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Abstract: The quasi-one-dimensional material PdTeI exhibits unusual electronic transport properties
at ambient pressure. Here, we systematically investigate both the structural and electronic responses
of PdTeI to external pressure, through a combination of electrical transport, synchrotron X-ray
diffraction (XRD), and Raman spectroscopy measurements. The charge density wave (CDW) order in
PdTeI is fragile and the transition temperature TCDW decreases rapidly with the application of external
pressure. The resistivity hump is indiscernible when the pressure is increased to ~1 GPa. Upon
further compression, the resistivity dropping is observed approximately ~15 GPa and zero resistance
is established above ~20 GPa, suggesting the occurrence of superconductivity. Combined XRD and
Raman data evidence that the emergence of superconductivity is accompanied by a pressure-induced
amorphization of PdTeI.

Keywords: high-pressure; charge density wave; superconductivity; amorphization

1. Introduction

Both charge density wave (CDW) and superconductivity (SC) are two typical collective
electronic phenomena, which are caused by strong electron–phonon coupling and Fermi
surface (FS) instabilities [1–4]. The tuning of the CDW via external parameters such as
doping [5–7], intercalation [1,8–11] or pressure [12–17] usually lead to the discovery of SC.
The relationship between CDW and SC has been the subject of extensive investigations over
the past decades and complex connections between them have been revealed, including
coexistence, cooperative or competition [12,18–23].

In a one-dimensional (1D) system, atomic chains have strong interaction, thus in
theory, a long-range CDW state hardly exists when the thermal fluctuation is strong at finite
temperature. In practice, long-range CDW ordering states exist in some quasi-1D (q1D)
systems, e.g., NbSe3 [24,25], HfTe3 [26,27], K0.3MoO3 [28,29], and TaTe4 [30], where 1D
chains are embedded in a three-dimensional (3D) structure with weak interchain coupling.
Thus, when we modulate the interchain or/and intrachain coupling with a high pressure,
q1D materials provide a great platform for exploring relationships between different
quantum states [31].
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Recently, PdTeI with q1D PdTe chains has received much attention since it exhibits un-
usual electronic transport properties and multiple quantum states. X-ray diffraction (XRD)
and neutron powder diffraction studies indicated that there is a dynamic charge separation
of Pd ions with local Pd2+ and Pd4+ pair persisting at high temperature [32]. The long-range
CDW transition have been found at TCDW = 110 K with CDW vector q = [0, 0, 0.396(3)].
Surprisingly, the carrier concentration decreases gradually before TCDW, reflecting the
existence of strong CDW fluctuation with possible pseudogap states. Moreover, the sliding
CDW state appears below T2 ~ 6 K. Thus, PdTeI provides a novel platform for studying the
CDW fluctuation and the interplay between CDW and SC states.

High pressure (HP) as a conventional thermodynamic parameter is a pure way with
high efficiency in tuning lattice and electronic states, in particular for quantum state. In
order to investigate the pressure effect on CDW and explore possible exotic states in PdTeI,
we performed experiments of electrical transport, synchrotron XRD as well as Raman
spectroscopy and systematically investigated the electrical transport properties and crystal
structure of PdTeI under pressure. We observed that the TCDW is suppressed until 1 GPa
and SC emerges up to 3.10 K at 44.5 GPa. Meanwhile, a metallic amorphous transition has
been identified by HP X-ray diffraction and Raman measurements. Our results suggest
that the suppression of CDW may be caused by the stability of Pd3+ ion and SC could be
relevant to the amorphous transition as a result of structural instability.

2. Materials and Methods

High quality single crystals of PdTeI were grown using a hydrothermal method, as
described elsewhere [33]. Bar-like single crystals with metallic luster used in this work
are stable in the air. In situ HP resistivity measurements were performed using various
apparatus including piston cylinder cell (PCC), palm-type cubic anvil cell (CAC) [34]
and diamond anvil cell (DAC). For PCC and CAC, the standard four-probe method was
employed with current along the c axis. The Daphne 7373 and glycerol were used in
PCC and CAC as the pressure transmitting medium. The pressure values in PCC were
determined in situ by monitoring the shift of the superconducting transition of lead (Pb),
while those in CAC were estimated from the low-temperature calibration curve established
from separate measurements on the superconducting transition of Pb. It should be noted
that the pressure values inside the CAC exhibit slight variations upon cooling, which has
been characterized in our previous work [34]. For DAC, four Pt foils were arranged in a
van der Pauw four-probe configuration to contact the sample in the chamber for resistivity
measurements. A cubic boron nitride and epoxy mixture layer was employed between
BeCu gasket and Pt wires as an insulator layer. In situ HP XRD measurements were
carried out on the beamline BL15U of Shanghai Synchrotron Radiation Facility using X-rays
(λ = 0.6199 Å). In situ HP Raman spectroscopy experiments were performed using a
Renishaw Raman spectrometer (laser excitation wavelength λ = 532 nm). Pressure was
determined by the ruby luminescence method [35].

3. Results and Discussion

PdTeI crystallizes in a tetragonal structure with space group P42/mmc (No. 131). As
shown in Figure 1a, PdTeI features quasi-1D channels of corner sharing PdTe4I2 octahedra
along the c axis. The channels are connected mutually by the I-I edges of the octahedron of
PdTe4I2 along the a and c axes, there are four Pd-Te chains in each channel. Since the tilt
of the octahedron of PdTe4I2, the Pd-Te chains are not parallel to the c axis straightly. The
single-crystal XRD data reveals that the (h00) plane is a natural cleavage facet of as-grown
single crystals (Figure 1b). The full width at half maximum (FWHM) of (400) peak is only
0.0438◦ (inset of Figure 1b), indicating the high quality of our samples. Optical microscope
shows a rod-like crystal (inset of Figure 1c). The average compositions were derived from a
typical EDX measurement at several points on the crystal, revealing good stoichiometry
with the atomic ratio of Pd:Te:I = 31.53%:33.45%:35.02% (Figure 1c). At ambient pressure,
resistivity measurements on high-quality PdTeI single crystals reveal obvious anomalies
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TCDW ~ 110 K [33], which has been ascribed to the formation of a CDW order, as shown in
Figure 1d.
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Figure 1. (a) Crystal structure of PdTeI. The PdTe4I2 octahedron highlighted in green, gray, yellow,
and violet balls represent Pd, Te, and I atoms, respectively. (b) XRD patterns of single crystal of
PdTeI at ambient pressure. Inset: the FWHM of (400) peak is 0.0438◦. (c) Energy-dispersive X-ray
spectroscopy and optical photograph of PdTeI. (d) Temperature-dependent resistance at ambient
pressure for PdTeI single crystal.

We carried out a comprehensive HP study on single-crystalline samples in order
to investigate the pressure effect on CDW. Figure 2a shows the temperature-dependent
resistivity ρ(T) of PdTeI single crystals under various pressures up to 7.2 GPa at 0 T. The
TCDW can be well defined from the sharp minimum of the dρ/dT curve, as shown in
Figure 2b. However, a misalignment may exist in our resistivity measurements with the
contributions from both c axis and b axis. In light of the competing nature between CDW
and SC, we measured the resistivity ρ(T) of PdTeI under various hydrostatic pressures to
further explore whether SC will emerge followed a suppression of CDW by using PCC up
to ~2.3 GPa and CAC up to 7.2 GPa. With increasing pressure gradually, the hump-like
anomaly in ρ(T) and the corresponding minimum in dρ/dT move to lower temperatures
monotonically from ~110 K at ambient pressure to ~71 K at 0.75 GPa. It should be noted
that the ρ(T) curve measured at 0.61 GPa was recorded during the pressure decreasing
process from ~2.3 GPa to 0.61 GPa. As shown in Figure 2a,b, the CDW transition in ρ(T)
and dρ/dT only exhibits very weak feature at 0.75 GPa and cannot be discerned at 1.6 GPa.
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Figure 2. Temperature-dependent (a) resistivity ρ(T) and (b) its derivative dρ/dT of PdTeI under
various hydrostatic pressures up to 7.2 GPa. All the resistivity curves were vertically shifted for
clarity. The inset shows the CDW transition temperature TCDW as a function of pressure.

As can be seen in the inset of Figure 2b, the pressure dependent TCDW determined
from the minimum of dρ/dT shows a complete suppression at ~1.3 GPa. However, no SC
was observed down to 2 K with pressure further increasing to ~2.3 GPa in PCC and 7.2 GPa
in CAC. At the pressure of 19.9 GPa, the ρ(T) curve drops to zero at low temperature,
suggesting the emergence of SC (Figure 3a). It is clear that the Tc increases monotonously
with increasing pressure and up to 3.07 K at 44.5 GPa (Figure 3b). Moreover, the ρ(T)
curves as a function of temperature at various fields for 44.5 GPa is shown in Figure 3c.
When increasing the magnetic field, the resistivity drop is continuously shifted to a lower
temperature and no SC is observed at 2.5 T. The temperature dependent upper critical field
µ0Hc2(T) is shown in Figure 3d. Here, the value of Tc is derived from 90% of the normal
state resistivity. To determine the upper critical field µ0Hc2(0) at 0 K, the Ginzburg–Landau
(G-L) formula µ0Hc2(T) = µ0Hc2(0)(1 − t2)/(1 + t2), where t denotes a reduced temperature
of T/Tc, is used to fit the µ0Hc2(T) curves. The obtained µ0Hc2(0) is 2.25 T for 44.5 GPa,
which is much lower than the Pauli limiting field Hp(0) = 1.84Tc = 5.65 T. It indicates that
the orbital pair breaking mechanism is dominant in PdTeI.
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Figure 3. (a) Electrical resistivity of PdTeI as a function of temperature under high pressures up
to 44.5 GPa. (b) Temperature-dependent resistivity of PdTeI in the vicinity of the superconducting
transition. (c) Temperature dependence of resistivity under different magnetic fields for PdTeI at
44.5 GPa. (d) The upper critical field µ0Hc2(T) as a function of temperature at representative pressures.
The solid lines correspond to the results of fitting by Ginzburg–Landau (G-L) formula.

In situ HP synchrotron XRD measurements were carried out on powered single crystals
of PdTeI to clarify whether the pressure-induced SC is associated with structural phase
transition (Figure 4a). In the low-pressure range, most diffraction peaks of PdTeI could
be indexed to the tetragonal P42/mmc structure. When increasing the pressure, all peaks
slowly shift to higher angles and no structural phase transition is observed up to 13.3 GPa.
As shown in Figure 4b, both a- and c-axial lattice parameters decrease with increasing
pressure. Interestingly, above 18.22 GPa, apart from the formation of a broad diffusive peak
at ≈13◦, the Bragg peaks disappear from the XRD spectra. It demonstrates that PdTeI may
go through an amorphous phase transition persistent up to 75.6 GPa. In addition, upon
decompression, the amorphous behavior is maintained. Meanwhile, in situ HP Raman
spectroscopy experiments were also carried out up to 31 GPa (Figure 4c). At 1.0 GPa, PdTeI
displays seven Raman vibrational modes at 34.8, 44.4, 70.4, 81.5, 127.2, 140.8 and 147.4 cm−1,
respectively. The split of Raman peak around 127 cm−1 and the red shift around 141 cm−1

(Figure 4d) above about 1.3 GPa may related with the suppression of CDW. Consistent with
the pressure-induced amorphization from the XRD results aforementioned, all the Raman
modes disappear above 15.4 GPa corresponding to completion of the structural transition.
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Figure 4. Pressure effect on structure of PdTeI. (a) XRD patterns of PdTeI measured at room temper-
ature with increasing of external pressure up to 75.6 GPa. The X-ray diffraction wave-length λ is
0.6199 Å. (b) Pressure dependence of the lattice constants a and c for PdTeI. (c) Raman spectrum of
PdTeI at various pressures. Anti-stokes shift and stokes shift of Raman shifts are symmetrical about
0 cm−1. (d) Stokes shifts of Raman spectroscopy for PdTeI in compression.

On the basis of the above results, we construct a temperature-pressure phase diagram
for PdTeI single crystal, as displayed in Figure 5. One can see that the CDW is fragile and
TCDW decreases sharply with pressure. By extrapolating this tendency, the CDW transition
is estimated to be suppressed completely above around 1 GPa. It should be noted that
some typical vibration mode (e.g., 127.2 cm−1 and 140.8 cm−1 in ambient condition) shows
redshift behavior, which may be related to the stability of Pd3+ ion [36]. The disappearance
of charge separation of Pd ions may be the reason for the suppression of CDW under
high pressure. Different from many previous reports, compression can destabilize the
CDW and then SC will emerge nearby [13,22,37], here however we do not observe SC
around 1 GPa at temperatures down to 1.8 K [38]. With further increasing pressure, SC was
observed at around 15 GPa (Figure S1) (see supplementary materials), where a pressure-
induced amorphization emerges. The Tc increases with applied pressure and reaches a
value of 3.07 K at 44.5 GPa for PdTeI. The transport measurements on different samples for
independent runs provide the consistent and reproducible results, confirming this intrinsic
SC under pressure (Figure S1). It is very interesting that an amorphous phase of PdTeI
could support SC. Other materials also show superconductivity under high pressure when
the crystal structure change to an amorphous phase, such as Pd3P2S8 [39,40], Bi4I4 [41],
(NbSe4)2I [42], and (TaSe4)2I [43,44]. Recently we learned that correlated disorder in the
amorphous phase could be considered a way toward robust superconductivity [45]. The
results shown here provide a platform to investigate the mechanism of superconductivity in
the amorphous phase. Further studies from both experimental and theoretical perspectives
still need to be addressed.
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