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Abstract: The aim of this study was to evaluate the potential of the machine learning technique of
decision trees to understand the relationships among furnace design, process parameters, crystal
quality, and yield in the case of the Czochralski growth of germanium. The ultimate goal was to
provide the range of optimal values of 13 input parameters and the ranking of their importance in
relation to their impact on three output parameters relevant to process economy and crystal quality.
Training data were provided by CFD modelling. The variety of data was ensured by the Design of
Experiments method. The results showed that the process parameters, particularly the pulling rate,
had a substantially greater impact on the crystal quality and yield than the design parameters of the
furnace hot zone. Of the latter, only the crucible size, the axial position of the side heater, and the
material properties of the radiation shield were relevant.

Keywords: Czochralski Ge growth; CFD training data; furnace design; process design; regression
tree; correlation coefficient

1. Introduction

Today, a century after its invention, Czochralski (Cz) growth is the dominant method
in industry to produce large crystalline materials for modern electronic and photonic
technologies [1–3]. Out of many parameters influencing the crystal quality and yield,
the furnace design (e.g., geometry and the material properties of the hot zone parts) and
process parameters (e.g., pulling and rotational rates, heating power, etc.) are essential.
Their optimization has been the subject of extensive experimental and numerical research,
especially in the case of the Cz growth of silicon (Cz-Si), e.g., [3–9], followed by germanium,
gallium arsenide, and various oxides [10–13].

The furnace design studies focused mainly on optimizing the geometry of the radi-
ation shield [4,11,14–18] and rarely on the position of the side heater [14], the geometry
of the cooler [16], the flow guide [4], and the insulation materials [4,17]. Concerning
process parameters, numerous papers were devoted to the study of the influences of the
crystal and crucible rotational rates on the interface shape [9,19] and the limitations of the
growth rates [20,21]. In magnetically driven Cz-Si growth, optimization of the magnetic
parameters with respect to oxygen and carbon transport was a topic of numerous studies,
e.g., [22–26].The sensitivity of the Cz-Ge process dynamics to the pulling rate and heating
power at the beginning and towards the end of the growth was investigated in [10].

Computational fluid dynamics (CFD) is a traditional numerical tool for solving the
governing differential equations describing the transport phenomena during crystal growth
that helped understand the crucial process steps and factors determining the crystal growth.
The main challenge of this approach is the fact that CFD simulations are laborious, expen-
sive, and time consuming without the ability to generalize.

One of the most exciting cutting-edge tools that entered the field of crystal growth
over the last decade is machine learning (ML). It has a great potential to revolutionize
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the optimization of the crystal growth processes and equipment, process control, and
interpretability of the results in general [27].

Based on the added value achieved by combining ML and crystal growth research
fields, we aimed to assess the potential of a selected interpretable ML technique for under-
standing the relationships among furnace design, process parameters, crystal quality, and
yield in the case of Cz growth of germanium (Cz-Ge) to improve on the latter two. This
study was motivated by the fact that Ge, a pioneering crystalline material in the history
of electronics, is making a comeback as a next-generation semiconductor for applications
in infrared optics, gamma-radiation detection, and photovoltaics [28–31]. The ultimate
success in this endeavor depends on the quality and yield of the Ge crystals and their
relationship to actual Si values [8].

One of the first attempts to develop the geometry of a bulk crystal growth furnace
with ML support goes back to the work of Yu et al. [32], which was focused on the top-
seeded solution growth of silicon carbide (TSSiC). The authors derived an artificial neural
network (ANN) from 500 axisymmetric CFD simulations varying seven geometrical furnace
parameters and optimizing the geometry using a genetic algorithm. Further ML studies
were devoted to the applications of ANN and convolutional neural networks (CNN) to
optimize process parameters in Cz-Si, Cz-YAG, DS-Si, and TSSiC growth [33–37].

The ANN and CNN are the most popular ML methods, characterized by a high
accuracy of predictions but also a black-box nature, long computational times, and the
demand for a large amount of training data. Our ML focus was on using the decision trees
(DTs) method [38,39], which is suitable for applications with a small amount of data and
high demands on the interpretability of the results (i.e., on understanding cause–effect
relationships), which are common in crystal growth. Recently, we successfully applied
regression and classification trees to study the influence of process parameters on interface
deflection in VGF-GaAs growth [40].

In this study, Cz-Ge furnace and process design considerations included the hot zone
geometry parameters, radiation shield material, heating power, rotation, and pulling rates.

Altogether, 13 input and 3 output parameters were considered. In total, 77 training
data sets were provided by CFD modelling.

The pros and cons of the here proposed data-driven DT approach for Cz-Ge furnace
and process design will be discussed and results compared with the common CFD and
data-driven ANN approach.

2. Models and Methodology
2.1. Generation of Training Data by CFD Modelling

A sketch of the Cz-Ge furnace geometry with a definition of the main geometric and
process parameters used in the simulations is given in Figure 1. The furnace was equipped
with two graphite resistance heaters positioned on the side and bottom of the crucible.
The quartz crucible was charged with 6.7 kg of Ge. The radiation shield was made of
different materials and varied in length but had a constant slope. Its geometry guaranteed
the visibility of the Ge triple point.

The transport phenomena taking place during the Cz-Ge growth were described by a
common two-dimensional axisymmetric model. Governing equations for CFD modelling
included equations of continuity, Navier-Stokes with the Boussinesq approximation, and
energy Equations (1)–(5).
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Figure 1. Furnace for Cz-Ge growth: (a,b) geometry with a definition of the main geometric and 
process parameters: x1, crystal radius; x2, crucible radius; x3, distance between crucible and side 
heater; x4, shield emissivity; x5, pulling rate; x6, distance between crucible and bottom heater; x7, 
axial displacement of side heater; x8, power of side heater; x9, power of bottom heater; x10, crystal 
rotational rate; x11, crucible rotational rate; x12, distance from the radiation shield to the melt; x13, 
melt height; (c) definition and a sign of interface deflection y1. 

The transport phenomena taking place during the Cz-Ge growth were described by 
a common two-dimensional axisymmetric model. Governing equations for CFD model-
ling included equations of continuity, Navier-Stokes with the Boussinesq approximation, 
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Due to the small size of the crucibles and crystals, Reynolds numbers were expected 

to be below the range typical for the turbulent flow. Against this background, melt con-
vection was described by the laminar flow model. 

The Ge material properties used in this study are given in Table 1. The crystals were 
grown in Ar atmosphere under atmospheric pressure. The CFD simulations were per-
formed using the commercial code CGSim. 

Table 1. Material properties of Ge melt and crystal. 
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Figure 1. Furnace for Cz-Ge growth: (a,b) geometry with a definition of the main geometric and
process parameters: x1, crystal radius; x2, crucible radius; x3, distance between crucible and side
heater; x4, shield emissivity; x5, pulling rate; x6, distance between crucible and bottom heater; x7,
axial displacement of side heater; x8, power of side heater; x9, power of bottom heater; x10, crystal
rotational rate; x11, crucible rotational rate; x12, distance from the radiation shield to the melt; x13,
melt height; (c) definition and a sign of interface deflection y1.
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The Stefan and isothermal conditions must be fulfilled at the melt–crystal interface:

[(−λl∇T)l + (λs∇T)s]·
→
n s,l = ∆Hsv (4)

T = Tm (5)

Details and theoretical backgrounds can be found elsewhere [41].
Due to the small size of the crucibles and crystals, Reynolds numbers were expected to

be below the range typical for the turbulent flow. Against this background, melt convection
was described by the laminar flow model.

The Ge material properties used in this study are given in Table 1. The crystals
were grown in Ar atmosphere under atmospheric pressure. The CFD simulations were
performed using the commercial code CGSim.

Table 1. Material properties of Ge melt and crystal.

Property
Unit

Tm
(K)

ρ
(kg m−3)

µ

(Pas)
λ

(W m−1K−1)
cp

(J kg−1K−1)
α

(K−1)
ε

(-)
Pr
(-)

Ge melt
1211

5670 7.42 × 10−4 39 394 1.11 × 10−4 0.5
0.008Ge crystal 5323 - 17.3 404 0.5
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In order to obtain maximum information from a minimum number of CFD simulations,
i.e., to cover relationships among 13 inputs and 3 outputs with good quality, a Design
of Experiments (DoE) method [42] was used. If all input variables were varied at three
levels, the theoretical number of CFD simulations (i.e., virtual experiments) based on a full
factorial design would be 313 = 1,594,323, which is impossible to perform. In this study,
we applied a D-optimal design for eight variables at three levels. However, nonsensical
geometrical combinations and constrained process variables were discarded from DoE
considerations.

For the generation of data sets for ML simulations, 77 combinations of seven geometric,
one radiation shield material choice, and five crystal growth process parameters were used
as input parameters for the CFD simulations. From the obtained axisymmetric CFD
results, the interface deflection, crystal growth rate, and ratio of growth rate to the vertical
temperature gradient (v/G) were extracted as output parameters for the ML training
database. The interface deflection y1 was selected as the main measure of the crystal quality
due to its well-known correlation with the development of thermal stress-induced crystal
dislocations [43].

The output v/G was included as an additional measure of crystal quality based on the
following considerations. The so-called Voronkov criterion is one of the key parameters
that defines the critical value of v/G for the growth of defect-free perfect silicon crystals for
device processing [44]. For v/G > 1.34 × 10−3 cm2/K min, the silicon crystal is vacancy
rich, while for v/G < 1.34 × 10−3 cm2/K min, the crystal is self-interstitial rich. Recent
studies showed that application of the Voronkov criterion to a Cz-Ge single crystal is also
possible when Ge is doped with Ga and Sb [45–48]. Otherwise, the vacancy is always the
dominant intrinsic point defect for Cz-Ge [48]. Finally, we selected the crystal growth rate
as a crucial parameter for the economics of the process.

The common optimization goal in industrial crystal growth is to find ranges of input
parameters in which the economy and crystal quality criteria are met simultaneously. In our
study, this multi-objective optimization goal corresponded to the cases where s/l interface
was flat, the crystal growth rate was maximal, and the Voronkov criterion was satisfied. In
other words, we looked for the minimum of the objective (fitness) function y123 that was
defined as a combined normalized output:

y123 = {|y1|}+ {−y2}+ {y3 − 1.34× 10−3 } (6)

The data were pre-processed by normalization rescaling so that they ended up ranging
between 0 and 1:

{yi} =
yi − yi,min

yi,max − yi,min
(7)

The fitness function y123 can also be defined in different ways, emphasizing the
influence of certain outputs by adding weighting factors to Equation (6), as suggested in
the literature [49]. In this study, we assumed that all outputs were equally important.

The interface deflection y1 was measured at the melt symmetry axis with respect
to the three-phase junction (melt/crystal/gas) and varied between detrimental concave
(y1 > 0) and favorable slightly convex (y1 < 0), as shown in Figure 1c. Process parameters
were selected from the typical range of values given in the literature [28], e.g., pulling
rate, crystal, and crucible rotational rates were varied in the intervals 0.16–1.5 mm/min,
10–60 rpm and, −1 to −5 rpm, respectively. Although the radiation shield can be made
from multiple materials in a stacked arrangement, for simplicity we used a single material
shield made of either quartz, ceramics, or graphite. All material properties of the shield
materials were taken into account in the CFD simulations. In the ML simulations, only the
emissivity of the radiation shield was considered as an input parameter.

2.2. Correlation Coefficients

Because of its simplicity, we used correlation coefficients as a starting point for data
analysis. The Pearson correlation coefficient r of any input xi and output yj pairs of random
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variables is a measure of their linear dependence [50]. If each variable has N observations,
then the Pearson correlation coefficient is defined as

r
(
xi, yj

)
=

1
N

N

∑
n=1

(
xi,n − xi

σxi

)(yj,n − yj

σyj

)
(8)

where xi and σxi are the empirical mean and standard deviation of xi, respectively, and yj
and σyj are the empirical mean and standard deviation of yj.

Two variables, xi and yj, are positively correlated (r > 0) if their values change in the
same direction, negatively correlated (r < 0) if they change in the opposite direction, or may
exhibit zero correlation (r = 0) if there is no relationship between the change of the variables.
When interpreting the r = 0 results, the limitations of this simple approach must be taken
into account, e.g., results may indicate zero correlation where non-linear dependences exist.
Additionally, an observed correlation between the variables does not imply causation.

2.3. Regression Trees

The dependency between input and output parameters was modelled using regression
trees (RTs), a non-linear regression model suitable for small data sets and high interpretabil-
ity requirements. Regression trees are a type of decision trees where the output variables
are real numbers [39].

The method enables us to analyze how the combination of input variables affects the
outputs and to predict them individually. It has a tree structure, starting from the topmost
root node with the initial data set, undergoing recursive binary splitting down in each node
until the terminal node is reached that either is in a given maximal depth or has at most a
given minimum size. The nodes represent the input variables: each branch is a decision
and both nodes below a branch are the more homogeneous subsets of the data set above
the branch. The splits are based on the sum of squared errors (SSE) with respect to the
means of the yj in the two subsets, S1 and S2, forming the split

SSE(S1, S2) = ∑
xi∈S1

(
yi −

1
|S1| ∑

xi∈S1

yi

)2

+ ∑
xi∈S2

(
yi −

1
|S2| ∑

xi∈S2

yi

)2

(9)

From all possible splits of the data set S above the branch, a split S∗1 , S∗2 was chosen
that led to the minimal sum of squared errors.

SSE(S1
∗, S2

∗) = min{SSE(S1, S2); (S1, S2) is some split of S} (10)

The fitted model can be used to predict yj values as a function of xi variables. In this
study, the maximum tree depth was set at 10.

From the regression trees for the crystal growth rate, the interface deflection, and the
v/G ratio, the importance of each input variable (also known as feature importance) was
also derived. Feature importance is the sum of the mean square error (RMSE) reductions
across all those interior nodes in which this input variable resulted in the highest RMSE
reduction in the node.

3. Results and Discussion
3.1. CFD Modelling

The CFD results provided 77 data sets in the form of 16-dimensional vectors, each with
13 input and 3 output parameters. All data are presented in parallel coordinates in Figure 2.
Each line in the diagram corresponds to one data tuple (x1 . . . x13, y1 . . . y3). The generated
database was used for ML training and analysis. The line color in Figure 2a,b matches the
value of the interface deflection y1 and v/G ratio y3, respectively. In both cases, the visual
inspection of the results indicated the strong influence of the pulling rate x5, as known
from experimental investigations, i.e., the higher the pulling rate x5, the lower the crystal
quality due to higher concavity of the interface (y1 > 0) and the v/G value (y3). Similarly,



Crystals 2022, 12, 1764 6 of 17

as the crystal radius x1 increases, so does the interface concavity y1 increase, which is the
well-known challenge of upscaling.
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Examples of axisymmetric quasi-steady state CFD simulation results for various
furnace designs and growth recipes in a form of temperature and melt velocity distributions
in the Cz-furnace are shown in Figure 3. The melt flow patterns reflected the typical
superposition of buoyancy-driven convection and forced convection due to crystal and
crucible rotation. Interface deflection varied among concave (Figure 3a), convex (Figure 3b),
and nearly flat (Figure 3c) depending on the used growth recipe, hot zone design, and
materials’ allocation.



Crystals 2022, 12, 1764 7 of 17

Crystals 2022, 12, x FOR PEER REVIEW 7 of 19 
 

 

 

 
Figure 3. Examples of CFD results for the temperature T in the furnace and the melt velocity u for 
various furnace designs and growth recipes. The results correspond to the following inputs x1–x13: 
(a) 2; 3.574803; 10; 0.8; 58; 119; 71; 6; 7.6; 50; −2; 21; 32; (b) 2; 3.574803; 60; 0.3; 15; 119; 104; 8; 8.1; 10; 
−5; 21; 32; (c) 1; 2.574803; 60; 0.3; 10; 67; 137; 3; 9.2; 35; −5; 19; 90. 

3.2. Data Mining and Machine Learning 
The resulting values for the correlation coefficients for all inputs and outputs are 

shown in Figure 4 and Table A1. 
The strongest linear correlation between interface deflection y1 and one of the inputs 

was observed for pulling rate x5. Their correlation coefficient with value rx5,y1 = 0.5877 
showed medium-strong positive correlation. This result is in agreement with the experi-
mental observations that higher pulling rates generate more latent heat at the crystalliza-
tion front and finally more concave interface. Please note that in this study convex inter-
face deflection had a negative value (y1 < 0) and a negative correlation was beneficial for 
the crystal quality. The strongest linear correlation between the growth rate y2 and one of 
the inputs was again observed for the pulling rate x5, with a correlation coefficient of rx5,y2 
= 0.9999. This finding is supported by crystal growth experiments and is one of the reasons 
why pulling rates and crystal growth rates are often treated as interchangeable terms. Fi-
nally, the strongest positive linear correlation between y3 and other inputs was observed 
for x5 (the pulling rate) and for x12 (distance from the radiation shield to the melt, i.e., melt 
gap) with correlation coefficients of rx5,y3 = 0.9781 and rx12,y3 = 0.5517, respectively. Similar 
results were reported in the literature for Cz-Si growth [5,7]. Additionally, the strong lin-
ear correlations were observed between inputs x1 (crystal radius) and x2 (crucible radius) 
from one side and x13 (melt height) from the other side. The large negative values rx1,x13 = 
−0.9512 and rx2,x13 = −0.9213 were a consequence of the assumption of constant Ge loading 
in this study. 

Figure 3. Examples of CFD results for the temperature T in the furnace and the melt velocity u for
various furnace designs and growth recipes. The results correspond to the following inputs x1–x13:
(a) 2; 3.574803; 10; 0.8; 58; 119; 71; 6; 7.6; 50; −2; 21; 32; (b) 2; 3.574803; 60; 0.3; 15; 119; 104; 8; 8.1; 10;
−5; 21; 32; (c) 1; 2.574803; 60; 0.3; 10; 67; 137; 3; 9.2; 35; −5; 19; 90.

3.2. Data Mining and Machine Learning

The resulting values for the correlation coefficients for all inputs and outputs are
shown in Figure 4 and Table A1.
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The strongest linear correlation between interface deflection y1 and one of the inputs
was observed for pulling rate x5. Their correlation coefficient with value rx5,y1 = 0.5877
showed medium-strong positive correlation. This result is in agreement with the experi-
mental observations that higher pulling rates generate more latent heat at the crystallization
front and finally more concave interface. Please note that in this study convex interface
deflection had a negative value (y1 < 0) and a negative correlation was beneficial for the
crystal quality. The strongest linear correlation between the growth rate y2 and one of
the inputs was again observed for the pulling rate x5, with a correlation coefficient of
rx5,y2 = 0.9999. This finding is supported by crystal growth experiments and is one of the
reasons why pulling rates and crystal growth rates are often treated as interchangeable
terms. Finally, the strongest positive linear correlation between y3 and other inputs was
observed for x5 (the pulling rate) and for x12 (distance from the radiation shield to the melt,
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i.e., melt gap) with correlation coefficients of rx5,y3 = 0.9781 and rx12,y3 = 0.5517, respectively.
Similar results were reported in the literature for Cz-Si growth [5,7]. Additionally, the
strong linear correlations were observed between inputs x1 (crystal radius) and x2 (crucible
radius) from one side and x13 (melt height) from the other side. The large negative values
rx1,x13 = −0.9512 and rx2,x13 = −0.9213 were a consequence of the assumption of constant
Ge loading in this study.

The correlation coefficients provided the first simple estimate of the linear dependen-
cies between the examined parameters. However, many dependencies in crystal growth
are strongly non-linear and need to be further investigated. A viable solution for studying
complex relationships in small data sets is provided by regression trees.

The regression trees for outputs y1–y3, y1,2,3 are given in Figures 5–8 and summarized
in Tables 2–5. The value in the root node at the top of each regression tree represents the
mean of the examined output yi in all the data in the database. The values in interior nodes
and leaf nodes correspond to the mean value of output yi in the set of data remaining over
the node after the last splitting. The root mean square error (RMSE) for each split is given in
Table A2 in appendix. The path from the root to the leaf at the bottom of the tree indicates
the influence of a given input xi on the output yi under study, with the highest relevance at
the top and lowest at the bottom.

The resulting RT for interface deflection y1 reveals x5, followed by x10 and x9 as the
most decisive inputs for the favorable flat or slightly convex interface shape (interface
deflection y1 ≤ 0, the nodes marked white in the tree graph in Figure 5). Their importance
decreased in the order mentioned above. The most decisive input was the pulling rate
x5, which had a deteriorating effect on the interface deflection, i.e., x5 should be below
22.8 mm/min to strongly reduce y1 from average y1 = 5.84 mm to average y1 = 1.4 mm.
All decisive inputs and ranges of their optimal values that assured the Cz-Ge growth
with nearly flat s/l interface, derived from RT analysis, are given in Table 2. From these
results, it was also possible to derive the relative feature importance for y1, as shown in
Figure 9a. Again, the most important input concerning its influence on interface deflection
had a pulling rate x5 (32.7%), followed by crystal rotational rate x10 (30.91%), crystal radius
x1 (22.31%), and power of bottom heater x9 (10.34%). The importance of the input x1 was
high but not conducive to interface flattening. Therefore, x1 did not appear in the branches
marked in white, leading to the optimal value of the interface deflection in Figure 5.
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Figure 5. Regression tree analyzing the dependence of the solid–liquid interface deflection y1 (mm)
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have a mean deflection y1 ≤ 0 mm, i.e., a slightly convex shape of s/l interface, are favorable. The
RMSE for each split is given in Table A2 in Appendix A.
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Figure 7. Regression tree analyzing the dependence of the ratio of the growth rate over axial temper-
ature gradient in crystal y3 × 105 (cm2/K min) on the furnace design and process parameters x1–x13.
The mean values of y3 in the nodes were rescaled by a factor of 1× 105 to improve tree readability.
In the case of doped Ge, the branches where leaf nodes have a mean y3~1.34 × 10-3 (cm2/K min) =
134 × 105 (cm2/K min) are favorable. The RMSE for each split is given in Table A2 in Appendix A.
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Appendix A.
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12.5 < ∗ < 52.5

>41.5
>41.5



Crystals 2022, 12, 1764 11 of 17

Table 3. The most decisive inputs and their optimal values for the Cz-Ge growth with high growth
rate y2, derived from RT analysis. The data ranges correspond to the white nodes in Figure 6.

Mean Decisive Inputs

y2 x4 x5 x7

89.6
89.2

>0.575
<0.575

>82
>82

<104
<104

Table 4. The most decisive inputs and their optimal values for the favorable y3 (cm2/K min) value
corresponding to the Voronkov criteria, derived from RT analysis. The data ranges correspond to the
white nodes in Figure 7.

Mean Decisive Inputs

y3 x2 x5 x9 x10 x11

0.00126
0.00141

>3.18
<3.18

12.5 < ∗ < 22.8
12.5 < ∗ < 22.8

<11.3
<11.3

>15
>15

<−2.5
<−2.5

Table 5. The most decisive inputs and their optimal values for the favorable y123 value, derived from
RT analysis. The data ranges correspond to the white nodes in Figure 8.

Mean Decisive Inputs

y123 x2 x4 x7

0.858 >2.73 >0.55 >121
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The resulting RT for the crystal growth rate y2 gave the pulling rate x5, followed by
the position of the side heater x7 and the emissivity of the radiation shield x4 as the most
decisive inputs for the favorable crystal yield (i.e., the maximum value of y2, corresponding
to the nodes in the tree graph in Figure 6 marked white). Their importance decreased in
the order mentioned above. All decisive inputs for y2 and ranges of their optimal values
are given in Table 3. The relative inputs’ importance for y2 is shown in Figure 9b. The
pulling rate x5 with 99.96% influenced the growth rate, followed by 0.025% and 0.005%
relative influence of x3 and x13, respectively. These ML/RT results confirmed the general
assumption in Cz crystal growth practice of the equivalence between the growth rate and
the pulling rate. In view of this, ML results can serve as the last trusted criterion to explain
various assumptions, free from human errors.

The resulting RT for the output y3 (ratio of growth rate and axial temperature gradient
in the crystal) is shown in Figure 7. The most decisive inputs for the favorable value y3
according to the Voronkov criteria were x5, x10, x9, x11, and x2 (the nodes in Figure 7 are
marked in white). As already mentioned, the Voronkov criteria for defect-free Cz-Si crystals
can only be applied to Cz-Ge if the crystal is doped with Ga and Sb. The optimal values
of the most critical inputs are given in Table 4, and the relative importance of all inputs is
shown in Figure 9c. The pulling rate x5 with 95.96% influenced the y3, followed by 1.99%
and 0.71% relative influence of x1 and x9, respectively.

The RT for the combined output y123 is given in Figure 8. The favorable values of
the input parameters correspond to the minimal leaf mean value of the objective function
y123 = 0.878. The most decisive inputs for the favorable mean value y123 were x2, x4, and
x7 (the white nodes in Figure 8). Their related data ranges are given in Table 5, and the
relative importance of all inputs is shown in Figure 9d.

In summary, our data-driven study based on the decision trees and synthetic training
data revealed the key furnace design and process parameters, their importance, and the
ranges of their values for achieving high-quality, high-yield Cz-Ge crystals. Interestingly,
the process parameters, especially the pulling rate, had a substantially larger impact on
all singular outputs than the furnace hot-zone design parameters. Among the latter, only
the crucible size, the axial position of the side heater, and the material properties of the
radiation shield were relevant.

In the case of a combined output y123 with equal contribution of each singular out-
put y1–y3, the obtained results were different, i.e., the furnace design parameters such as
crucible size, the axial position of the side heater, and the material properties of the radia-
tion shield were more important than the pulling rate. However, the last result strongly
depended on the definition of y123 (i.e., on the weighting of contributions of individual
outputs and on the justification of consideration of y3) and could not be generalized.

4. Conclusions

The decision trees are an excellent choice for studying Cz-Ge crystal growth if one
needs methods with short training times and acceptable prediction accuracy based on
low-volume data (77 in this study) that are able to provide guidelines for understanding
the influences of the furnace design and the process parameters on the process economy
and crystal quality. The decision trees also provide ranges of 13 input parameters (7 geo-
metric, 1 radiation shield material choice, and 5 crystal growth process parameters) where
optimal values of three targeted output variables (s/l interface deflection, growth rate, and
v/G ratio) can be found.

Compared to the standard approach to furnace and process development based
solely on CFD simulations, e.g., [4,5], characterized by accurate but slow predictions
with no ability to generalize and more novel deep learning methods that require a large
amount of training data to be accurate and have a black-box nature, e.g., [32], decision trees
offer high interpretability with acceptable accuracy at low cost. Against this background,
decision trees are a recommendable steppingstone in the development of new processes
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and equipment for various grown materials and growth techniques before applying high-
prediction accuracy methods such as ANN.
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Nomenclature

cp heat capacity (J/kg/K)
g gravity constant (m/s2)
∆H latent heat (J/kg)
u velocity (m/s)
v growth rate (m/s)
T temperature (K)
t time (s)
x1 crystal radius (inch)
x2 crucible radius (inch)
x3 distance between crucible and side heater (mm)
x4 emissivity of the radiation shield (-)
x5 pulling rate (mm/h)
x6 distance between crucible and bottom heater (mm)
x7 axial displacement of side heater (mm)
x8 power of side heater (kW)
x9 power of bottom heater (kW)
x10 crystal rotational rate (rpm)
x11 crucible rotational rate (rpm)
x12 distance from the radiation shield to the melt (mm)
x13 melt height (mm)
y1 interface deflection (mm)
y2 growth rate (mm/h)
y3 ratio of the growth rate and axial temperature gradient in crystal v/G (cm2/K min)
y123 combined output (-)
Symbols
α volume expansion coefficient (1/K)
λ heat conductivity (W/m/K)
ρ density (kg/m3)
τ stress tensor (Pa)
|| absolute value
{} normalized value
Subscripts
l liquid
m melting
s solid
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Appendix A

Table A1. Correlation coefficients for input and output variables x1–x13, y1–y3.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

x1 1.00 0.77 −0.24 −0.20 −0.19 0.10 0.00 0.07 0.21 0.16 −0.10 0.09 −0.95
x2 0.77 1.00 −0.20 −0.17 −0.48 −0.01 −0.01 0.14 0.38 0.21 −0.05 −0.55 −0.92
x3 −0.24 −0.20 1.00 0.05 0.00 −0.02 0.01 −0.06 0.23 −0.02 0.02 0.00 0.22
x4 −0.20 −0.17 0.05 1.00 −0.06 0.03 0.01 0.04 −0.02 0.25 0.30 0.02 0.20
x5 −0.19 −0.48 0.00 −0.06 1.00 0.13 0.07 −0.15 −0.26 −0.28 −0.21 0.49 0.33
x6 0.10 −0.01 −0.02 0.03 0.13 1.00 −0.04 0.09 0.08 −0.14 −0.03 0.15 −0.06
x7 0.00 −0.01 0.01 0.01 0.07 −0.04 1.00 −0.07 0.15 −0.02 0.00 0.02 0.02
x8 0.07 0.14 −0.06 0.04 −0.15 0.09 −0.07 1.00 −0.75 −0.08 0.07 −0.11 −0.09
x9 0.21 0.38 0.23 −0.02 −0.26 0.08 0.15 −0.75 1.00 0.15 −0.07 −0.29 −0.31
x10 0.16 0.21 −0.02 0.25 −0.28 −0.14 −0.02 −0.08 0.15 1.00 0.57 −0.13 −0.21
x11 −0.10 −0.05 0.02 0.30 −0.21 −0.03 0.00 0.07 −0.07 0.57 1.00 −0.07 0.07
x12 0.09 −0.55 0.00 0.02 0.49 0.15 0.02 −0.11 −0.29 −0.13 −0.07 1.00 0.20
x13 −0.95 −0.92 0.22 0.20 0.33 −0.06 0.02 −0.09 −0.31 −0.21 0.07 0.20 1.00
y1 0.30 −0.01 0.00 0.12 0.59 0.20 0.25 −0.29 0.14 0.09 −0.01 0.38 −0.19
y2 −0.19 −0.48 0.00 −0.06 1.00 0.13 0.07 −0.15 −0.26 −0.28 −0.21 0.49 0.34
y3 −0.06 −0.41 0.03 −0.01 0.98 0.16 0.08 −0.13 −0.24 −0.25 −0.20 0.55 0.22

Table A2. The RMSE values for each split in regression trees for y1, y2, y3 and y123. The nodes are
numbered from the top of the tree down and from the left to the right at each tree depth.

y1 y2 y3 y123 y1 y3 y1 y3

Node RMSE RMSE RMSE RMSE Node RMSE RMSE Node RMSE RMSE

1 7.59 ×
1000

2.87 ×
1001

2.63 ×
10−03

2.52 ×
10−01 42 1.80 ×

10−01
1.09 ×
10−04 83 0.00 × 1000 0.00 × 1000

2 6.47 ×
1000

1.18 ×
1001

1.11 ×
10−03

6.62 ×
10−02 43 5.89 ×

10−01 0.00 × 1000 84 4.44 ×
10−16 0.00 × 1000

3 6.24 ×
1000

1.44 ×
1001

1.63 ×
10−03

2.08 ×
10−01 44 6.24 ×

10−01
9.88 ×
10−05 85 0.00 × 1000 0.00 × 1000

4 3.47 ×
1000

3.91 ×
1000

5.92 ×
10−04

6.26 ×
10−02 45 6.24 ×

10−01
4.34 ×
10−19 86 8.88 ×

10−16 0.00 × 1000

5 4.62 ×
1000

7.39 ×
1000

2.64 ×
10−04

5.67 ×
10−02 46 3.55 ×

10−15
1.81 ×
10−04 87 0.00 × 1000 0.00 × 1000

6 1.87 ×
1000

7.72 ×
1000

1.06 ×
10−03

1.37 ×
10−01 47 4.08 ×

10−01
8.67 ×
10−19 88 6.10 ×

10−01 0.00 × 1000

7 5.15 ×
1000

1.39 ×
10−01

8.89 ×
10−04

1.68 ×
10−01 48 2.18 × 1000 6.78 ×

10−05 89 3.75 ×
10−01

6.90 ×
10−05

8 0.00 ×
1000

2.82 ×
1000

3.58 ×
10−04

5.55 ×
10−02 49 1.17 × 1000 0.00 × 1000 90 2.16 ×

10−01
2.06 ×
10−05

9 2.15 ×
1000

1.58 ×
1000

2.65 ×
10−04

4.27 ×
10−02 50 0.00 × 1000 0.00 × 1000 91 1.00 ×

10−01
5.37 ×
10−05

10 2.92 ×
1000

1.41 ×
1000

2.23 ×
10−04

4.97 ×
10−02 51 0.00 × 1000 2.49 ×

10−04 92 0.00 × 1000 6.60 ×
10−05

11 2.33 ×
1000

9.17 ×
10−01

1.95 ×
10−04

6.00 ×
10−02 52 5.00 ×

10−01
8.38 ×
10−05 93 0.00 × 1000 1.78 ×

10−05

12 1.67 ×
1000

2.37 ×
1000

6.49 ×
10−04

1.41 ×
10−01 53 8.88 ×

10−16
5.03 ×
10−05 94 4.44 ×

10−16
3.45 ×
10−05

13 1.15 ×
1000

1.61 ×
1000

8.15 ×
10−04

1.08 ×
10−01 54 0.00 × 1000 2.96 ×

10−04 95 0.00 × 1000 2.64 ×
10−05

14 1.61 ×
1000

2.05 ×
10−01

5.17 ×
10−04

7.30 ×
10−02 55 0.00 × 1000 1.75 ×

10−04 96 2.22 ×
10−16

7.01 ×
10−05

15 2.64 ×
1000

0.00 ×
1000

5.49 ×
10−04

1.19 ×
10−01 56 2.50 ×

10−01
1.19 ×
10−04 97 0.00 × 1000 7.62 ×

10−05

16 1.12 ×
1000

0.00 ×
1000

2.94 ×
10−04

3.60 ×
10−02 57 2.22 ×

10−16 0.00 × 1000 98 8.88 ×
10−16 0.00 × 1000

17 2.05 ×
1000

0.00 ×
1000

2.64 ×
10−04

4.16 ×
10−02 58 0.00 × 1000 9.60 ×

10−05 99 0.00 × 1000 3.40 ×
10−06

18 2.03 ×
1000

1.12 ×
10−01

1.55 ×
10−04

8.84 ×
10−02 59 7.07 ×

10−01
9.02 ×
10−05 100 0.00 × 1000 0.00 × 1000
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Table A2. Cont.

y1 y2 y3 y123 y1 y3 y1 y3

Node RMSE RMSE RMSE RMSE Node RMSE RMSE Node RMSE RMSE

19 2.12 ×
1000

0.00 ×
1000

1.14 ×
10−04

7.98 ×
10−02 60 1.14 × 1000 0.00 × 1000 101 0.00 × 1000 1.65 ×

10−05

20 7.07 ×
10−01

6.28 ×
10−01

2.68 ×
10−05

1.03 ×
10−01 61 6.62 ×

10−01
4.33 ×
10−05 102 0.00 × 1000 2.68 ×

10−05

21 1.15 ×
1000

3.55 ×
10−15

4.34 ×
10−19

1.55 ×
10−02 62 0.00 × 1000 1.32 ×

10−04 103 0.00 × 1000 8.12 ×
10−05

22 6.61 ×
10−01

7.11 ×
10−15

1.54 ×
10−04

2.46 ×
10−02 63 1.78 ×

10−15
1.50 ×
10−05 104 8.16 ×

10−01
6.55 ×
10−05

23 0.00 ×
1000

0.00 ×
1000 0.00 × 1000 6.93 ×

10−03 64 0.00 × 1000 0.00 × 1000 105 5.00 ×
10−01 0.00 × 1000

24 8.54 ×
10−01

0.00 ×
1000

3.62 ×
10−04

4.81 ×
10−02 65 0.00 × 1000 0.00 × 1000 106 0.00 × 1000 0.00 × 1000

25 0.00 ×
1000

6.20 ×
10−01

2.73 ×
10−04

2.87 ×
10−02 66 0.00 × 1000 0.00 × 1000 107 0.00 × 1000 0.00 × 1000

26 0.00 ×
1000

0.00 ×
1000

1.72 ×
10−04

4.37 ×
10−02 67 0.00 × 1000 0.00 × 1000 108 0.00 × 1000 0.00 × 1000

27 1.14 ×
1000

1.26 ×
10−01

5.86 ×
10−04

2.81 ×
10−02 68 1.00 ×

10−01 0.00 × 1000 109 4.90 ×
10−01 0.00 × 1000

28 2.15 ×
1000

9.43 ×
10−02 0.00 × 1000 6.82 ×

10−02 69 1.00 ×
10−01

4.90 ×
10−05 110 0.00 × 1000 3.06 ×

10−05

29 9.43 ×
10−01

0.00 ×
1000

2.81 ×
10−04

2.34 ×
10−02 70 2.00 ×

10−01
8.04 ×
10−05 111 0.00 × 1000 0.00 × 1000

30 0.00 ×
1000

4.33 ×
10−02

3.62 ×
10−04

9.16 ×
10−02 71 0.00 × 1000 4.34 ×

10−19 112 8.16 ×
10−02

3.86 ×
10−05

31 8.16 ×
10−01

7.45 ×
10−02

3.39 ×
10−04

8.80 ×
10−02 72 2.50 ×

10−01
2.02 ×
10−06 113 0.00 × 1000 1.08 ×

10−19

32 9.43 ×
10−01

7.11 ×
10−15 0.00 × 1000 1.36 ×

10−02 73 0.00 × 1000 5.84 ×
10−06 114 0.00 × 1000 0.00 × 1000

33 8.88 ×
10−16

0.00 ×
1000

1.60 ×
10−04

1.72 ×
10−02 74 2.50 ×

10−01
8.67 ×
10−19 115 0.00 × 1000 0.00 × 1000

34 6.24 ×
10−01

1.36 ×
10−01

5.59 ×
10−05

6.25 ×
10−02 75 0.00 × 1000 1.39 ×

10−04 116 5.00 ×
10−02 0.00 × 1000

35 1.06 ×
1000

5.00 ×
10−01

1.19 ×
10−04

1.32 ×
10−01 76 3.55 ×

10−15 0.00 × 1000 117 0.00 × 1000 4.82 ×
10−06

36 0.00 ×
1000

0.00 ×
1000

5.36 ×
10−05

3.71 ×
10−02 77 2.50 ×

10−01
8.67 ×
10−19 118 0.00 × 1000 0.00 × 1000

37 1.26 ×
1000

8.66 ×
10−02

5.60 ×
10−05

4.67 ×
10−02 78 1.85 × 1000 0.00 × 1000 119 0.00 × 1000 1.43 ×

10−05

38 0.00 ×
1000

0.00 ×
1000

8.66 ×
10−05

3.77 ×
10−02 79 4.71 ×

10−01 0.00 × 1000 120 0.00 × 1000 0.00 × 1000

39 4.71 ×
10−01

7.28 ×
10−02 0.00 × 1000 4.32 ×

10−02 80 7.45 ×
10−01

8.67 ×
10−19 121 5.00 ×

10−01 0.00 × 1000

40 2.50 ×
10−01

7.11 ×
10−15 0.00 × 1000 2.77 ×

10−02 81 5.00 ×
10−01

8.67 ×
10−19 122 0.00 × 1000 2.55 ×

10−05

41 7.50 ×
10−01

0.00 ×
1000 0.00 × 1000 2.99 ×

10−02 82 0.00 × 1000 8.67 ×
10−19 123 0.00 × 1000 2.17 ×

10−19

124 4.71 ×
10−01 0.00 × 1000

125 1.78 ×
10−15 0.00 × 1000

126 5.00 ×
10−02

6.52 ×
10−06

127 0.00 × 1000 0.00 × 1000

128 0.00 × 1000 0.00 × 1000

129 0.00 × 1000 0.00 × 1000

130 1.78 ×
10−15 0.00 × 1000

131 0.00 × 1000 0.00 × 1000

132 5.00 ×
10−01 0.00 × 1000

133 0.00 × 1000 0.00 × 1000

134 1.08 ×
10−19

135 0.00 × 1000

136 0.00 × 1000

137 0.00 × 1000
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