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Abstract: Ge1−xSnx film with Sn content (at%) as high as 13% was grown on Si (100) substrate with
Ge buffer layer by magnetron sputtering epitaxy. According to the analysis of HRXRD and Raman
spectrum, the quality of the Ge1−xSnx crystal was strongly dependent on the growth temperature.
Among them, the GeSn (400) diffraction peak of the Ge1−xSnx film grown at 240 ◦C was the lowest,
which is consistent with the Raman result. According to the transmission electron microscope image,
some dislocations appeared at the interface between the Ge buffer layer and the Si substrate due to
the large lattice mismatch, but a highly ordered atomic arrangement was observed at the interface
between the Ge buffer layer and the Ge1−xSnx layer. The Ge1−xSnx film prepared by magnetron
sputtering is expected to be a cost-effective fabrication method for Si-based infrared devices.

Keywords: Ge1−xSnx alloy; magnetron sputtering; growth temperature; Ge buffer

1. Introduction

Ge1−xSnx alloys have attracted considerable attention in Si-based optoelectronic device
integration because of their enhanced carrier mobility, adjustable band gap structure and
compatibility with the CMOS processes [1–5]. Efficient devices based on Ge1−xSnx have
been fabricated, including thin film transistors [6–9], solar cells [10], photodetectors [11–13],
LEDs [14–17], lasers [18,19], etc. By adjusting the content of Sn and the strain of Ge1−xSnx,
the direct band gap can be extended to mid-infrared applications [20–22]. However, there
are some difficulties in preparing Ge1−xSnx alloys with high Sn content and good crystal
quality on a Si substrate [23,24]. At first, the equilibrium solid solubility of Sn in Ge is as
low as about 0.5% [25]. Secondly, the phenomenon of Sn segregation easily appears during
fabrication. Thirdly, the lattice mismatch between Ge and α-Sn is about 14.7% [26]. Thus,
determining how to achieve a high Sn content and good quality Ge1−xSnx alloy is critical
for fabricating high-performance Ge1−xSnx photoelectronic devices.

So far, researchers have successfully prepared Ge1−xSnx alloy films using molecular
beam epitaxy (MBE) [27–29], chemical vapor deposition (CVD) [30–32], magnetron sputter-
ing [33–36] and solid phase crystallization [37,38]. Among these methods, MBE is a method
that can accurately control the thickness and structure of thin films. However, once the
layer thickness exceeds the critical thickness [39,40], the screw dislocation begins to appear,
which is caused by lattice mismatch, thus affecting the crystal quality of the material. CVD
can release misfit dislocations at the interface rather than forming through dislocations,
so the thin film materials epitaxy by this technology have perfect crystal quality [41–43].
Magnetron sputtering is a low-cost and feasible method for Ge1−xSnx mass production.
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Qian, L. et al. used Ge (100) and GaAs (100) substrates with high lattice matching to obtain
a Ge1−xSnx layer with good crystal quality by sputtering [44–46]. Grant, J. et al. adopted a
CMOS compatible Si (100) substrate, and the Ge1−xSnx layer obtained by sputtering was
polycrystalline [34,47,48]. There are few published papers about obtaining single crystal
Ge1−xSnx on silicon substrate by sputtering. Zheng Jun et al. [24] realized Ge1−xSnx single
crystal film with low Sn content on Ge/Si (100) substrate, in which Ge was the buffer
layer, the deposition temperature was 400 ◦C, the deposition temperature of Ge1−xSnx
films was 150 ◦C, and the highest Sn content was 0.06. Tsukamoto, T. et al. [49] deposited
single crystal Ge1−xSnx film with x of about 0.115 on Si (100) substrate by magnetron
sputtering without a buffer layer, and the deposition temperature was 250 ◦C. At present,
single crystal Ge1−xSnx alloy films deposited on Si (100) substrate by epitaxial sputtering
have the problems of many dislocations and low Sn doping, and the highest Sn doping is
0.115 [26,49,50]. Generally, when x is greater than 0.1, the energy band of Ge1−xSnx will be
transformed into a direct band gap, so it is necessary to further increase the Sn content of
single crystal Ge1−xSnx grown on silicon substrate by sputtering.

In this paper, we report the growth of Ge1−xSnx crystalline films on Si (100) substrates
by sputtering. We have studied the possibility of growing single crystal Ge1−xSnx with Sn
content more than 10% on Ge buffer layer. The Ge buffer layer was deposited at 300 ◦C, with
a thickness of 572 nm. By adjusting the deposition temperature of Ge1−xSnx at 180~300 ◦C,
single crystal Ge1−xSnx alloy films were obtained in which the highest Sn content (at%)
reached 13%.

2. Materials and Methods

Ge1−xSnx epitaxial layers were deposited in a physical vapor deposition (PVD) system
manufactured by ULVAC Corporation. Figure 1 is a schematic diagram of Ge1−xSnx
deposition, in which Ge target and Sn target are installed at different target positions
and sputtered at the same time. The substrate was placed on the bottom sample table,
which can rotate horizontallyand move up and down and heat The sputtering rate of thin
film was determined by sputtering power, sputtering distance, etc. The film thickness
was obtained by scanning electron microscope profile test. Before deposition, we cleaned
and activated the surface of the silicon substrate. Firstly, it was washed with sulfuric
acid (H2SO4:H2O2 = 7:3) solution for 10 min and washed with deionized water 10 times to
remove organic and inorganic pollution. Then, it was soaked in diluted HF (HF:H2O = 1:10)
solution at room temperature for 30 s to remove the oxide layer on the surface. Finally, it
was washed with deionized water 10 times and dried with nitrogen. The base pressure
of the sputtering chamber was less than 4.0 × 10−4 Pa. Then, the substrate was quickly
loaded into the growth chamber. After the vacuum degree reached 4.0 × 10−4 Pa, the
substrate was heated at 300 ◦C for 1 h, and then the Ge buffer layer was deposited with a
thickness of about 572 nm. Then, different Ge1−xSnx alloy films were deposited on the Ge
buffer layer by changing the temperature of the substrate to 180 ◦C, 200 ◦C, 225 ◦C, 240 ◦C,
250 ◦C, 260 ◦C, 275 ◦C and 300 ◦C, respectively. The Ge1−xSnx film was deposited by Ge
and Sn co-sputtering, and its thickness was about 350 nm. In the process of sputtering
deposition, argon was filled to make the chamber pressure reach 0.4 Pa. The composition
of the Ge1−xSnx films was achieved by maintaining a constant DC power of 130 W for the
Ge target, and RF power of 40 W for the Sn target. The deposition rate of Ge and Sn were
controlled about 1.2 Å/s, 0.22 Å/s, respectively. For comparison, the sample with only a
Ge buffer layer was deposited under the same conditions as the samples with Ge1−xSnx
alloy film.

The properties of the Ge buffer layer and the GeSn thin film were tested and analyzed
by high-resolution X-ray diffraction (HR-XRD, X’pert PRO, PANalytical, Suzhou, China),
Raman scattering (Raman, Labram HR 800,HORIBA Jobin Yvon, Suzhou, China), atomic
force microscope (AFM, Dimension ICON, Bruker, Suzhou, China) and high-resolution
transmission electron microscope (HRTEM, Talos F200X, Thermo Fisher Scientific, Suzhou,
China). Among them, HR-XRD measured the 2 θ-ω diffraction peaks of (004) and (224)
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planes, with a step size of 0.05◦, a time per size of 1s, and a scanning range of 60–72◦

and 78–92◦, respectively. It was used to study the crystallization quality of single crystal
films and calculate the Sn content according to the diffraction peak position and other
information. A Raman scattering experiment was carried out at room temperature, the
spectral line was 532 nm, exposure time was 5 s, the accumulation numbers were twice, and
the scanning range was 200–350 cm−1. It was used to characterize the crystal quality and
Sn composition of Ge1−xSnx film on the surface. AFM was used to characterize the surface
roughness and morphology of Ge1−xSnx thin films in tapping mode with a scanning range
of 5 µm × 5 µm, and to analyze the crystal particle size and morphology of the films. The
working voltage of HRTEM is 200 kV. By observing the (110) surface of the sample, the
atomic-scale material properties such as the lattice matching between materials, the crystal
quality of single-layer materials and the composition ratio of alloy films could be analyzed.
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Figure 1. Ge1−xSnx co-sputtering schematic diagram.

Table 1 shows the parameters of the Ge1−xSnx samples, such as out-of-plane (α⊥)
lattice constants, in-plane (α‖) lattice constants, unstrained lattice constants (α0), measured
Sn content (xm), degree of strain relaxation (R) and in-plane strain (ε‖). These parameters
were calculated according to the HRXRD test results. According to Bragg’s law, the out-
of-plane and in-plane lattice constants of the Ge1−xSnx layers were extracted from the
positions of the peaks of GeSn (004) and GeSn (224), which are given by:

α⊥ =
2λ

sin θ004
(1)

α‖ =

√
2λ√

sin2 θ224 − sin2θ004
(2)

Table 1. Out-of-plane (α⊥) lattice constants, in-plane (α‖) lattice constants, unstrained lattice con-
stants (α0), measured Sn content (xm), degree of strain relaxation (R) and in-plane strain (ε‖) of the
Ge1−xSnx samples.

Growth
Temperature (◦C) α⊥ (nm) α‖ (nm) α0 (nm) xm (%) R (%) ε‖ (%)

180 0.57702 0.56998 0.57399 9.98 41.1 −0.007
200 0.57676 0.56990 0.57381 10.25 40.9 −0.007
225 0.57860 0.57688 0.57786 14.29 91 −0.002
240 0.57871 0.57738 0.57813 15.38 93.2 −0.001
250 0.57826 0.57616 0.57735 13.79 88.2 −0.002
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Then, the Sn composition of Ge1−xSnx layers could be calculated by simultaneously
solving the Vegard’s law and the Poisson’s relationship, in which the bowing parameter of
0.004 nm in the Vegard’s law was considered [51], and the elastic constants of Ge1−xSnx
layers in Poisson’s relationship was obtained by the linear interpolation of Ge and Sn. The
R and ε‖ were calculated according to the following equation:

α0 =
α⊥ + 2C12

C11
α‖

1+ 2C12
C11

= αGe(1− x)+αSnx + bx(1− x) (3)

R =
α‖ − αsub

α0 − αsub
(4)

ε‖ =
α‖ − α0

α0
(5)

where αsub and α0 are the lattice constants of the Ge Buffer and unstrained Ge1−xSnx layer,
respectively.

As can be seen from Table 1, the content of Sn in the Ge1−xSnx film deposited at 240 ◦C
is the highest, with the calculated value of 15.38%, which is 0.02 larger than the EDX test
result of 13%, and the strain relaxation degree is also the highest, with the value of 93.2. The
in-plane strain results show that all Ge1−xSnx films have small compressive stress, and the
strain of Ge1−xSnx deposited at 240 ◦C is the largest. The results show that the unstrained
lattice constant and stress increase with the increase of Sn content.

The Ge–Ge LO Raman peak (ωGe–Ge) of Ge1−xSnx can be influenced by the Sn compo-
sition (x) and in-plane strain (ε‖) as:

ωGe–Ge= ω0 +ax + bε‖ (6)

where ω0 is the bulk Ge Raman frequency at 301 cm−1, and the coefficients a and b are
chosen as −95.1 and −435.6 cm−1, respectively [52,53]. According to the EDX test, the Sn
content of the sample grown at 240 ◦C is about 13%, and the calculated Ge–Ge is 288.2 cm−1,
which is close to the Raman measurement value of 287.5 cm−1.

3. Results and Discussion

Figure 2 shows the X-ray diffractograms of the Ge1−xSnx films deposited on buffered
Ge layers in different conditions. The (004) and (224) plane XRD diffraction peaks of Si, Ge
and GeSn are obvious in Figure 2. When the deposition temperature is between 180–250 ◦C,
there is a diffraction peak of GeSn. This shows that the Ge1−xSnx alloy films under these
process conditions are single crystal films. With the increase of deposition temperature,
the diffraction peak intensity of Ge1−xSnx increases, and the position of diffraction peak
decreases. At 240 ◦C, the intensity of the diffraction peak is the highest, and the position
of the diffraction peak is the lowest, which indicates that the preferred orientation of
Ge1−xSnx thin film crystal grown under this condition is obvious, and the Sn content is
the highest. When the temperature rises to 260–300 ◦C, the diffraction peak of Ge widens,
which indicates that the diffraction peak position of Ge1−xSnx is close to Ge; that is, the
content of Sn drops sharply.

As we all know, Raman measurement is a common surface detection technology.
By analyzing the intensity, peak position change and full width at half maximum of
the Raman peak, the information of material composition, strain and crystal quality of
semiconductor materials can be determined. Figure 3 shows the Raman spectrum of the
Ge buffer layer and the Ge1−xSnx thin films prepared at different deposition temperatures.
The spectrum of the Ge buffer can be seen to consist of one strong Ge–Ge LO Raman peak
at 301.87 cm−1. Similarly, the spectra of the Ge1−xSnx films consists of a strong Ge–Ge
LO Raman peak between 287.5 cm−1 and 290.6 cm−1. However, with the decrease of
the deposition temperature of Ge1−xSnx, the Ge–Ge LO Raman peak in Ge1−xSnx alloys
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gradually widens and moves to a higher wavenumber. The Ge–Ge LO Raman peak of the
thin film deposited at 240 ◦C is the lowest, which is in consistent with the results of HRXRD.
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In order to determine the surface morphology of the Ge1−xSnx layer, atomic force mi-
croscopy (AFM) measurement was performed. Figure 4a–i shows the typical 5 µm × 5 µm
AFM images of the Ge Buffer layer and Ge1−xSnx layers, and the RMS (root mean square
roughness) value of the Ge1−xSnx samples was extracted from AFM scans. It was found that
the root mean square roughness (Rq) value of Ge Buffer was 1.21 nm and that of Ge1−xSnx
samples was 4.42–41.9 nm, respectively. Figure 5 shows the comparison results of Rq values
of Ge and Ge1−xSnx samples. With the increase of temperature, the roughness increases
at first, decreases at 200 ◦C and then increases continuously. When the temperature is
higher than 260 ◦C, the roughness increases by an order of magnitude, and the surface of
the sample is silvery white and evenly distributed. It can be explained that the increase of
deposition temperature intensifies the segregation of Sn; the diameter of meta-Sn particles
is about 2 µm.
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deposition temperatures: (a) Ge Buffer; (b) Ge1−xSnx deposited at 180 ◦C; (c) Ge1−xSnx deposited at
200 ◦C; (d) Ge1−xSnx deposited at 225 ◦C; (e) Ge1−xSnx deposited at 240 ◦C; (f) Ge1−xSnx deposited
at 250 ◦C; (g) Ge1−xSnx deposited at 260 ◦C; (h) Ge1−xSnx deposited at 275 ◦C; (i) Ge1−xSnx deposited
at 300 ◦C.
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In order to further characterize the crystallinity, XTEM measurement was carried out
on the Ge1−xSnx alloy film deposited at 240 ◦C. As shown in Figure 6a, the interfaces
between Ge1−xSnx/Ge buffer/Si substrate were clear and recognizable. Figure 6b confirms
the relaxation characteristics of the Ge buffer layer and clearly proves that the threading
dislocations appear in the Ge buffer layer due to the mismatch between Ge and Si. In
Figure 6c, the interface between the Ge1−xSnx/Ge buffer layer, atomic observation shows a
highly ordered atomic arrangement in the interface. In Figure 6d–f is fast Fourier transfor-
mation (FFT) patterns of Ge1−xSnx, Ge1−xSnx/Ge buffer layer interface and Ge buffer layer.
Diffraction spots are typical face-centered cubic [011] patterns, and clear lattice fringes of
Ge and the Ge1−xSnx layer indicate that single-crystal films are grown by sputtering and
the Ge1−xSnx layer is coherent with the Ge crystal.
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(d–f) show the FFT patterns corresponding to the various regions in (c).

Electron dispersive X-ray (EDX) spectroscopy was performed to identify the elemental
composition of the Ge and Ge1−xSnx films, and the results are shown in Figure 7. Figure 7a
shows a spectral scan of the concentration values of uniformly distributed Sn, Ge and Si.
Figure 7b shows the line scan of the concentration values of Sn, Ge and Si, where the Sn
content (at%) is about 12.6–13.06%. According to the content distribution of Sn, there is no
Sn segregation on the surface of the Ge1−xSnx film. Compared with references of single
crystal Ge1−xSnx deposited by magnetron sputtering on silicon substrate, the tin content is
the highest in this work, and the specific data are shown in Table 2.
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Table 2. Comparison of the Sn content of crystalline Ge1−xSnx with those found in other references.

Reference Sn Content (at%) Buffer

[26] 6 Ge

[49] 11.5 None

[50] 3 Ge

This work 12.6–13.06 Ge

In this work, Ge1−xSnx alloy thin films were prepared by a Ge–Sn co-sputtering
principle, and the Ge target and Sn target were mounted on two targets, respectively. The
sputtering power of Ge and Sn was controlled to achieve different atomic ratios of Sn.
The temperature of the substrate can be adjusted. The higher the temperature, the higher
the mobility energy of Sn atoms, and the easier it is to move to the appropriate position.
Therefore, with the increase of temperature, Sn atoms occupied the position of Ge atoms
forming a Ge1−xSnx alloy, and with the increase of temperature to 240 ◦C, the Sn doping
peak was reached. When the temperature continued to rise, segregation occurred. When
the temperature rose to 260 ◦C, segregation intensified, Sn atoms migrated to the surface of
the sample, and the Sn content of Ge1−xSnx alloy decreased.

4. Conclusions

In this paper, the structural characteristics of Ge1−xSnx thin films at different substrate
temperatures were studied in detail. XRD, Raman, TEM and AFM analysis showed that
the coherent growth of Ge1−xSnx and Ge can be achieved by adjusting the substrate
temperature, and the Sn content in the Ge1−xSnx film deposited at 240 ◦C was the highest,
with the Sn content (at%) reaching 13%. These results show that single crystal Ge1−xSnx
films can be grown on Si (001) wafer by sputtering at a temperature near the melting point
of Sn, and its Sn content is the highest among GeSn prepared by sputtering on Si (001)
substrate reported at present.
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