# Electromagnetic Metasurfaces: Insight into Evolution, Design and Applications

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Metamaterials: Transcending Abilities of Natural Materials

#### 1.2. Metasurfaces: Dimensional Reduction of Metamaterials

#### 1.3. Metasurfaces: Past, Present and Future

#### 1.4. Classification of Metasurfaces

## 2. Design Principle

## 3. Methods of Synthesis

#### 3.1. Synthesis Based on Generalized Snell’s Laws (The Phase-Shift Approach)

#### 3.2. Synthesis Based on Surface Impedance Tensor

#### 3.3. Synthesis Based on Surface Susceptibility Tensor

#### 3.4. Synthesis Based on Diffraction Grating Method (Meta-Grating)

## 4. Materials and Fabrication Methods

## 5. Design and Optimization

#### 5.1. Meta-Atoms: Microscopic Units of Metasurface

- Composite meta-atoms which are single or multi-layer structures with metallic patches sandwiched between layers of dielectrics. The metallic patches can have various shapes such as circular, square, circular-ring, square ring, circular or square patch inside a wireframe, Jeruselem cross, Swastika and flange shaped or a combination of these. The size of the meta-atom is usually kept less than or equal to half wavelength. The metallic patch pattern is varied along x, and/or y direction to achieve a desired phase and amplitude profile in the near-field.
- All dielectric (metal-less) meta-atoms which are essentially a block of substrate. It may sometimes have a through hole (for example square or circular or cross slots). The phase delay is varied either by changing the height of the meta-atom or the permittivity of the substrate used. Delay in transmission phase is proportional to height as well as the permittivity of the dielectric material used. An all-dielectric metasurface can be easily fabricated using 3D printing technology.
- All-metal meta-atoms are composed of single or multi-layer metal sheets with slotted patters. Several types of slots’ shapes that have been successfully implemented to design planar, lightweight fully metallic metasurfaces include modified-eight-arms-asterisk (MEAA) slot, Jerusalem slot (JS), Swastika slot (SS). Such slots-in-sheets (SiS) design approach avoids the 3D metallic structures and also confirms the mechanical robustness of the metasurface [31,87,88].

#### 5.2. Optimization

## 6. Applications of Metasurfaces

#### 6.1. Metasurfaces for Linearly Polarized EM Waves

#### 6.2. Metasurfaces for Circularly Polarized EM Waves

#### 6.3. Metasurfaces for Near- and Far-Field Synthesis

## 7. Discussion

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Quevedo-Teruel, O.; Chen, H.; Díaz-Rubio, A.; Gok, G.; Grbic, A.; Minatti, G.; Martini, E.; Maci, S.; Eleftheriades, G.V.; Chen, M.; et al. Roadmap on metasurfaces. J. Opt.
**2019**, 21, 073002. [Google Scholar] [CrossRef] - Ding, F.; Pors, A.; Bozhevolnyi, S.I. Gradient metasurfaces: A review of fundamentals and applications. Rep. Prog. Phys.
**2017**, 81, 026401. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Chang, S.; Guo, X.; Ni, X. Optical metasurfaces: Progress and applications. Annu. Rev. Mater. Res.
**2018**, 48, 279–302. [Google Scholar] [CrossRef] [Green Version] - Chen, H.T.; Taylor, A.J.; Yu, N. A review of metasurfaces: Physics and applications. Rep. Prog. Phys.
**2016**, 79, 076401. [Google Scholar] [CrossRef] [Green Version] - Zang, J.; Correas-Serrano, D.; Do, J.; Liu, X.; Alvarez-Melcon, A.; Gomez-Diaz, J. Nonreciprocal wavefront engineering with time-modulated gradient metasurfaces. Phys. Rev. Appl.
**2019**, 11, 054054. [Google Scholar] [CrossRef] [Green Version] - Bukhari, S.S.; Vardaxoglou, J.Y.; Whittow, W. A metasurfaces review: Definitions and applications. Appl. Sci.
**2019**, 9, 2727. [Google Scholar] [CrossRef] [Green Version] - Liu, C.; Ma, Q.; Luo, Z.J.; Hong, Q.R.; Xiao, Q.; Zhang, H.C.; Miao, L.; Yu, W.M.; Cheng, Q.; Li, L.; et al. A programmable diffractive deep neural network based on a digital-coding metasurface array. Nat. Electron.
**2022**, 5, 113–122. [Google Scholar] [CrossRef] - Sun, S.; He, Q.; Hao, J.; Xiao, S.; Zhou, L. Electromagnetic metasurfaces: Physics and applications. Adv. Opt. Photonics
**2019**, 11, 380–479. [Google Scholar] [CrossRef] [Green Version] - Pfeiffer, C.; Grbic, A. Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett.
**2013**, 110, 197401. [Google Scholar] [CrossRef] [Green Version] - Lamb, H. On the reflection and transmission of electric waves by a metallic grating. Proc. Lond. Math. Soc.
**1897**, 1, 523–546. [Google Scholar] [CrossRef] - Wood, R.W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc. Phys. Soc. Lond.
**1902**, 18, 269. [Google Scholar] [CrossRef] - Senior, T. Approximate boundary conditions. IEEE Trans. Antennas Propag.
**1981**, 29, 826–829. [Google Scholar] [CrossRef] - Marconi, G.; Franklin, C.S. Reflector for Use in Wireless Telegraphy and Telephony. US Patent 1,301,473, 22 April 1919. [Google Scholar]
- Vogel, P.; Genzel, L. Transmission and reflection of metallic mesh in the far infrared. Infrared Phys.
**1964**, 4, 257–262. [Google Scholar] [CrossRef] - Veselago, V.G. The Electrodynamics of Substances with Simultaneously Negative Values of ϵ and μ. Physics-Uspekhi
**1968**, 10, 509–514. [Google Scholar] [CrossRef] - Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.; Thio, T.; Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature
**1998**, 391, 667–669. [Google Scholar] [CrossRef] - Pendry, J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett.
**2000**, 85, 3966. [Google Scholar] [CrossRef] - Luo, X.; Ishihara, T. Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett.
**2004**, 84, 4780–4782. [Google Scholar] [CrossRef] - Xu, T.; Wang, C.; Du, C.; Luo, X. Plasmonic beam deflector. Opt. Express
**2008**, 16, 4753–4759. [Google Scholar] [CrossRef] - Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science
**2011**, 334, 333–337. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ma, Q.; Gao, W.; Xiao, Q.; Ding, L.; Gao, T.; Zhou, Y.; Gao, X.; Yan, T.; Liu, C.; Gu, Z.; et al. Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform. arXiv
**2022**, arXiv:2205.00280. [Google Scholar] [CrossRef] - Tang, W.; Chen, M.Z.; Dai, J.Y.; Zeng, Y.; Zhao, X.; Jin, S.; Cheng, Q.; Cui, T.J. Wireless Communications with Programmable Metasurface: New Paradigms, Opportunities, and Challenges on Transceiver Design. IEEE Wirel. Commun.
**2020**, 27, 180–187. [Google Scholar] [CrossRef] [Green Version] - Ma, Q.; Xiao, Q.; Hong, Q.R.; Gao, X.; Galdi, V.; Cui, T.J. Digital Coding Metasurfaces: From Theory to Applications. IEEE Antennas Propag. Mag.
**2022**, 64, 96–109. [Google Scholar] [CrossRef] - Barbuto, M.; Hamzavi-Zarghani, Z.; Longhi, M.; Monti, A.; Ramaccia, D.; Vellucci, S.; Toscano, A.; Bilotti, F. Metasurfaces 3.0: A New Paradigm for Enabling Smart Electromagnetic Environments. IEEE Trans. Antennas Propag.
**2021**, 70, 8883–8897. [Google Scholar] [CrossRef] - You, J.W.; Ma, Q.; Lan, Z.; Xiao, Q.; Panoiu, N.C.; Cui, T.J. Reprogrammable plasmonic topological insulators with ultrafast control. Nat. Commun.
**2021**, 12, 5468. [Google Scholar] [CrossRef] [PubMed] - Ahmed, F.; Afzal, M.U.; Singh, K.; Hayat, T.; Esselle, K.P. Highly Transparent Fully Metallic 1-Bit Coding Metasurfaces for Near-Field Transformation. In Proceedings of the 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 27 March–1 April 2022; pp. 1–4. [Google Scholar]
- Ma, Q.; Bai, G.D.; Jing, H.B.; Yang, C.; Li, L.; Cui, T.J. Smart metasurface with self-adaptively reprogrammable functions. Light Sci. Appl.
**2019**, 8, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Minatti, G.; Faenzi, M.; Martini, E.; Caminita, F.; De Vita, P.; González-Ovejero, D.; Sabbadini, M.; Maci, S. Modulated Metasurface Antennas for Space: Synthesis, Analysis and Realizations. IEEE Trans. Antennas Propag.
**2015**, 63, 1288–1300. [Google Scholar] [CrossRef] - Afzal, M.U.; Esselle, K.P. Steering the beam of medium-to-high gain antennas using near-field phase transformation. IEEE Trans. Antennas Propag.
**2017**, 65, 1680–1690. [Google Scholar] [CrossRef] - Baba, A.A.; Hashmi, R.M.; Attygalle, M.; Esselle, K.P.; Borg, D. Ultrawideband Beam Steering at mm-Wave Frequency With Planar Dielectric Phase Transformers. IEEE Trans. Antennas Propag.
**2022**, 70, 1719–1728. [Google Scholar] [CrossRef] - Ahmed, F.; Afzal, M.U.; Hayat, T.; Esselle, K.P.; Thalakotuna, D.N. A Near-Field Meta-Steering Antenna System With Fully Metallic Metasurfaces. IEEE Trans. Antennas Propag.
**2022**, 70, 10062–10075. [Google Scholar] [CrossRef] - Glybovski, S.B.; Tretyakov, S.A.; Belov, P.A.; Kivshar, Y.S.; Simovski, C.R. Metasurfaces: From microwaves to visible. Phys. Rep.
**2016**, 634, 1–72. [Google Scholar] [CrossRef] - Sun, S.; He, Q.; Xiao, S.; Xu, Q.; Li, X.; Zhou, L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater.
**2012**, 11, 426–431. [Google Scholar] [CrossRef] - Vardaxoglou, J.C. Frequency Selective Surfaces: Analysis and Design; Research Studies Press: Devon, UK, 1997. [Google Scholar]
- Epstein, A.; Eleftheriades, G.V. Huygens’ metasurfaces via the equivalence principle: Design and applications. JOSA B
**2016**, 33, A31–A50. [Google Scholar] [CrossRef] - Epstein, A.; Eleftheriades, G.V. Arbitrary power-conserving field transformations with passive lossless omega-type bianisotropic metasurfaces. IEEE Trans. Antennas Propag.
**2016**, 64, 3880–3895. [Google Scholar] [CrossRef] [Green Version] - Maci, S.; Minatti, G.; Casaletti, M.; Bosiljevac, M. Metasurfing: Addressing waves on impenetrable metasurfaces. IEEE Antennas Wirel. Propag. Lett.
**2011**, 10, 1499–1502. [Google Scholar] [CrossRef] - Holloway, C.L.; Love, D.C.; Kuester, E.F.; Gordon, J.A.; Hill, D.A. Use of generalized sheet transition conditions to model guided waves on metasurfaces/metafilms. IEEE Trans. Antennas Propag.
**2012**, 60, 5173–5186. [Google Scholar] [CrossRef] - Holloway, C.L.; Kuester, E.F.; Dienstfrey, A. Characterizing metasurfaces/metafilms: The connection between surface susceptibilities and effective material properties. IEEE Antennas Wirel. Propag. Lett.
**2011**, 10, 1507–1511. [Google Scholar] [CrossRef] - Holloway, C.L.; Kuester, E. Generalized Sheet Transition Conditions (GSTCs) for a Metascreen: A Subclass of a Metasurface. IEEE Trans. Antennas Propag.
**2018**, 66, 2414–2427. [Google Scholar] [CrossRef] [Green Version] - Chen, M.; Kim, M.; Wong, A.M.; Eleftheriades, G.V. Huygens’ metasurfaces from microwaves to optics: A review. Nanophotonics
**2018**, 7, 1207–1231. [Google Scholar] [CrossRef] - Kuester, E.F.; Mohamed, M.A.; Piket-May, M.; Holloway, C.L. Averaged transition conditions for electromagnetic fields at a metafilm. IEEE Trans. Antennas Propag.
**2003**, 51, 2641–2651. [Google Scholar] [CrossRef] - Niemi, T.; Karilainen, A.O.; Tretyakov, S.A. Synthesis of polarization transformers. IEEE Trans. Antennas Propag.
**2013**, 61, 3102–3111. [Google Scholar] [CrossRef] - Wong, J.P.; Selvanayagam, M.; Eleftheriades, G.V. Design of unit cells and demonstration of methods for synthesizing Huygens metasurfaces. Photonics Nanostruct.-Fundam. Appl.
**2014**, 12, 360–375. [Google Scholar] [CrossRef] - Achouri, K.; Salem, M.A.; Caloz, C. General metasurface synthesis based on susceptibility tensors. IEEE Trans. Antennas Propag.
**2015**, 63, 2977–2991. [Google Scholar] [CrossRef] [Green Version] - Bomzon, Z.; Biener, G.; Kleiner, V.; Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett.
**2002**, 27, 1141–1143. [Google Scholar] [CrossRef] [PubMed] - Li, Y.; Zhang, J.; Qu, S.; Wang, J.; Pang, Y.; Xu, Z. Ultra-wideband, high-efficiency beam steering based on phase gradient metasurfaces. J. Electromagn. Waves Appl.
**2015**, 29, 2163–2170. [Google Scholar] [CrossRef] - Khalid, A.U.R.; Feng, F.; Ullah, N.; Yuan, X.; Somekh, M.G. Exploitation of geometric and propagation phases for spin-dependent rational-multiple complete phase modulation using dielectric metasurfaces. Photonics Res.
**2022**, 10, 877–885. [Google Scholar] [CrossRef] - Pfeiffer, C.; Emani, N.K.; Shaltout, A.M.; Boltasseva, A.; Shalaev, V.M.; Grbic, A. Efficient light bending with isotropic metamaterial Huygens’ surfaces. Nano Lett.
**2014**, 14, 2491–2497. [Google Scholar] [CrossRef] [PubMed] - Gagnon, N.; Petosa, A. Using rotatable planar phase shifting surfaces to steer a high-gain beam. IEEE Trans. Antennas Propag.
**2013**, 61, 3086–3092. [Google Scholar] [CrossRef] - Taghvaee, H.; Cabellos-Aparicio, A.; Georgiou, J.; Abadal, S. Error analysis of programmable metasurfaces for beam steering. IEEE J. Emerg. Sel. Top. Circuits Syst.
**2020**, 10, 62–74. [Google Scholar] [CrossRef] [Green Version] - Estakhri, N.M.; Alù, A. Wave-front transformation with gradient metasurfaces. Phys. Rev. X
**2016**, 6, 041008. [Google Scholar] - Zhu, B.O. Surface impedance synthesis using parallel planar electric metasurfaces. Prog. Electromagn. Res.
**2017**, 160, 41–50. [Google Scholar] [CrossRef] [Green Version] - Zhu, B.O.; Xiong, X.Y.; Jiang, L.J. A unified analysis framework for tensor metasurfaces. J. Opt.
**2018**, 20, 085102. [Google Scholar] [CrossRef] - Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O’Hara, J.; Booth, J.; Smith, D.R. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag.
**2012**, 54, 10–35. [Google Scholar] [CrossRef] - Pfeiffer, C.; Grbic, A. Millimeter-wave transmitarrays for wavefront and polarization control. IEEE Trans. Microw. Theory Tech.
**2013**, 61, 4407–4417. [Google Scholar] [CrossRef] - Pfeiffer, C.; Grbic, A. Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis. Phys. Rev. Appl.
**2014**, 2, 044011. [Google Scholar] [CrossRef] - Epstein, A.; Eleftheriades, G.V. Passive lossless Huygens metasurfaces for conversion of arbitrary source field to directive radiation. IEEE Trans. Antennas Propag.
**2014**, 62, 5680–5695. [Google Scholar] [CrossRef] [Green Version] - Bodehou, M.; Craeye, C.; Huynen, I. Electric Field Integral Equation-Based Synthesis of Elliptical-Domain Metasurface Antennas. IEEE Trans. Antennas Propag.
**2018**, 67, 1270–1274. [Google Scholar] [CrossRef] - Zhu, B.O. Metasurface Synthesis With Arbitrary Incident Angles Using Planar Electric Impedance Surfaces. IEEE J. Multiscale Multiphys. Comput. Tech.
**2019**, 4, 51–56. [Google Scholar] [CrossRef] - Egorov, G.A.; Eleftheriades, G.V. Theory and Simulation of Metasurface Lenses for Extending the Angular Scan Range of Phased Arrays. arXiv
**2020**, arXiv:2001.04556. [Google Scholar] [CrossRef] [Green Version] - Selvanayagam, M.; Eleftheriades, G.V. Polarization control using tensor Huygens surfaces. IEEE Trans. Antennas Propag.
**2014**, 62, 6155–6168. [Google Scholar] [CrossRef] - Salem, M.A.; Achouri, K.; Caloz, C. Metasurface synthesis for time-harmonic waves: Exact spectral and spatial methods. Prog. Electromagn. Res.
**2014**, 149, 205–216. [Google Scholar] [CrossRef] [Green Version] - Salem, M.A.; Caloz, C. Manipulating light at distance by a metasurface using momentum transformation. Opt. Express
**2014**, 22, 14530–14543. [Google Scholar] [CrossRef] - Smy, T.J.; Rahmeier, J.G.N.; Dugan, J.; Gupta, S. Part II-Spatially Dispersive Metasurfaces: IE-GSTC-SD Field Solver with Extended GSTCs. IEEE Trans. Antennas Propag.
**2022**. [Google Scholar] [CrossRef] - Lavigne, G.; Achouri, K.; Asadchy, V.S.; Tretyakov, S.A.; Caloz, C. Susceptibility derivation and experimental demonstration of refracting metasurfaces without spurious diffraction. IEEE Trans. Antennas Propag.
**2018**, 66, 1321–1330. [Google Scholar] [CrossRef] - Jia, X.; Vahabzadeh, Y.; Caloz, C.; Yang, F. Synthesis of spherical metasurfaces based on susceptibility tensor GSTCs. IEEE Trans. Antennas Propag.
**2019**, 67, 2542–2554. [Google Scholar] [CrossRef] [Green Version] - Momeni, A.; Rajabalipanah, H.; Abdolali, A.; Achouri, K. Generalized optical signal processing based on multioperator metasurfaces synthesized by susceptibility tensors. Phys. Rev. Appl.
**2019**, 11, 064042. [Google Scholar] [CrossRef] [Green Version] - Dugan, J.; Smy, T.J.; Gupta, S. Accelerated ie-gstc solver for large-scale metasurface field scattering problems using fast multipole method (fmm). IEEE Trans. Antennas Propag.
**2022**, 70, 9524–9533. [Google Scholar] [CrossRef] - Asadchy, V.S.; Albooyeh, M.; Tcvetkova, S.N.; Díaz-Rubio, A.; Ra’di, Y.; Tretyakov, S. Perfect control of reflection and refraction using spatially dispersive metasurfaces. Phys. Rev. B
**2016**, 94, 075142. [Google Scholar] [CrossRef] [Green Version] - Epstein, A.; Eleftheriades, G.V. Arbitrary antenna arrays without feed networks based on cavity-excited omega-bianisotropic metasurfaces. IEEE Trans. Antennas Propag.
**2017**, 65, 1749–1756. [Google Scholar] [CrossRef] - Singh, K.; Afzal, M.U.; Kovaleva, M.; Esselle, K.P. Controlling the Most Significant Grating Lobes in Two-Dimensional Beam-Steering Systems with Phase-Gradient Metasurfaces. IEEE Trans. Antennas Propag.
**2019**, 68, 1389–1401. [Google Scholar] [CrossRef] - Ra’di, Y.; Sounas, D.L.; Alù, A. Metagratings: Beyond the limits of graded metasurfaces for wave front control. Phys. Rev. Lett.
**2017**, 119, 067404. [Google Scholar] [CrossRef] [Green Version] - Díaz-Rubio, A.; Asadchy, V.S.; Elsakka, A.; Tretyakov, S.A. From the generalized reflection law to the realization of perfect anomalous reflectors. Sci. Adv.
**2017**, 3, e1602714. [Google Scholar] [CrossRef] - Wong, A.M.; Eleftheriades, G.V. Perfect anomalous reflection with a bipartite Huygens’ metasurface. Phys. Rev. X
**2018**, 8, 011036. [Google Scholar] [CrossRef] [Green Version] - Casolaro, A.; Toscano, A.; Alù, A.; Bilotti, F. Dynamic Beam Steering with Reconfigurable Metagratings. IEEE Trans. Antennas Propag.
**2019**, 68, 1542–1552. [Google Scholar] [CrossRef] - Popov, V.; Yakovleva, M.; Boust, F.; Pelouard, J.L.; Pardo, F.; Burokur, S.N. Designing metagratings via local periodic approximation: From microwaves to infrared. Phys. Rev. Appl.
**2019**, 11, 044054. [Google Scholar] [CrossRef] [Green Version] - Popov, V.; Boust, F.; Burokur, S.N. Beamforming with metagratings at microwave frequencies: Design procedure and experimental demonstration. IEEE Trans. Antennas Propag.
**2019**, 68, 1533–1541. [Google Scholar] [CrossRef] [Green Version] - Popov, V.; Boust, F.; Burokur, S.N. Controlling diffraction patterns with metagratings. Phys. Rev. Appl.
**2018**, 10, 011002. [Google Scholar] [CrossRef] [Green Version] - Li, L.; Wang, J.; Qu, S. A broadband polarization rotation phase gradient metasurface designed by all-dielectric high-permittivity ceramic blocks. In Proceedings of the 2021 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Chongqing, China, 15–17 November 2021; pp. 154–156. [Google Scholar]
- Hayat, T.; Afzal, M.U.; Ahmed, F.; Zhang, S.; Esselle, K.P.; Vardaxoglou, J. The Use of a Pair of 3D-Printed Near Field Superstructures to Steer an Antenna Beam in Elevation and Azimuth. IEEE Access
**2021**, 9, 153995–154010. [Google Scholar] [CrossRef] - Nooshnab, S.; Golmohammadi, S.; Baghban, H. Enhanced Nonlinear Harmonic Signal Emission by an Electromagnetically Induced Transparency Resonant All-Dielectric Metasurface. IEEE Trans. Nanotechnol.
**2022**, 21, 514–521. [Google Scholar] [CrossRef] - Faenzi, M.; Minatti, G.; Gonzalez-Ovejero, D.; Caminita, F.; Martini, E.; Della Giovampaola, C.; Maci, S. lMetasurface antennas: New models, applications and realizations. Sci. Rep.
**2019**, 9, 10178. [Google Scholar] [CrossRef] [Green Version] - Nizer Rahmeier, J.G.; Smy, T.J.; Dugan, J.; Gupta, S. Part I-Spatially Dispersive Metasurfaces: Zero Thickness Surface Susceptibilities & Extended GSTCs. IEEE Trans. Antennas Propag.
**2022**. [Google Scholar] [CrossRef] - Singh, K.; Afzal, M.U.; Esselle, K.P. Designing Efficient Phase-Gradient Metasurfaces for Near-Field Meta-Steering Systems. IEEE Access
**2021**, 9, 109080–109093. [Google Scholar] [CrossRef] - Singh, K.; Afzal, M.U.; Esselle, K.P. Accurate optimization technique for phase-gradient metasurfaces used in compact near-field meta-steering systems. Sci. Rep.
**2022**, 12, 4118. [Google Scholar] [CrossRef] [PubMed] - Ahmed, F.; Afzal, M.U.; Hayat, T.; Esselle, K.P.; Thalakotuna, D.N. A Dielectric Free Near Field Phase Transforming Structure for Wideband Gain Enhancement of Antennas. Sci. Rep.
**2021**, 11, 14613. [Google Scholar] [CrossRef] [PubMed] - Ahmed, F.; Afzal, M.U.; Hayat, T.; Esselle, K.P.; Thalakotuna, D.N. Self-Sustained Rigid Fully Metallic Metasurfaces to Enhance Gain of Shortened Horn Antennas. IEEE Access
**2022**, 10, 79644–79654. [Google Scholar] [CrossRef] - Ahmed, F.; Hayat, T.; Afzal, M.U.; Lalbakhsh, A.; Esselle, K.P. Dielectric-Free Cells for Low-Cost Near-Field Phase Shifting Metasurfaces. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 5–10 July 2020; pp. 741–742. [Google Scholar]
- Ahmed, F.; Afzal, M.U.; Hayat, T.; Thalakotuna, D.; Esselle, K.P. Near-Field Phase Transforming Structures for High-Performance Antenna Systems. In Proceedings of the 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, 10–15 July 2022; pp. 1640–1641. [Google Scholar]
- Tasolamprou, A.C.; Skoulas, E.; Perrakis, G.; Vlahou, M.; Viskadourakis, Z.; Economou, E.N.; Kafesaki, M.; Kenanakis, G.; Stratakis, E. Highly ordered laser imprinted plasmonic metasurfaces for polarization sensitive perfect absorption. Sci. Rep.
**2022**, 12, 19769. [Google Scholar] [CrossRef] - Ataloglou, V.G.; Chen, M.; Kim, M.; Eleftheriades, G.V. Microwave Huygens’ metasurfaces: Fundamentals and applications. IEEE J. Microwaves
**2021**, 1, 374–388. [Google Scholar] [CrossRef] - Barbarić, D.; Šipuš, Z. Designing metasurfaces with canonical unit cells. Crystals
**2020**, 10, 938. [Google Scholar] [CrossRef] - Singh, K.; Afzal, M.U.; Esselle, K.P.; Kovaleva, M. Towards Decreasing Side Lobes Produced by Near-Field Phase Gradient Metasurfaces. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019; pp. 1207–1208. [Google Scholar]
- Su, J.; Lu, Y.; Liu, J.; Yang, Y.; Li, Z.; Song, J. A novel checkerboard metasurface based on optimized multielement phase cancellation for superwideband RCS reduction. IEEE Trans. Antennas Propag.
**2018**, 66, 7091–7099. [Google Scholar] [CrossRef] - Elsawy, M.M.; Lanteri, S.; Duvigneau, R.; Brière, G.; Mohamed, M.S.; Genevet, P. Global optimization of metasurface designs using statistical learning methods. Sci. Rep.
**2019**, 9, 17918. [Google Scholar] [CrossRef] [Green Version] - Singh, K.; Afzal, M.U.; Esselle, K.P. An Overview On the Optimization of Beam-Steering Metasurfaces. In Proceedings of the 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Rome, Italy, 28 August–4 September 2021; pp. 01–04. [Google Scholar]
- Monti, A.; Alù, A.; Toscano, A.; Bilotti, F. Design of high-Q passband filters implemented through multipolar all-dielectric metasurfaces. IEEE Trans. Antennas Propag.
**2020**, 69, 5142–5147. [Google Scholar] [CrossRef] - Epstein, A.; Eleftheriades, G.V. Synthesis of passive lossless metasurfaces using auxiliary fields for reflectionless beam splitting and perfect reflection. Phys. Rev. Lett.
**2016**, 117, 256103. [Google Scholar] [CrossRef] - Ghosh, S.; Lim, S. Fluidically Switchable Metasurface for Wide Spectrum Absorption. Sci. Rep.
**2018**, 8, 10169. [Google Scholar] [CrossRef] [Green Version] - Vellucci, S.; Monti, A.; Barbuto, M.; Toscano, A.; Bilotti, F. Satellite applications of electromagnetic cloaking. IEEE Trans. Antennas Propag.
**2017**, 65, 4931–4934. [Google Scholar] [CrossRef] - Achouri, K.; Caloz, C. Space-wave routing via surface waves using a metasurface system. Sci. Rep.
**2018**, 8, 7549. [Google Scholar] [CrossRef] [Green Version] - Li, L.; Zhang, X.; Song, C.; Zhang, W.; Jia, T.; Huang, Y. Compact dual-band, wide-angle, polarization-angle-independent rectifying metasurface for ambient energy harvesting and wireless power transfer. IEEE Trans. Microw. Theory Tech.
**2020**, 69, 1518–1528. [Google Scholar] [CrossRef] - Dong, F.; Chu, W. Multichannel-Independent Information Encoding with Optical Metasurfaces. Adv. Mater.
**2019**, 31, 1804921. [Google Scholar] [CrossRef] [PubMed] - Samantaray, D.; Bhattacharyya, S. A gain-enhanced slotted patch antenna using metasurface as superstrate configuration. IEEE Trans. Antennas Propag.
**2020**, 68, 6548–6556. [Google Scholar] [CrossRef] - Usha, P.; Krishnan, C. Epsilon Near Zero Metasurface for Ultrawideband Antenna Gain Enhancement and Radar Cross Section Reduction. AEU-Int. J. Electron. Commun.
**2020**, 19, 153167. [Google Scholar] [CrossRef] - Katare, K.K.; Chandravanshi, S.; Biswas, A.; Akhtar, M.J. Realization of split beam antenna using transmission-type coding metasurface and planar lens. IEEE Trans. Antennas Propag.
**2019**, 67, 2074–2084. [Google Scholar] [CrossRef] - Bodehou, M.; Martini, E.; Maci, S.; Huynen, I.; Craeye, C. Multibeam and beam scanning with modulated metasurfaces. IEEE Trans. Antennas Propag.
**2019**, 68, 1273–1281. [Google Scholar] [CrossRef] - Li, H.; Wang, G.; Ji, W.; Cai, T.; Gao, X.; Hou, H. Focusing MSs for high-gain antenna applications. In Metamaterials Metasurfaces; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar]
- Fan, J.; Cheng, Y. Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave. J. Phys. D Appl. Phys.
**2019**, 53, 025109. [Google Scholar] [CrossRef] - Soares, I.; Resende, U. Radially Periodic Metasurface Lenses for Magnetic Field Collimation in Resonant Wireless Power Transfer Applications. J. Microw. Optoelectron. Electromagn. Appl.
**2022**, 21, 48–60. [Google Scholar] [CrossRef] - Zhang, S. Intelligent metasurfaces: Digitalized, programmable, and intelligent platforms. Light Sci. Appl.
**2022**, 11, 242. [Google Scholar] [CrossRef] [PubMed] - Sleasman, T.; Boyarsky, M.; Pulido-Mancera, L.; Fromenteze, T.; Imani, M.F.; Reynolds, M.S.; Smith, D.R. Experimental synthetic aperture radar with dynamic metasurfaces. IEEE Trans. Antennas Propag.
**2017**, 65, 6864–6877. [Google Scholar] [CrossRef] [Green Version] - Lan, G.; Imani, M.F.; del Hougne, P.; Hu, W.; Smith, D.R.; Gorlatova, M. Wireless Sensing using Dynamic Metasurface Antennas: Challenges and Opportunities. IEEE Commun. Mag.
**2020**, 58, 66–71. [Google Scholar] [CrossRef] - Islam, M.T.; Samsuzzaman, M.; Kibria, S.; Misran, N.; Islam, M.T. Metasurface Loaded High Gain Antenna based Microwave Imaging using Iteratively Corrected Delay Multiply and Sum Algorithm. Sci. Rep.
**2019**, 9, 17317. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kou, N.; Liu, H.; Li, L. A transplantable frequency selective metasurface for high-order harmonic suppression. Appl. Sci.
**2017**, 7, 1240. [Google Scholar] [CrossRef] [Green Version] - Bernard, L.; Martinis, M.; Collardey, S.; Mahdjoubi, K.; Sauleau, R. Metasurface antennas embedded in small circular cavities for telemetry applications. Appl. Sci.
**2019**, 9, 2496. [Google Scholar] [CrossRef] [Green Version] - Wang, J.; Li, Y.; Jiang, Z.H.; Shi, T.; Tang, M.C.; Zhou, Z.; Chen, Z.N.; Qiu, C.W. Metantenna: When Metasurface Meets Antenna Again. IEEE Trans. Antennas Propag.
**2020**, 68, 1332–1347. [Google Scholar] [CrossRef] - Liu, R.; Wang, X.; Nie, D.; Wang, L.; Cui, W.; Wang, M.; Zheng, H.; Li, E. Metasurface: Enhancing gain of antenna and energy harvesting system design. Int. J. Microw. Comput.-Aided Eng.
**2020**, 30, e22053. [Google Scholar] [CrossRef] - Suriyakala, C.D.; Eldhose, A. Meta surface enabled wearable antenna for medical implant applications. In Proceedings of the 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Kollam, India, 20–21 April 2017; pp. 1–6. [Google Scholar]
- Marks, D.L.; Yurduseven, O.; Smith, D.R. Cavity-backed metasurface antennas and their application to frequency diversity imaging. JOSA A
**2017**, 34, 472–480. [Google Scholar] [CrossRef] - Liu, S.; Yang, D.; Chen, Y.; Zhang, X.; Xiang, Y. Compatible Integration of Circularly Polarized Omnidirectional Metasurface Antenna With Solar Cells. IEEE Trans. Antennas Propag.
**2019**, 68, 4155–4160. [Google Scholar] [CrossRef] - Ta, S.X.; Lee, J.J.; Park, I. Solar-Cell Metasurface-Integrated Circularly Polarized Antenna With 100% isolation. IEEE Antennas Wirel. Propag. Lett.
**2017**, 16, 2675–2678. [Google Scholar] - Ni, X.; Emani, N.K.; Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Broadband light bending with plasmonic nanoantennas. Science
**2012**, 335, 427. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Zhang, X.; Tian, Z.; Yue, W.; Gu, J.; Zhang, S.; Han, J.; Zhang, W. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Adv. Mater.
**2013**, 25, 4567–4572. [Google Scholar] [CrossRef] [PubMed] - Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl.
**2014**, 3, e218. [Google Scholar] [CrossRef] [Green Version] - Liu, S.; Cui, T.J.; Xu, Q.; Bao, D.; Du, L.; Wan, X.; Tang, W.X.; Ouyang, C.; Zhou, X.Y.; Yuan, H.; et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light Sci. Appl.
**2016**, 5, e16076. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Pancharatnam, S. Generalized theory of interference and its applications. Proc. Indian Acad. Sci.-Sect. A
**1956**, 44, 398–417. [Google Scholar] [CrossRef] - Berry, M.V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A Math. Phys. Sci.
**1984**, 392, 45–57. [Google Scholar] - Huang, L.; Chen, X.; Muhlenbernd, H.; Li, G.; Bai, B.; Tan, Q.; Jin, G.; Zentgraf, T.; Zhang, S. Dispersionless phase discontinuities for controlling light propagation. Nano Lett.
**2012**, 12, 5750–5755. [Google Scholar] [CrossRef] - Arbabi, A.; Faraon, A. Fundamental limits of ultrathin metasurfaces. Sci. Rep.
**2017**, 7, 43722. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ding, X.; Monticone, F.; Zhang, K.; Zhang, L.; Gao, D.; Burokur, S.N.; de Lustrac, A.; Wu, Q.; Qiu, C.W.; Alu, A. Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency. Adv. Mater.
**2015**, 27, 1195–1200. [Google Scholar] [CrossRef] [PubMed] - Zheng, G.; Muhlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol.
**2015**, 10, 308–312. [Google Scholar] [CrossRef] [PubMed] - Luo, W.; Sun, S.; Xu, H.X.; He, Q.; Zhou, L. Transmissive ultrathin Pancharatnam-Berry metasurfaces with nearly 100% efficiency. Phys. Rev. Appl.
**2017**, 7, 044033. [Google Scholar] [CrossRef] - Qu, M.; Li, S.; Deng, L.; Ma, X. Focusing Metasurface with arbitrary Focal Point Based on Pancharatnam-Berry Phase Principle. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019; pp. 445–446. [Google Scholar]
- Yang, P.; Dang, R.; Li, L. Dual-Linear-to-Circular Polarization Converter Based Polarization-Twisting Metasurface Antenna for Generating Dual Band Dual Circularly Polarized Radiation in Ku-band. IEEE Trans. Antennas Propag.
**2022**, 70, 9877–9881. [Google Scholar] [CrossRef] - Li, S.; Dong, S.; Yi, S.; Pan, W.; Chen, Y.; Guan, F.; Guo, H.; Wang, Z.; He, Q.; Zhou, L.; et al. Broadband and high-efficiency spin-polarized wave engineering with PB metasurfaces. Opt. Express
**2020**, 28, 15601–15610. [Google Scholar] [CrossRef] [PubMed] - Ta, S.X.; Park, I.; Ziolkowski, R.W. Circularly Polarized Crossed Dipole on an HIS for 2.4/5.2/5.8-GHz WLAN Applications. IEEE Antennas Wirel. Propag. Lett.
**2013**, 12, 1464–1467. [Google Scholar] [CrossRef] - Tran, H.H.; Park, I. A Dual-Wideband Circularly Polarized Antenna Using an Artificial Magnetic Conductor. IEEE Antennas Wirel. Propag. Lett.
**2016**, 15, 950–953. [Google Scholar] [CrossRef] - Chen, M.L.; Jiang, L.J.; Sha, W.E. Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency. J. Appl. Phys.
**2016**, 119, 064506. [Google Scholar] [CrossRef] [Green Version] - Zhang, Y.; Wang, Z.; Ren, Y.; Pan, C.; Zhang, J.; Jia, L.; Zhu, X. A Novel Metasurface Lens Design for Synthesizing Plane Waves in Millimeter-Wave Bands. Electronics
**2022**, 11, 1403. [Google Scholar] [CrossRef] - Singh, K.; Afzal, M.U.; Lalbakhsh, A.; Esselle, K.P. Reflecting Phase-Gradient Metasurface for Radar Cross Section Reduction. In Proceedings of the 2021 IEEE Asia-Pacific Microwave Conference (APMC), Brisbane, Australia, 28 November–1 December 2021; pp. 344–346. [Google Scholar]
- Zhong, Y.C.; Cheng, Y.J. Generating and Steering Quasi-Nondiffractive Beam by Near-Field Planar Risley Prisms. IEEE Trans. Antennas Propag.
**2020**, 68, 7767–7776. [Google Scholar] [CrossRef] - Smith, D.R.; Yurduseven, O.; Mancera, L.P.; Bowen, P.; Kundtz, N.B. Analysis of a waveguide-fed metasurface antenna. Phys. Rev. Appl.
**2017**, 8, 054048. [Google Scholar] [CrossRef] [Green Version] - Li, H.; Wang, G.; Gao, X.; Liang, J.; Hou, H. A Novel Metasurface for Dual-Mode and Dual-Band Flat High-Gain Antenna Application. IEEE Trans. Antennas Propag.
**2018**, 66, 3706–3711. [Google Scholar] [CrossRef] - Li, H.; Wang, G.; Xu, H.X.; Cai, T.; Liang, J. X-band phase-gradient metasurface for high-gain lens antenna application. IEEE Trans. Antennas Propag.
**2015**, 63, 5144–5149. [Google Scholar] [CrossRef] - Pfeiffer, C.; Grbic, A. Planar lens antennas of subwavelength thickness: Collimating leaky-waves with metasurfaces. IEEE Trans. Antennas Propag.
**2015**, 63, 3248–3253. [Google Scholar] [CrossRef] - Hou, H.; Li, H.; Wang, G.; Cai, T.; Gao, X.; Guo, W. High Performance Metasurface Antennas. In Dielectric and Other Metasurfaces—From Fundamentals to Applications; IntechOpen: London, UK, 2019. [Google Scholar]

**Figure 2.**Generalized Snell’s law (A 2D situation where the phase gradient lies along the plane of incidence). PGM referes to phase-gradient metasurface.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Singh, K.; Ahmed, F.; Esselle, K.
Electromagnetic Metasurfaces: Insight into Evolution, Design and Applications. *Crystals* **2022**, *12*, 1769.
https://doi.org/10.3390/cryst12121769

**AMA Style**

Singh K, Ahmed F, Esselle K.
Electromagnetic Metasurfaces: Insight into Evolution, Design and Applications. *Crystals*. 2022; 12(12):1769.
https://doi.org/10.3390/cryst12121769

**Chicago/Turabian Style**

Singh, Khushboo, Foez Ahmed, and Karu Esselle.
2022. "Electromagnetic Metasurfaces: Insight into Evolution, Design and Applications" *Crystals* 12, no. 12: 1769.
https://doi.org/10.3390/cryst12121769