage at 758 cm−1 as
most intense and sharp band in the whole spectrum. Subsequently, several B–B and C–B
bending vibrations from 726 to 490 cm−1 and finally the phalanx of lattice vibrations at
55 cm−1 with a shoulder extending up to 140 cm−1 are encountered.
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3.3. Optical Spectra

The reflection spectrum of a Tl[CB11H12] sample (Figure 10) shows a high reflectance
over most of the visible range, which is in line with the observation of a white body color of
the microcrystalline powder. From the blue to violet range, the reflectance starts to decline,
whereby over the whole UV range a broad unstructured absorption appears, which is
assigned to absorption processes attributed to Tl+. A weaker shoulder at about 420 nm
is visible, too, in which the origin may be caused by Urbach tailing (i.e., structural defect
related absorption processes) [20].
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The emission spectrum (Figure 11) upon excitation with UV radiation (280 nm) shows a
broad-band peaking at 410 nm (23800 cm−1) with a pretty large full width at half maximum
of about 6200 cm−1 and a tailing at the low energy edge, which extends to about 600 nm
(16700 cm−1).
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It is assumed, that the photoluminescence process is caused by an interconfigurational
[Xe]4f145d106s2 (1S0) to [Xe]4f145d106s16p1 (3PJ) transition (lone-pair luminescence) of Tl+.
The detailed interpretation of the Tl+ luminescence was delivered by Seitz a long time
ago [21]. He described the ground state of the free Tl+ ion as a non-degenerated singlet term
1S0 while the excited states are assigned as spin-orbit levels of the triplet term, viz. 3P0, 3P1,
and 3P2, as well as the singlet term 1P1 in sequence of increasing energy [21,22]. In view of
the energy levels mentioned before, the strong excitation bands at 245 nm (40800 cm−1) and
280 nm (35700 cm−1) are assigned to the 1S0→3P2 and 1S0→3P1 transitions of Tl+, while the
strong spin-orbit coupling in the case of the Tl+ cation lifts the spin-selection rule on these
transitions [22]. The broad emission band and the large Stokes shift of about 11900 cm−1

are reasonable for s2 ions [23].
The fitting of the thermal quenching curve (Figure 12) between 100 and 500 K is done

using the formula developed by Struck and Fonger [24–26]; see the equation below. We
found that the activation energy Ea of the quenching process is solely 0.097 eV, and thus
the quenching temperature T1/2 is rather low, viz. at 230 K.

I(T)
I0

=

[
1 + Ae

−Ea
kbT

]−1
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Therefore, the photoluminescence is widely quenched at room temperature, and thus
the quantum yield at 293 K is lower than 10 %. Such an observation is typically made for
s2-cation activated luminescent materials with a large Stokes shift [23]. Due to the sole
moderate signal-to-noise ratio of the emission spectra, the calculation of color coordinates
or luminous efficacy values were not considered.

4. Conclusions

The previously unknown thallium(I) dodecahydro-monocarba-closo-dodecaborate
Tl[CB11H12] was obtained as several millimeters large single crystals from aqueous solu-
tion. Its structure could be determined on basis of single-crystal X-ray diffraction data,
which showed differences in terms of the carbon-versus-boron positions within the crystal
structure as compared to the otherwise isostructural potassium salt K[CB11H12] [2]. Recon-
structed reciprocal diffraction images were evaluated to prove the carbon-atom disorder in
the crystal structure of Tl[CB11H12]. Therefore, Tl+ cations and [CB11H12]− anions form a
distorted halite-type structure with double layers of [CB11H12]− cages and intercalated Tl+

cations. As for the closo-carbaborates, the usual hydrogen atoms bound to carbon atoms
of the cage stay coordinatively inactive, thus the layers are stabilized by electrostatic C–
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Hδ+···δ−H–B interactions, which may be referred to as very weak non-classical hydrogen
bonds (“dihydrogen bonds”).

In terms of optical properties, Tl[CB11H12] shows 6s2 lone-pair luminescence with
a maximum emission at 420 nm at 280 nm excitation. The quantum yield of less than
10 % at room temperature is rather low and can be explained by the low activation energy
for thermal quenching, which is also reflected in temperature-dependent measurements
showing maximum emission intensity in a range of 77 to 100 K. Compared to the lumines-
cence properties of the already known related thallium(I) salts Tl2[B12H12], Tl2[B10H10] and
Tl3Cl[B12H12], the presented Tl[CB11H12] shows no red shifting of the photoluminescence
like Tl2[B12H12] or Tl2[B10H10] (emissions at 522 and 510 nm) and has the highest full width
at half maximum of 6200 cm−1 compared to 4000 to 4700 cm−1 of the closo-hydroborate salts.
In the end, it cannot cope with the strong luminescence properties of Tl3Cl[B12H12]; how-
ever, the mixed coordination sphere of chloride and hydridic hydrogen of the [B12H12]2−

anions seem to favour strong emission intensity and a high quantum yield (Figure 13) [6,8].
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