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Abstract: The grain shape and orientation distribution of metal sheets at mesoscales are usually
irregular, which has an impact on the elastic properties of metal materials. A grain shape function
(GSF) is constructed to represent the shape of grains. The expansion coefficient of GSF on the basis of
the Wigner D function is called the shape coefficient. In this paper, we study the influence of average
grain shape on the elastic constitutive relation of orthogonal polycrystalline materials, and obtain a
new expression of the elastic constitutive relation of polycrystalline materials containing grain shape
effects. The seven string method is proposed to fit the shape of irregular grains. Experiments show
that the GSF can better describe the shape of irregular grains. Using the microscopic images of the
grains, we carried out the experimental measurement of micro and macrostrain at grain scale. The
experimental results show that the grain shape parameter (slenderness ratio) is consistent with the
theoretical results of the material macroscopic mechanical properties.

Keywords: grain shape function; elastic constitutive; seven string method; microscopic images;
experimental measurement

1. Introduction

The constitutive relation of metal materials reflects the law of the change of stress
with strain under certain deformation conditions. The grains of polycrystalline metal
materials contain such microstructure information as grain orientation, grain shape, grain
size, and grain boundary distribution [1–5]. The microstructure information reflects the
micro structure characteristics of polycrystals, and affect the macro elastic and plastic
mechanical properties of polycrystalline materials.

General constitutive theoretical models, such as the Miller [6] model, Walker [7]
model, Bonder Partom [8] model, Chaboche [9] model, and Sadovskii model [10], have
the following common features [11] despite their various forms: the theoretical basis of
each equation is the basic law of thermodynamics. The strain of any point in the material
can be regarded as the sum of elastic strain and inelastic strain. The elastic deformation
conforms to Hooke’s law, and the inelastic deformation conforms to the flow equation.
The mechanical properties of materials are determined by two completely independent
basic internal variables, i.e., isotropic hardening of the internal variable and kinematic
hardening of the internal variable. The above macro phenomenological metal constitutive
relation theory is based on macro phenomena and simulates macro mechanical behavior
to determine parameters. The equations obtained are often semi theoretical and semi
empirical, and the morphology and changes of material damage cannot be understood
from the fine and micro structure levels. Therefore, these studies are difficult to go deep
into the nature of metal material deformation.

Many studies [12–16] believe that among the micro structural characteristics of metal-
lic materials, the macro elastic constitutive relationship of polycrystalline metallic materials

Crystals 2022, 12, 1768. https://doi.org/10.3390/cryst12121768 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst12121768
https://doi.org/10.3390/cryst12121768
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0003-4704-2083
https://orcid.org/0000-0001-5030-3286
https://doi.org/10.3390/cryst12121768
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst12121768?type=check_update&version=2


Crystals 2022, 12, 1768 2 of 19

is mainly affected by the grain orientation distribution. Guenoun et al. [17] followed the
grain orientation during in situ crystallization experiments with a fine time resolution.
Tang et al. [18] investigated the anisotropic hardness, elastic modulus, and dislocation
behavior of AlN grains by Berkovich nanoindentation. Şahin et al. [19] studied the
limiting role of grain domain orientation on the modulus and strength of aramid fibers.
Tang et al. [20] described the constitutive relation of individual grains in the micro-scale
reconstructed models with the single-crystal-scale plasticity model. Gu et al. [21] proposed
a method considering grain size and shape effects based on the classical crystal plasticity
finite element method. Trusov et al. [22] analyzed the kinematic relations and constitutive
laws in crystal plasticity in the case of elastic deformation. Lakshmanan et al. [23] presented
a computational framework to include the effects of grain size and morphology in the
crystal plasticity. Agius et al. [24] incorporated a length scale dependence into classical
crystal plasticity simulations, and the effectiveness of the method was proved by exper-
iments. The grain orientation distribution is expressed by the ODF function [25,26], and
the stress distribution of single grains presented obvious orientation dependence during
deformation [27]. The relationship between material texture coefficient and the elastic
constitutive relationship can reflect the influence of grain orientation distribution on the
elastic constitutive relationship. Equations (1) and (2) give the single-crystal-scale plasticity
model and polycrystal-scale plasticity model [18,28–38].

σ̂e = C : De

σ̂ = σ̂e − (W p · σ − σ ·W p)

σ̂ = C : D−∑n
α=1

(
C : P(α) + B(α)

)
˙γ(α)

 (1)

σ̂ = C :

(
D−

N2

∑
k=1

N1

∑
α=1

C : P(α)

)
˙γ(α) fk +

N2

∑
k=1

N1

∑
α=1

B(α) ˙γ(α) fk

= C : D−
N2

∑
k=1

N1

∑
α=1

(
C : P(α) + B(α)

)
˙γ(α) fk

(2)

However, up to now, people have not given the expression of the polycrystalline
elastic constitutive relation containing the grain shape effect. The work of this paper is
to study the influence of the grain shape parameters of polycrystalline materials on the
elastic constitutive relation, and to carry out the parametric study of the grain shape of
grain materials.

2. Elastic Constitutive Relationship of Metallic Materials Containing Grain Shape
Effect
2.1. Grain Shape Function and Shape Coefficient Expression

We define polycrystalline Ω ⊂ R3 as a collection of many small grains Ωp
(p = 1, 2, . . . , N)

Ω = int
(

UN
p=1Ωp

)
, Ωp ∩Ωq = ∅, ∀p 6= q (3)

where p is taken from all grains of polycrystals, the grains p occupy the domain Ωp (open
set), Ωp is the closed set of Ωp and is the inner product, and N is the total number of
polycrystal grains.

We assume
rp(n) =

∣∣x− cp
∣∣, x ∈ ∂Ωp (4)

Equation (4) represents the distance from the center of the crystal grain Ωp to the point
x ∈ ∂Ωp, where dx ∈ dx1dx2dx3 and n =

(
x− cp

)
/
∣∣x− cp

∣∣, x ∈ ∂Ωp, the plane calculation
model is shown in Figure 1. The direction n in (4) can be represented by Euler angles α
and β.



Crystals 2022, 12, 1768 3 of 19

Figure 1. The plane calculation model of the grain.

n(α, β) = [sin β cos α, sin β sin α, cos β]T = R(α, β, 0)e3 (5)

where R(α, β, 0) is the rotation tensor, and e3 = [0, 0, 1]T .
The average size r(n) of crystal grain rp(n) in polycrystalline Ω is

r(n) =
1
N

N

∑
p=1

rp(n) (6)

The average shape and size of crystal grains are defined as

(Ωcr)mean =

{
x ∈ R3

∣∣∣x = l(n)× [sin β cos α, sin β sin α, cos β]T

0 ≤ α / 2π, 0 ≤ β ≤ π, 0 ≤ l(n) / r(n)

}
(7)

The elastic constitutive relation is independent of grain size and tiny physical
unit, hence

R(n(α, β)) =
r(n)

r̄
(8)

where r is the average radius of polycrystalline grains, and the GSF can describe the average
shape of polycrystalline grains.

r̄ =
1

4π

∫ 2π

0

∫ π

0
r(n(α, β)) sin βdβdα (9)

In Equation (8), the GSF <(n(α, β)) can be extended to infinite series Yl
m(α, β) or

Wigner D function

R(n(α, β)) = Rsphere +
∞

∑
l=1

l

∑
m=−l

√
4π

2l + 1
sl

m0Yl
m(α, β)

= Rsphere +
∞

∑
l=1

l

∑
m=−l

sl
m0Dl

m0(R(α, β, 0))

(10)

where <sphere = 1, sl
m0 = (−1)m(sl

m0)
∗
, and sl

m0 ∈ C(l ≥ 1) is the shape factor.
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The average grain shape is not anisotropic and sl
m0 = 0, the relationship between the

ball function and Wigner D function is

Yl
m(α, β) =

√
2l + 1

4π
Dl

m0(R(α, β, 0)) (11)

According to the orthogonal averaging condition∫ 2π

0

∫ π

0
Yl

m(α, β)(Yl′
m′(α, β))∗ sin βdβdα = δll′δmm′ (12)

If
∥∥∥<(n(α, β, 0))−<sphere

∥∥∥ is a small amount, then the average grain shape is weakly
anisotropic. The polycrystalline undergoes a rotation Q, and the average shape of grains
can be described by a new GSF <(n(α, β)).

<(n(α, β)) = <(Q−1n(α, β)) = <sphere +
∞

∑
l=1

l

∑
m=−l

sl
p0Dl

p0(Q
−1R(α, β, 0))

= <sphere +
∞

∑
l=1

l

∑
m=−l

sl
p0 ×

l

∑
m=−l

Dl
pm(Q

−1)Dl
m0(R(α, β, 0))

= <sphere +
∞

∑
l=1

l

∑
m=−l

s̃l
m0 × Dl

m0(R(α, β, 0))

(13)

where s̃l
m0 =

l
∑

p=−l
sl

p0Dl
pm(Q−1).

We assume that the polycrystal is an aggregate of orthorhombic grains, and the shape
coefficient of the polycrystal satisfies

sl
m0 =

l

∑
p=−l

sl
p0Dl

pm(Q
−1), ∀Q−1 ∈ {I, R(0, π, π), R(0, π, 0), R(0, 0, π)} (14)

We obtain {
sl

m0 = (−1)lsl
m0, m ∈ even

sl
m0 = 0, m ∈ odd

(15)

Equation (13) holds for all grain aggregates of the orthorhombic system, because

sl
m0 =

l

∑
p=−l

sl
p0Dl

pm(R(0, π, 0))

=
l

∑
p=−l

sl
p0dl

pm(π)

=
l

∑
p=−l

sl
p0(−1)l+pdl

pm(0)

=
l

∑
p=−l

sl
p0(−1)l+pδpm = sl

m0(−1)l−m

(16)

sl
m0 =

l

∑
p=−l

sl
p0Dl

pm(R(0, 0, π))

=
l

∑
p=−l

sl
p0dl

pm(0)e
−imπ

= sl
m0 cos(mπ)

(17)
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By (13)
sl

m0 = (−1)m(sl
m0)
∗
= (−1)l(sl

m0)
∗

(18)

when the polycrystals have orthogonal symmetry, the dual number l of the shape coefficient
is a real number.

2.2. Elastic Constitutive Relation Considering Average Grain Shape

We assume that the polycrystalline constitutive relation Ce f f depends on ODF and
GSF (e.g., Ce f f = Ce f f (w,<)), and the objectivity of the material limits the
constitutive relation

Ce f f (w(Q−1R),<(Q−1n)) = Q⊗4Ce f f (w(R),<(n)), ∀Q ∈ SO(3) (19)

(Q⊗4A)ijkl = QimQjnQkpQlqAmnpq (20)

where, the polycrystalline constitutive relation Ce f f has primary and secondary symmetry,
and Ce f f (w,<) = Ce f f (cl

mn, sl
m0) is expanded into a series with cl

mn and sl
m0.

Ce f f (cl
mn, sl

m0) = Ce f f (0, 0) +
∞

∑
l=1

∑
n

l

∑
m=−l

∂Ce f f (0, 0)
∂cl

mn
cl

mn

+
∞

∑
l=1

l

∑
m=−l

∂Ce f f (0, 0)
∂sl

m0
sl

m0 + o(
∣∣∣cl

mn

∣∣∣) + o(
∣∣∣sl

m0

∣∣∣) (21)

If the polycrystal is weak texture (e.g., ‖w− wiso‖ is small), and the average grain
shape is weak anisotropy (e.g.,

∥∥∥<−<sphere

∥∥∥ is small), then o(
∣∣∣cl

mn

∣∣∣) and o(
∣∣∣sl

m0

∣∣∣) in (21)
can be removed, we obtain

Ce f f (w(R),<(n)) = Ce f f (cl
mn, sl

m0) = C(0) + C(1)(w(R)) + C(2)(<(n)) (22)

where C(0) = Ce f f (0, 0).

C(1)(w(R)) =
∞

∑
l=1

∑
n

l

∑
m=−l

∂Ce f f (0, 0)
∂cl

mn
cl

mn (23)

C(2)(<(n)) =
∞

∑
l=1

l

∑
m=−l

Fl
m0sl

m0, Fl
m0 =

∂Ce f f (0, 0)
∂sl

m0
(24)

By (19) and (22), we obtain

C(0) = Q⊗4C(0)

C(1)(w(Q−1R)) = Q⊗4C(1)(w(R))

C(2)(<(Q−1n)) = Q⊗4C(2)(<(n))

(25)

For cubic grain orthogonal system, by (25), we obtain the tensor form of C(0) and C(1)

under the change of Voigt symbol.
The isotropic part can be expressed as

C(0) = λB(1) + 2µB(2)

=



λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


(26)
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where λ and µ are the undetermined material constants, B(1)
ijkl = δijδkl, B(2)

ijkl =
1
2 (δikδjl + δilδjk).

The anisotropic part can be expressed as

C(1) = cΦ(w)

= c



−a2 − a3 a3 a2 0 0 0
a3 −a3 − a1 a1 0 0 0
a2 a1 −a1 − a2 0 0 0
0 0 0 a1 0 0
0 0 0 0 a2 0
0 0 0 0 0 a3


(27)

where a1 = − 32π2

105 (c4
00 +

√
5
2 c4

20), a2 = − 32π2

105 (c4
00 −

√
5
2 c4

20), a3 = 8π2

105 (c
4
00 +
√

70c4
40), since

the polycrystals are cubic crystal orthogonal systems, the texture coefficients c4
00, c4

20 and
c4

40 are both real numbers [39,40].
In (24), the tensor Fl

m0 satisfies

Fl
m0 = (−1)m(Fl

m0)
∗

(28)

Hence, the fourth-order tensor C(2) is a real number, and by the relationshape
sl

m0 = (−1)m(sl
m0)
∗

in (10), we obtain

Fl
m0sl

m0 + Fl
m0sl

m0 = Fl
m0sl

m0 + (Fl
m0sl

m0)
∗

(29)

Combining (24) and (25), we obtain
l

∑
m=−l

s̃l
m0Fl

m0 =
l

∑
m=−l

l

∑
p=−l

sl
p0Dl

pm(Q
−1)Fl

m0

=
l

∑
m=−l

sl
m0Q⊗4Fl

m0, ∀Q ∈ SO(3)

(30)

Equation (30) is applicable to any shape factor sl
m0 ∈ C, let sl

00 6= 0 and sl
m0 = 0,

we obtain

Q⊗4Fl
00 =

l

∑
m=−l

Dl
0m(Q

−1)Fl
m0 (31)

In order to meet the requirement that Fl
m0 holds true for Q ∈ SO(3), we assume

F(l)
00 = Fl

00, where F(l) is a fourth-order tensor satisfying primary and secondary symmetry.
We multiply (Dl

0k(Q
−1))

∗
on both sides of (31) and integrate in SO(3) space, then∫

SO(3)
Q⊗4F(l)(Dl

0m(Q
−1))

∗
dg =

l

∑
m=−l

∫
SO(3)

Dl
0m(Q

−1)(Dl
0k(Q

−1))
∗
dg)Fl

m0 (32)

Fl
m0 can be expressed as

Fl
k0 =

2l + 1
8π2

∫
SO(3)

Q⊗4F(l)Dl
k0(Q)dg, k ∈ [0,±1,±2, . . . ,±l] (33)

The component is represented as

(Fl
k0)mnpq =

2l + 1
8π2

∫ 2π

0

∫ π

0

∫ 2π

0
QmuQnv ×QpsQqtF

(l)
uvstD

l
k0(Q) sin θdψdθdϕ (34)

The fourth-order tensor F(l) satisfies the primary and secondary symmetry, and has
21 independent material constants, in (33), the fourth-order tensor Fl

m0 satisfies
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Q⊗4Fl
m0 =

l

∑
k=−l

(Dl
km(Q))∗Fl

k0 (35)

We obtain
l

∑
k=−l

(Dl
km(Q))∗Fl

k0 =
l

∑
k=−l

(Dl
mk(Q

−1))
2l + 1
8π2 ×

∫
SO(3)

Q⊗4
1 F(l)Dl

k0(Q1)dg(Q1)

=
2l + 1
8π2

∫
SO(3)

Q⊗4
1 F(l)

l

∑
k=−l

Dl
mk(Q

−1)Dl
k0(Q1)dg(Q1)

=
2l + 1
8π2 Q⊗4

∫
SO(3)

(Q−1)⊗4Q⊗4
1 F(l)Dl

m0(Q
−1Q1)dg(Q1)

= Q⊗4(
2l + 1
8π2

∫
SO(3)

Q⊗4
2 F(l)Dl

m0(Q2)dg(Q2))

= Q⊗4Fl
m0

(36)

By Fl
k0 in (33), Equation (30) holds for all shape coefficients sl

m0 /∈ C, hence

l

∑
k=−l

sl
m0Q⊗4Fl

m0 =
l

∑
k=−l

sl
m0[

l

∑
p=−l

(Dl
mk(Q))

∗

Fl
p0]

=
l

∑
p=−l

sl
p0

l

∑
m=−l

(Dl
mp(Q))

∗
Fl

m0

=
l

∑
m=−l

(
l

∑
p=−l

sl
p0Dl

pm(Q
−1))Fl

m0

(37)

In the rectangular coordinate system, the rotation tensor Q can be represented by a linear
combination of Wigner D function Dl

mk(Q) (l = 1) [41–43], rewriting each component of ten-
sor
∫

SO(3) Q⊗4F(l)Dl
k0(Q)dg [39] as a linear combination of integral

∫
SO(3) Dp

qr(Q)Dl
k0(Q)dg

(0 ≤ p ≤ 4, l ≥ 1). Using the orthogonality of Wigner D function, we obtain
When l ≥ 5

Fl
k0 =

2l + 1
8π2

∫
SO(3)

Q
⊗4

F(l)Dl
k0(Q)dg = 0 (38)

By (38), we can write C(2)(<(n)) in (24) as

C(2)(<(n)) =
4

∑
l=1

l

∑
m=−1

Fl
m0sl

m0 (39)

By integrating, we obtain
1

∑
m=−1

F1
m0s1

m0 = 0

2

∑
m=−2

F2
m0s2

m0 = s1Θ1(<) + s2Θ2(<)

3

∑
m=−3

F3
m0s3

m0 = 0

4

∑
m=−4

F4
m0s4

m0 = s3Θ3(<)

(40)

where
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s1 =
1
42

(F(2)
1111 + F(2)

2222 − 2F(2)
3333 + 2F(2)

2233 + 2F(2)
1133 − 4F(2)

1122 − 3F(2)
2323 − 3F(2)

3131 + 6F(2)
1212)

s2 =
1
42

(F(2)
1111 + F(2)

2222 − 2F(2)
3333 − 5F(2)

2233 − 5F(2)
1133 + 10F(2)

1122 + 4F(2)
2323 + 4F(2)

3131 − 8F(2)
1212)

s3 =
3

64π2 (3F(4)
1111 + 3F(4)

2222 + 8F(4)
3333 − 8F(4)

2233 − 8F(4)
1133 + 2F(4)

1122 − 16F(4)
2323 − 16F(4)

3131 + 4F(4)
1212)

(41)

Θ1(<) =



4s2
00 − 4

√
6s2

20 0 0 0 0 0
0 4s2

00 + 4
√

6s2
20 0 0 0 0

0 0 −8s2
00 0 0 0

0 0 0 −s2
00 +
√

6s2
20 0 0

0 0 0 0 −s2
00 −
√

6s2
20 0

0 0 0 0 0 2s2
00



Θ2(<) =



2s2
00 − 2

√
6s2

20 2s2
00 −s2

00 −
√

6s2
20 0 0 0

2s2
00 2s2

00 + 2
√

6s2
20 −s2

00 +
√

6s2
20 0 0 0

−s2
00 −
√

6s2
20 −s2

00 +
√

6s2
20 −4s2

00 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



Θ3(<) =



−b2 − b3 b3 b2 0 0 0
b3 −b1 − b3 b1 0 0 0
b2 b1 −b1 − b2 0 0 0
0 0 0 b1 0 0
0 0 0 0 b2 0
0 0 0 0 0 b3



(42)

b1 = −32π2

105
(s4

00 +

√
5
2

s4
20), b2 = −32π2

105
(s4

00 −
√

5
2

s4
20), b3 =

8π2

105
(s4

00 −
√

70s4
40) (43)

By (19), for orthogonal polycrystals, in (41)–(43), the shape coefficients s2
00, s2

20, s4
00, s4

20, s4
20

are real numbers. Substitute (40) into (39), and we obtain the anisotropic part of the
constitutive relation according to the anisotropy of the average grain shape

C(2)(<(n)) = s1Θ1(<) + s2Θ2(<) + s3Θ3(<) (44)

If the polycrystals are orthorhombic aggregates of weakly textured cubic grains, and
the average grain shape is weakly anisotropic, according to the principle of material
objectivity, considering the effects of GSF and grain orientation function ODF, by (22), (42),
(43), and (44), we obtain the elastic constitutive relationship Ce f f of polycrystals

Ce f f = λB(1) + 2µB(2) + cΦ(w) + s1Θ1(<) + s2Θ2(<) + s3Θ3(<) (45)

where λ, µ, c, s1, s2 and s3 are undetermined material constants, which can be determined
by experiment, physical model, or numerical simulation.

3. Parameterization and Experiment of Metal Material Grain Shape

On the meso scale, when discussing the relationship between the grain shape and
the mechanical properties of metal materials, most of the grain shapes are expressed as
ellipses. In fact, the grain shapes of polycrystalline metal materials are very different, and
there is no unified shape description method for irregular grains. This section discusses the
mathematical description of the grain shape, introduces the parameters that represent the
grain shape, uses the digital image analysis method to realize the parametric representa-
tion of the evolution of the micro and macrograin shape of metal materials under stress
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deformation, and carries out experimental research on the mechanical properties of metal
materials containing the grain shape effect.

3.1. Extraction of Grain Image

Through the test of several common metal materials (e.g., the low carbon steel, pure
copper, and pure aluminum), we found that using pure aluminum sheets can obtain
relatively clear grain images, so the grain images analyzed in this paper are taken from
a pure aluminum sheet. We process the rolled pure aluminum plate into a dumbbell-
shaped sample, conduct high temperature annealing at 600 ◦C for 30 min, and cool it in the
furnace to room temperature. Then we use mixed acid solution (15 mL HF, 15 mL HNO3,
25 mL HCl, 25 mL H2O) to etch the sample, remove the oxide layer on the surface of pure
aluminum plate, and expose the grain structure. These grains can also be used as natural
speckles on the sample surface, as shown in Figure 2.

(a)

(b)

Figure 2. (a) The original grain on pure aluminum plate specimen (natural speckle); (b) the dimen-
sions of the plate specimen.

In order to facilitate the research, the following five images (as shown in Figure 3)
with clear grain boundaries and easily recognizable grain shapes during loading are
selected from a large number of sample grain images, which are marked with GRAB1,
GRAB5, GRAB10, GRAB14, and GRAB15, respectively. Three grains with obvious boundary
contours are selected from these five grain images for shape parameterization research.

First, we use the 2D Gaussian filtering template to smooth the image, calculate the
amplitude and direction of the filtered image gradient, apply non-maximum suppression
to the gradient amplitude, find out the local maximum points in the image gradient, set
other non-local maximum points to zero to obtain the refined edge, and use the double
threshold algorithm to detect and connect the edges, use two thresholds to find each line
segment and extend them in two directions to find the fracture at the grain boundary edge,
and connect these fractures.

From Figure 3, taking GRAB1 as an example, three grains with clear grain boundaries
were selected as the research object, and the boundary diagrams of the three grains under
different loads were intercepted by using the aforementioned boundary extraction method,
as shown in Figure 4.
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Figure 3. The original grain image of pure aluminum plate sample: (a) GRAB 1; (b) GRAB 5;
(c) GRAB 10; (d) GRAB 14; (e) GRAB 15.
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Figure 4. The boundary diagram of three grains in GRAB1: (a) grain 1; (b) grain 2; (c) grain 3.

3.2. Multi-String Method for Grain Shape Parameterization

The grain shape parameters can be fitted by the external rectangle, ellipse, and the
multi-chord method for grain segmentation. By comparison, we find that the external
rectangle and ellipse are sometimes not the closest fitting figure to the actual shape of the
grain for grains with different shapes, and the multi-chord method for grain segmentation
is more accurate and effective for the boundary fitting of irregular grains.

Taking the digital speckle image of grain 1, grain 2, and grain 3 provided in Figure 4 as
the data source, and taking the minimum circumscribed rectangle at the edge of the grain
as the object, we divide the minimum circumscribed rectangle into eight equal parts in the
height and width directions respectively, then we obtain seven strings in the vertical and
horizontal directions inside the grain, calculate the length of each string respectively, and
take the ratio of the average length of the vertical and horizontal chords as the slenderness
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ratio of the grain, i.e., the grain shape parameter. Figure 5 is the schematic diagram of
irregular grain boundary multi-chord method fitting.
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Figure 5. The multi-chord fitting of three grain boundaries: (a) grain 1; (b) grain 2; (c) grain 3.

We fit and calculate each chord (solid line part) in each grain in Figure 5. The calcula-
tion data and shape parameters are listed in Table 1 according to the number of chords in
each grain.

Since the number of chords for dividing grains can be set manually, the appropriate
number of chords depends on whether the shape of grains can be truly reflected and
the efficiency of calculation. Therefore, this paper analyzes and compares the number of
chords in the multi-chord method. Tables 1–3 list the fitting data and corresponding shape
parameters of the grain image after grain segmentation with 1, 3, 5, and 7 chords in three
grains.

Table 1. The multi-chord grain fitting data and shape parameters (grain 1).

Chord Number 1 Chord 3 Chord 5 Chord 7 Chord

Grain Image
Number H. 1 W. 2 S.R. 3 H. 1 W. 2 S.R. 3 H. 1 W. 2 S.R. 3 H. 1 W. 2 S.R. 3

GRAB1 67 45 1.489 65.67 45.33 1.449 67.4 46.4 1.453 68.14 46.71 1.459
GRAB5 69 44 1.568 70 44.67 1.567 68.8 44.2 1.557 70.57 45.13 1.564

GRAB10 70 44 1.591 70.33 44 1.598 70.8 44 1.609 71.28 44.85 1.59
GRAB14 75 41 1.829 75.67 40.67 1.861 75.6 41 1.844 76.11 40.14 1.896
GRAB15 77 40 1.925 77 40.33 1.909 77 40.6 1.897 77.57 39.42 1.968

1 This is the height of the crystal. 2 This is the width of the crystal. 3 This is the slenderness ratio of the crystal.

Table 2. The multi-chord grain fitting data and shape parameters (grain 2).

Chord Number 1 Chord 3 Chord 5 Chord 7 Chord

Grain Image
Number H. 1 W. 2 S.R. 3 H. 1 W. 2 S.R. 3 H. 1 W. 2 S.R. 3 H. 1 W. 2 S.R. 3

GRAB1 51 44 1.159 53 39.67 1.336 53.8 40.7 1.322 53.37 40.93 1.304
GRAB5 56 45 1.244 53 40 1.325 53.6 40.6 1.321 53.73 40.87 1.314

GRAB10 50 46 1.087 51 41 1.244 53.2 40.4 1.317 53.84 40.23 1.338
GRAB14 59 46 1.283 55.33 40.67 1.361 54.4 41.1 1.324 54.33 41.54 1.307
GRAB15 55 45 1.222 55.67 40.33 1.38 55.2 41.7 1.324 55.87 41.67 1.341

1 This is the height of the crystal. 2 This is the width of the crystal. 3 This is the slenderness ratio of the crystal.
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Table 3. The multi-chord grain fitting data and shape parameters (grain 3).

Chord Number 1 Chord 3 Chord 5 Chord 7 Chord

Grain Image
Number H. 1 W. 2 S.R. 3 H. 1 W. 2 S.R. 3 H. 1 W. 2 S.R. 3 H. 1 W. 2 S.R. 3

GRAB1 103 109 0.945 106.67 109.33 0.976 102.8 108.6 0.947 103.57 109.17 0.949
GRAB5 105 108 0.972 108 107.67 1.003 106.2 108.2 0.982 104.58 108.71 0.962

GRAB10 108 106 1.019 109.33 106 1.031 108.4 105.8 1.025 109.17 105.14 1.038
GRAB14 111 103 1.078 110.67 103.33 1.071 112.2 102.6 1.094 111.34 102.47 1.087
GRAB15 113 100 1.13 114.33 100 1.143 113 99.2 1.139 114.02 99.42 1.147

1 This is the height of the crystal. 2 This is the width of the crystal. 3 This is the slenderness ratio of the crystal.

According to the grain shape fitting data in Tables 1–3, we find that the results of grain
shape fitting for the same grain under the same load state are different with a different
number of split chords. When the number of split chords is 5 and 7, the grain fitting data
shows better convergence, which is significantly different from the grain fitting data when
the number of split chords is 1 and 3. Theoretically, the more the number of segmenting
chords of the grains, the more information reflecting the shape of the grains, and the closer
the description of the shape of the irregular grains should be. However, there is a problem
of computational efficiency at this time. After comparison, the seven chords can be used as
the more appropriate chord number of the multi-chord method for segmenting grains.

3.3. Experimental Study on Grain Shape Coefficient

In Section 2, according to the ratio of the arbitrary radius value to the average radius
value in the grain, we establish the GSF to describe the average shape of the grain. The GSF
can be expanded into infinite series on the basis of Wigner D function, and the expanded
coefficients are called grain shape coefficients sl

m0 (Equations (10)–(13)). Equation (10)
degenerates to the form of a plane, then

r(θ) = 1 + 2
4

∑
i=1

[ai cos(iθ) + bi sin(iθ)] (46)

where r(θ) is the shape function of the grain, ai and bi are the coefficients of the expansion
series of the GSF, i.e., the grain shape coefficient.

We selecte the first loading step G1 of grain 1, find the centroid of the grain through
the image analysis technology in Section 3.1, and establish a rectangular coordinate system
with the centroid as the coordinate origin (as shown in Figure 6), segment the grain with
the seven chord method, and obtain 28 information points at the transverse chord end and
vertical chord end on the grain boundary.

(a) (b)

Figure 6. (a) The grain 1 (G1) in the rectangular coordinate system; (b) the transverse and vertical points.
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Further, we obtain the X and Y coordinate values of the 28 information points, as
shown in Tables 4 and 5.

Table 4. The coordinates of grain 1 (G1) boundary information points (transverse point).

Point Number X Y Point Number X Y

Transverse point 1 −22 27 Transverse point 8 −1 27
Transverse point 2 −27 19 Transverse point 9 0 19
Transverse point 3 −25 11 Transverse point 10 25 11
Transverse point 4 −20 1 Transverse point 11 24 1
Transverse point 5 −15 −7 Transverse point 12 18 −7
Transverse point 6 −13 −15 Transverse point 13 17 −15
Transverse point 7 −11 −23 Transverse point 14 18 −23

Table 5. The coordinates of grain 1 (G1) boundary information points (vertical point).

Point Number X Y Point Number X Y

Vertical point 1 −20 28 Vertical point 8 −20 −1
Vertical point 2 −13 34 Vertical point 9 −13 −18
Vertical point 3 −6 33 Vertical point 10 −6 −27
Vertical point 4 0 21 Vertical point 11 0 −30
Vertical point 5 7 19 Vertical point 12 7 −31
Vertical point 6 14 16 Vertical point 13 14 −31
Vertical point 7 21 13 Vertical point 14 21 −5

Using the same processing method, each grain has five analysis steps (G1, G5, G10,
G14, G15), and we obtain 15 data sheets of three grains. According to the coordinate value
of each information point, we calculate the distance R from the information point to the
centroid, the average distance r̄, and the included angle θ between the centroid line of the
information point and the X axis. If r = R/r̄, r is the shape function value of the function
r(θ) corresponding to θ. In (46), we can establish

Π =
28

∑
i=1

[r(θi)− ri]
2 (47)

where r(θi) is the value of function r(θ) when θ = θi, and ri is the experimental value
corresponding to θ = θi.

According to ∂Π
∂ai

= 0, ∂Π
∂bi

= 0 (i = 1 · · · n, n is the number of experimental data points),
we obtain ai, bi.

Using the seven string method, the results of grain 1 shape fitting are obtained as
shown in Figure 7. Figure 7a shows the shape function curve of grain 1, and the fitting
curve is in good agreement with the experimental data points. Figure 7b reflects the
function fitting curve of grain 1 under different loading steps. The five grain curves are
not completely coincident, reflecting the changes of grain shape under load. Such fitting
results show that the GSF can better describe the shape of irregular grains, where the grain
shape coefficients ai and bi are coefficients of the expansion of the GSF, and different grain
shape coefficients correspond to different grain shapes.
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(a) (b)

Figure 7. (a) The shape function fitting curve of grain; (b) the function fitting curve of grain 1 under
different loading steps.

4. Parametric Experimental Study on Grain Shape Evolution

In Section 3, we studied the parametric shape of grains with different shapes in the
micro structures of polycrystalline metal materials. In this section, taking the axial tensile
deformation experiment of pure aluminum plate as an example, we discussed the micro shape
evolution of grains under macro tension from the micro scale of metal grain shape parameters.

Figure 8 shows the local grain diagram in the pure aluminum plate sample. There
are a large number of grains with irregular shapes within the grain image range. We
selected grains with relatively regular shape and near ellipse as the analysis object of this
experimental study. The target grain (red) is shown in Figure 8b.

The target grain
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Figure 8. (a) The target grain of the grain diagram when F = 200 N; (b) the corresponding boundary
diagram.

During the tensile loading of a pure aluminum sheet, the grain distribution on the
surface of the sheet is synchronously collected. The loading range is 0 N∼3800 N. Images
are collected every 200 N. The images collected under various loads are processed, and the
corresponding grain boundary diagram is obtained, as shown in Figure 9.
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Figure 9. Cont.
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Figure 9. The grain boundary observed under monotonically increasing tensile loading F: (a) F = 0 N;
(b) F = 200 N; (c) F = 600 N; (d) F = 1000 N; (e) F = 1200 N; (f) F = 1400 N; (g) F = 1600 N;
(h) F = 1800 N; (i) F = 2000 N; (j) F = 2200 N; (k) F = 2400 N; (l) F = 2600 N; (m) F = 2800 N;
(n) F = 3000 N; (o) F = 3200 N; (p) F = 3400 N; (q) F = 3600 N; (r) F = 3800 N.

Since the shape of the target grain is close to the ellipse, according to Section 3, we
use the seven chord method to fit, and take the slenderness ratio as the shape parameter
of the grain to describe the shape of the target grain. The load of the target grain and
the corresponding shape parameter (slenderness ratio) are shown in Table 6. Through
comparative calculation, the fitting results of the seven chord method are very close.

Table 6. The load and corresponding shape parameters of target grain (slenderness ratio).

Load (N) Shape
Parameter Load (N) Shape

Parameter Load (N) Shape
Parameter

0 0.717802 1600 0.713215 2800 0.695813
200 0.721352 1800 0.720267 3000 0.67768
600 0.721482 2000 0.703568 3200 0.681628
1000 0.717047 2200 0.723909 3400 0.687682
1200 0.717419 2400 0.704046 3600 0.622458
1400 0.711743 2600 0.718436 3800 0.545502

Further, we obtain the relationship curve between the load of the target grain and the
corresponding shape parameter (slenderness ratio), as shown in Figure 10.
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Figure 10. The relation curve between the load of target grain and corresponding shape parameter
(slenderness ratio).

According to the results in Table 6 and Figure 10, the aluminum plate tensile process
has gone through the elastic and plastic stages. In the elastic deformation stage, the load is
less than 2500 N, and the shape parameters (slenderness ratio) of the selected target grains
in the aluminum plate are between 0.70 and 0.72, basically keeping constant. When the load
is greater than 2600 N, the aluminum plate enters the plastic deformation stage, and the
slenderness ratio of the target grain becomes significantly smaller, and the slenderness ratio
finally approaches 0.5. The experimental results of the shape evolution of a single typical
grain are consistent with the theoretical results of the macroscopic mechanical properties
of aluminum metal plates, e.g., the Poisson’s ratio in the elastic phase is constant, and
the volume of plastic deformation is constant, which also indicates that the experimental
research based on grain size and digital image analysis technology in this paper reveals the
relationship between the microscopic mechanical properties of grains and the macroscopic
mechanical properties of metal plates.

5. Conclusions

1. Polycrystalline metallic materials are composed of small grains, and their constitutive
relations must be related to the characteristics of grains, e.g., the average shape and
orientation distribution of grains. According to the principle of no difference in the
material frame, we choose the ratio of the arbitrary radius value in the grain to the
average radius value of the grain, and establish the GSF, which can be used to describe
the average shape of the grain. The GSF can be expanded into infinite series on the
basis of Wigner D function, and the expanded coefficient is defined as the grain shape
coefficient sl

m0.
2. We discuss the shape coefficients of special grains with weak anisotropy, and obtain the

expression of the shape coefficients. Considering the average grain shape effect, we study
the elastic constitutive relation of metallic multi-grain materials, and derive the analytical
formula of elastic constitutive relation containing the grain shape coefficient sl

m0.
3. By using the power transformation, we improve the linear contrast of the digital image

of the grain in polycrystalline metal materials, adopt the open and close operations in
mathematical morphology to smooth the image, and then carry out histogram equal-
ization and filtering noise removal processing to obtain a more ideal grain boundary.
The approximate boundary of the image is extracted by the Canny operator, and
then the boundary image is linearly expanded and refined. Then, using the internal
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function of MATLAB, a single, complete grain with clear and accurate boundary
is obtained, and a total of 15 grain images of three grains are extracted under five
loading steps.

4. We discuss the mathematical description method of grain shape, and propose the
multi-chord method to segment grains to represent the grain shape. When the grain
shape is particularly irregular, the seven chord method is more reasonable. Fur-
thermore, we carry out the experimental research on the shape function and shape
coefficient of grains, fit the shape function of irregular grains, and prove that the shape
function of grains can better describe the shape of irregular grains.

5. Using the digital image analysis method of grains (e.g., the grain boundary processing,
grain image acquisition, and grain shape parameterization), we track the shape evolu-
tion of the target grains in the metal materials under stress, obtain the parameterized
representation of grain deformation, and analyze the relationship between the metal
materials’ micro deformation and the materials’ macro mechanical properties.
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