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Abstract: In this paper, in situ SiC-reinforced Al-Zn-Mg-Cu composites were fabricated by laser
powder bed fusion (LPBF). The effects of SiC content on the microstructure, phase composition,
microhardness, and wear resistance of as-printed composites were preliminarily investigated. Results
show that the microstructure was regulated, the matrix grains were refined, and the tendency to
orientation grain growth was suppressed. SiC particles reacted in situ with the Al matrix to produce
Si, Al4C3, and Al4SiC4 phases. The microhardness and wear resistance of as-printed composites
increased with SiC content due to the fine grain strengthening of the matrix and the second phase
strengthening of precipitates and reinforcements.

Keywords: laser powder bed fusion; aluminum matrix composites; microstructure evolution; micro-
hardness; wear resistance

1. Introduction

Aluminum matrix composites (AMCs) have attracted much attention because of their
higher specific strength, specific stiffness, and wear resistance compared with aluminum
alloys [1,2]. Silicon carbide (SiC) particles are used as reinforcement for AMCs due to
their high hardness, wear resistance, and good metallurgical compatibility with aluminum
alloy [3,4]. High-strength Al-Zn-Mg-Cu alloy is a pivotal raw material for structural
parts, but its high cracking susceptibility during crystallization limits its application [5,6].
SiC-reinforced aluminum matrix composites are the most popular and representative of
this system [7]. The mature methods for preparing AMCs include melt stirring, squeeze
casting, pressurized infiltration, and vacuum infiltration [8]. However, the mechanical
properties of AMCs are often affected by the segregation and settling of SiC particles
and weak interfacial bonding between SiC particles and the matrix [9]. Many scholars
have proposed improved methods to prepare AMCs with higher performance [10]. Laser
powder bed fusion (LPBF) is an innovative strategy for fabricating AMCs due to the
advantages of high precision, adjustable raw powder compositions, and direct formability
of components [11,12]. Gu et al. [13,14] have prepared AlSi10Mg alloy, AlN/AlSi10Mg
composites, and SiC/AlSi10Mg composites by LPBF. Results show that AlSi10Mg alloy has
good printability, and the mechanical properties of as-printed composites can be optimized
by ceramic reinforcements. However, the low-strength Al-Si alloys could not meet the
actual performance requirements. The high-strength Al-Zn-Mg-Cu alloys are a better
matrix for the aluminum matrix composites. In this study, SiC-reinforced Al-Zn-Mg-Cu
composites were fabricated via LPBF. The effects of SiC content on the microstructure,
microhardness, and wear resistance of as-printed composites were investigated. This study
made a preliminary attempt to prepare wear-resistant Al-Zn-Mg-Cu composites by LPBF.
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2. Materials and Methods

Commercial Al-Zn-Mg-Cu alloy powders (D50 = 38 µm) with a composition of Al-
5.64Zn-2.31Mg-1.40Cu-0.32Fe-0.22Cr-0.08Mn-0.05Si (wt.%) and SiC ceramic powders
(D50 = 10 µm) were used as raw materials. The morphologies and particle size histograms
are shown in Figure 1a,b, respectively. The homogeneous composite powders with different
SiC fractions (0 wt.%~4 wt.%) were prepared by a planetary shaker-mixer, and the mixing
time was two hours. The morphology of 4 wt.% SiC/Al-Zn-Mg-Cu composite powder is
shown in Figure 1c. The sphericity of Al-Zn-Mg-Cu alloy powders was not damaged, and
SiC particles were uniformly dispersed in Al-Zn-Mg-Cu powders. Table 1 lists the sample
labels of the as-printed composites and the corresponding composite powder compositions.
Samples for metallographic and performance characterization were printed directly on
EOS M290 (Germany, EOS). The schematic of sample orientation is illustrated in Figure 1d.
The optimized LPBF parameters for obtaining the high-density as-printed composites are
as follows: laser power 340 W, laser scanning speed 800 mm/s, layer thickness 30 µm,
and hatch distance 100 µm. The strip-scanning method was adopted with a strip width of
8 mm and a rotation angle of 67◦. The schematic of the laser scanning strategy is demon-
strated in Figure 1e. Metallographic samples were sanded and mechanically polished
layer by layer and then etched with Keller’s reagent before being observed. Scanning
electron microscopy (SEM, Zeiss) was conducted to scrutinize the microstructure, and the
accompanying electron backscattering diffraction (EBSD, EDAX) was employed to analyze
the crystallographic features. Samples for EBSD need to be electropolished with a 10%
perchloric acid alcohol solution. X-ray diffraction (XRD, DX-2700) was used to analyze
the phase composition. Under the loading time of 10 s and loading amount of 100 g, the
microhardness of metallographic specimens was measured by Vickers (HV-1000). Wear
resistance was investigated on the friction and wear tester (HF-1000), and the schematic is
presented in Figure 1f. Before the test, the samples were processed into circular samples
with a diameter of 10 mm, polished with 2000 # sandpaper, and cleaned with alcohol.
The parameters used are 500 g (load), 560 r/min (rotational speed), and 5 mm (friction
diameter). Silicon nitride balls with a diameter of 6 mm and a hardness of 20 GPa were
used as the anti-abrasive material. Three groups of tests were conducted to ensure accuracy.
The mass before and after testing was measured to obtain the loss of abrasive debris and
used to characterize wear resistance.
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at the grain boundaries, and poor intergranular bonding was revealed. Figure 2c presents 
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duced. A small number of intergranular precipitates were found at the grain boundaries. 
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sites, as shown in Figure 2d. The irregular SiC reinforcements were uniformly embedded 
in the matrix without evident agglomeration. Figure 2f shows the XRD diffraction patterns 
of as-printed samples with different SiC contents. Without SiC reinforcement modifica-
tion, only the Al phase was detected in the as-printed S0 sample. The as-printed SiC-rein-
forced Al-Zn-Mg-Cu composites consisted of the Al, SiC, Mg2Si, Al4C3, Al4SiC4, and Si 
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Table 1. Sample labels of as-printed Al-Zn-Mg-Cu alloy and SiC/Al-Zn-Mg-Cu composites.

Sample Label Powder Composition

S0 Al-Zn-Mg-Cu alloy
S1 Al-Zn-Mg-Cu alloy + 1 wt.% SiC reinforcement
S2 Al-Zn-Mg-Cu alloy + 2 wt.% SiC reinforcement
S3 Al-Zn-Mg-Cu alloy + 3 wt.% SiC reinforcement
S4 Al-Zn-Mg-Cu alloy + 4 wt.% SiC reinforcement

3. Results and Discussion
3.1. Morphologies and Microstructure

Figure 2 shows the SEM images of as-printed samples with different SiC contents.
Fusion lines, cracks, pores, and grain boundaries were scrutinized in the as-printed Al-Zn-
Mg-Cu alloy (Figure 2a). These cracks were typical solidification cracks that cracked along
the grain boundaries [15]. From the insert (Figure 2b), no precipitates were found at the
grain boundaries, and poor intergranular bonding was revealed. Figure 2c presents the
microstructure of the S2 sample, where the number of cracks was significantly reduced.
A small number of intergranular precipitates were found at the grain boundaries. When
the SiC content was 4 wt.%, no cracks were observed within the as-printed composites, as
shown in Figure 2d. The irregular SiC reinforcements were uniformly embedded in the
matrix without evident agglomeration. Figure 2f shows the XRD diffraction patterns of
as-printed samples with different SiC contents. Without SiC reinforcement modification,
only the Al phase was detected in the as-printed S0 sample. The as-printed SiC-reinforced
Al-Zn-Mg-Cu composites consisted of the Al, SiC, Mg2Si, Al4C3, Al4SiC4, and Si phases.
During the LPBF process, SiC particles reacted in situ with the Al matrix as follows [16,17].

4Al + 4SiC = 3Si + Al4SiC4 (1)

4Al + 3SiC = 3Si + Al4C3 (2)

Al4C3, Al4SiC4, and Si phases were generated in the molten pool, and some of the
generated Si reacted with Mg to form the Mg2Si phase. Short rod-like Al4SiC4 and granular
Si-eutectic phases were observed to fill the grain boundaries, as shown in Figure 2e.

Figure 3 illustrates the grain maps, grain size distribution histograms, and pole fig-
ures (PFs) of the as-printed S0 and S4 samples, revealing the effects of SiC reinforcement
on the matrix grains. The unidentified black regions in Figure 3a,d are cracks and SiC
reinforcement, respectively. The coarse columnar crystals (Figure 3a) were refined into
fine columnar and equiaxed crystals (Figure 3d) with SiC particles. The size distribution
of matrix grains followed unimodal distribution, and the average size was refined from
37.15 µm (S0 sample) to 20.50 µm (S4 sample). Figure 3c,f compare the effect of SiC rein-
forcement on crystallization textures of the as-printed materials, where A1 is the building
direction (BD). The fiber texture of the S0 sample along the [001] crystal orientation parallel
to the BD was observed in Figure 3c, predicting the preferential growth of Al grains in the
as-printed Al-Zn-Mg-Cu alloy. The maximum value of multiple uniform densities (MUD)
was 5.427, which appeared in the (100) crystal plane of the [001] pole figure. The matrix
texture was weakened by incorporating SiC particles. For the as-printed S4 sample, the
maximum value of MUD was 4.646. For the unmodified Al-Zn-Mg-Cu alloy, the grains
were nucleated by attaching to the anterior molten pool and solidified in the building
direction. The heterogeneous nucleation effect was noticeable when SiC ceramic particles
were introduced.
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3.2. Microhardness

Figure 4 indicates the microhardness of as-printed samples in the lateral and top sections,
revealing the effect of SiC particles on the microhardness. The microhardness of the unmodified
S0 sample in the side and top sections was 93 ± 5 HV0.1 and 102 ± 10 HV0.1, respectively.
The microhardness gradually increased with the incorporation of SiC reinforcement. The
microhardness of the S4 sample was 156.8 ± 6.4 HV0.1 and 161.4 ± 10.5 HV0.1, respectively.
Fine grain strengthening of the matrix and particle strengthening of the reinforcement and
precipitates were the main reasons for the increased microhardness. The heterogeneity
of microhardness was observed along the lateral and top sections, and the top section
was higher than the side section. This phenomenon was related to the directional growth
of the matrix grains and gradually decreased with increasing SiC content. For the as-
printed S0 sample, the lateral section was composed of coarse columnar crystals, and the
top section was the fine equiaxed crystal. Fine grain strengthening could be responsible
for the difference in microhardness. With the introduction of SiC reinforcement, the
columnar grain on the side was gradually refined, and the difference in microhardness was
gradually reduced.
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3.3. Wear Behavior

The effect of SiC reinforcement on the wear resistance of as-printed AMCs was investi-
gated, and the results are shown in Figure 5. The coefficient of friction (COF) curves are
shown in Figure 5a. COF curves showed a similar evolution, characterized by dramatic
fluctuations and gradually decreasing with time. Fluctuations might be due to cracks and
SiC reinforcement, which could lead to the stripping of the matrix and reinforcement from
the sample during friction. The COF curves tended to be stable as the debris with poor
binding to the matrix gradually fell off. The average COF values of S0 to S4 samples were
0.507, 0.473, 0.389, 0.348, and 0.288, respectively. The weight loss of the as-printed materials
is shown in Figure 5b. The average weight loss for the as-printed S0 to S4 samples were
14.3 ± 1.7 mg, 13.8 ± 1.8 mg, 12.7 ± 2 mg, 9.9 ± 1.2 mg, and 7.6 ± 0.9 mg, respectively.
Combining the results of COF and weight loss, the wear resistance of as-printed composites
was reinforced with the incorporation of SiC reinforcement. The increase in wear resistance
of as-printed composites was mainly due to the synergistic effect of matrix and reinforce-
ment. The hardened SiC ceramic particles could resist the abrasive pressing and improve
the deformation resistance of the as-printed composites. The strength of the matrix was
increased due to crack inhibition and grain refinement.
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Figure 5. Results of friction and wear. (a) The variation curves of friction coefficient vs. sliding time
and (b) the weight loss of the as-printed S0–S4 samples.

4. Conclusions

In this paper, the in situ SiC-reinforced Al-Zn-Mg-Cu composites were prepared by
LPBF. The microhardness and wear resistance were reinforced while suppressing the hot
cracks. SiC particles reacted in situ with the Al matrix to form Al4SiC4, Al4C3, and Si
phases in the molten pool, which precipitated near the grain boundary during solidification.
Crack suppression was mainly due to grain refinement, disordered grain growth, and grain
boundary structure optimization. The fine grain strengthening of the Al matrix and the
second phase strengthening of precipitates and reinforcement were the main reasons for
the increase in microhardness and wear resistance.
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