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Abstract: Recently discovered phase transition and elastic anomaly of compression-induced softening
and heating-induced hardening (CISHIH) in group VB transition metals at high-pressure and high-
temperature (HPHT) conditions are unique and interesting among typical metals. This article reviews
recent progress in the understanding of the structural and elastic properties of these important metals
under HPHT conditions. Previous investigations unveiled the close connection of the remarkable
structural stability and elastic anomalies to the Fermi surface nesting (FSN), Jahn–Teller effect,
and electronic topological transition (ETT) in vanadium, niobium, and tantalum. We elaborate
that two competing scenarios are emerging from these advancements. The first one focuses on
phase transition and phase diagram, in which a soft-mode driven structural transformation of
BCC→RH1→RH2→BCC under compression and an RH→BCC reverse transition under heating in
vanadium were established by experiments and theories. Similar phase transitions in niobium and
tantalum were also proposed. The concomitant elastic anomalies were considered to be due to the
phase transition. However, we also showed that there exist some experimental and theoretical facts
that are incompatible with this scenario. A second scenario is required to accomplish a physically
consistent interpretation. In this alternative scenario, the electronic structure and associated elastic
anomaly are fundamental, whereas phase transition is just an outcome of the mechanical instability.
We note that this second scenario is promising to reconcile all known discrepancies but caution that
the phase transition in group VB metals is elusive and is still an open question. A general consensus
on the relationship between the possible phase transitions and the mechanical elasticity (especially
the resultant CISHIH dual anomaly, which has a much wider impact), is still unreached.

Keywords: phase stability; elastic anomalies; structural transition; group VB transition metals; high
pressure and high temperature

1. Introduction

The group VB transition metals (vanadium, niobium, and tantalum) have extensive
applications because of their excellent mechanical and physical properties. Vanadium
is well known as a kind of metallic “vitamin”, which is commonly added to iron or
steel to increase their toughness, strength, and abrasion resistance. Moreover, vanadium
plays an excellent role in titanium alloys, which greatly promotes the development of
the aerospace industry. With the progression in science and technology, there are higher
requirements for advanced materials, with the application of vanadium becoming more
and more extensive, which covers batteries, pharmaceuticals, optics, and many other fields.
Niobium and tantalum belong to refractory metals because of their melting point is higher
than 2700 K [1]. One can increase a material’s strength at high temperature and improve
the processing performance by adding niobium or tantalum as alloying elements. On the
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other hand, tantalum is also a widely used pressure standard and high technology material
due to its strong stability in chemistry and mechanics, as well as the very high melting
point (3269 K) [2].

Due to their important applications, group VB transition metals have always attracted
much attention. However, most studies in early days mainly focused on their superconduct-
ing properties [3–10] because their superconducting transition temperature is quite high at
ambient conditions. Theoretical studies show that the superconducting transition tempera-
ture of vanadium and niobium depends on the pressure; and the density of electron states
at Fermi level has a significant impact on the relationship [11]. In 1997, Struzhkin et al. [10]
measured the superconducting Tc of niobium and tantalum up to 100 GPa through a highly
sensitive magnetic susceptibility technique. The results showed that Tc in tantalum remains
nearly constant at 4.38 K in the range of 0–45 GPa. However, they observed Tc anomalies
in niobium around 5–6 GPa and 60–70 GPa, where Tc increases by 0.7 K and decreases by
about 1.0 K, respectively. Struzhkin et al. suggested that the anomalies in niobium arise
from stress-sensitive ETT. Later, Tse et al. [12] calculated the Fermi surface of niobium by
the density functional theory (DFT) method and found that the Fermi surface does undergo
a topological transformation under pressure, confirming the results of Struzhkin et al. [10].

Unlike niobium and tantalum, vanadium has a large positive pressure coefficient of Tc.
Smith [13] measured the Tc of vanadium under pressure up to 2.4 GPa and found a linear
increase in Tc with dTc/dP = 0.062 K/GPa. Subsequently, Brandt et al. [14] also observed
a monotonic increase in Tc up to 18 GPa using ice bombs and mechanical presses. After
that, Akahama et al. [15] carried out electrical resistance measurements of vanadium up to
49 GPa to investigate the upper bound of the monotonically increased Tc with pressure.
They found that Tc increases linearly with a coefficient of dTc/dP = 0.096 K/GPa and
reaches a value of 9.6 K at about 18 GPa, the maximum pressure in their experiment. This
value of Tc is comparable to that of niobium at ambient pressure. With the development
of experimental technology, Ishizuka et al. [16] studied the superconducting properties
of vanadium under higher pressure by using a vibrating coil magnetometer. The results
showed that Tc increases from 5.3 K to 17.2 K from zero pressure to 120 GPa, and the
superconducting transition temperature increases almost linearly.

In order to understand these experimental results, Suzuki et al. [17] further studied
the superconducting properties of vanadium under pressure by first-principles calculations.
It was found that the Tc of vanadium shows an obvious upward trend with the change
of pressure, and the increasing rate of Tc decreases gradually at about 80 GPa, which is
qualitatively consistent with the experimental results. Moreover, they interpreted such
characteristic behavior of Tc under pressure by attributing it to a significant frequency
softening of the transverse mode near the Γ-H line as pressure increased. According to
their results, when the pressure is above 130 GPa, the transverse acoustic mode (TA) even
has imaginary frequency, indicating that the BCC phase of vanadium becomes dynamically
unstable and there is an opportunity of structural phase transformation. However, at that
time, the research on vanadium was limited to its superconducting properties and did not
pay much attention to its structural instability under high pressure. This softening was
subsequently confirmed by calculated elastic constants [18,19], in which C44 continuously
decreased to negative values, indicating mechanical instability of the BCC structure, but
the crystalline structure of the high-pressure phase was not proposed at that time.

Until 2007, Ding et al. [20] performed X-ray diffraction (XRD) experiments on vana-
dium using diamond anvil cell (DAC) up to 150 GPa. They discovered a novel rhombohe-
dral (RH) phase appearing around 63–69 GPa. This novel high-pressure structural phase
transition had not been detected in any of the earlier experiments. After that, the focus
of investigation on group VB transition metals has been gradually shifted to study their
structural stability and phase transition.

In addition to the structural transformation, the group VB transition elements also
exhibit striking anomalous elastic softening under pressure, which is quite different from
other transition metals. According to existing literature reports [18,21,22], the pressure-
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induced shear elastic softening of vanadium, niobium, and tantalum originates from the
electronic structure, which is closely related to the FSN and ETT. Furthermore, the elastic
softening in vanadium and niobium were discovered to gradually diminish with increased
temperature, effectively giving rise to a heating-induced hardening phenomenon, which is
very rare (if any) to our knowledge. These elastic anomalies might be taken as due to the
phase transition. However, some experimental and theoretical facts that are incompatible
with this scenario.

During the past two decades, the structural stability and elastic anomalies of the group
VB transition elements have been the subject of numerous theoretical and experimental
studies [23–76]. The progress is tremendous; regardless, there are still many controversies
on some key issues. In this paper, we review the current understanding of the structural
and mechanical anomalies of these important metals under high temperature and high
pressure. It is hoped that this paper will significantly promote the understanding of the
physical properties for more broad types of metals under extreme conditions.

2. Phase Stability and Elastic Anomalies in V, Nb, Ta
2.1. Pressure Effect on Structure Stability

The first direct evidence of a phase transition in vanadium came from the static
compression experiment by Ding et al. [20]. They observed a new type of high-pressure
structural transition from BCC to an RH phase at 63–69 GPa, which once was thought
of as a second-order transition and was not found in any of the earlier experiments with
elements or compounds. In general, the phase transition sequence of transition metals
under pressure is hexagonal close packed (HCP)→body centered cubic (BCC)→HCP→face
centered cubic (FCC). Based on this sequence, the stability of the BCC phase has long been
predicted to be very high [77]. Therefore, the discovery of a phase transition in vanadium
below 70 GPa is very remarkable.

Soon after, Lee et al. [36] confirmed this phase transition with DFT calculations and
showed that a metastable RH structure is formed at 73 GPa and becomes the ground
state at 84 GPa. This low-pressure RH phase is termed as “RH1”, which has an angle
of α = 110.25◦. Furthermore, Lee et al. predicted two other transformations that were
not detected in Ding et al.’s experiment: the second transformation to a high-pressure
structure “RH2” with an angle α = 108.14◦ at 120 GPa, and the third transformation
back to the high-symmetric BCC structure (α = 109.47◦) at 280 GPa. As the pressure
continues to increase, the BCC phase becomes the only stable structure at 315 GPa. Since
the latent heat of BCC→RH transition is much smaller than the thermal fluctuation at
room temperature, Lee et al. [36] suggested that this transformation is first-order, which
contradicts the second-order transition proposed by Ding et al. [20]. To verify this result,
Lee et al. [37] further studied the elastic constants and volume changes associated with two
high-pressure RH phase transitions in vanadium. The results shown are that there were
small discontinuities in shear modulus and other elastic properties in the phase transitions
even at zero temperature, indicating that the phase transitions should be first-order.

The prediction of RH1 and RH2 phases in vanadium was supported by phonon cal-
culations of Luo et al. [35]. They found that the lattice dynamical instability of vanadium
starts at 62 GPa and phonon softening leads to a phase transition of BCC→RH1 (α = 110.5◦).
At about 130 GPa, the angle of RH1 phase changes to 108.2◦, and the electronic structure
changes drastically. At a pressure of 250 GPa, lattice dynamics calculations show that the
stability of BCC structure is restored. Luo et al. [35] suggested that the dramatic change
in the electronic structures of vanadium under pressure are the driving force behind the
structural phase transitions. Later, Verma et al. [38] and Qiu et al. [39] further investigated
the structural stability of vanadium under high pressure through first-principles calculations.
Both confirmed the existence of the RH1 and RH2 phases, as well as the pressure-induced
structural transition sequence of BCC→RH1→RH2→BCC reported by Lee et al. [36]. Mean-
while, detailed electronic structure analysis by Verma et al. showed that the phase transition
of BCC→RH1 is caused by the Jahn–Teller mechanism. Although different theoretical studies
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have reached a consensus on the phase transition sequence of vanadium under pressure, there
is still disagreement on the exact value of the phase transition pressure. For example, Qiu
et al. reported a BCC→RH1 transition pressure of 32 GPa, while all other theoretical transition
pressures were located between 60 and 84 GPa.

To trace the possible origin of the discrepancy between these calculations, two different
methods were exploited by Wang et al. [54] to evaluate the phase transition pressures of
vanadium. The first method is to choose RH1 and RH2 as the initial structure, and directly
optimize them under different pressures without any symmetry constraints. The calculated
enthalpy difference with respect to the BCC phase as a function of pressure is shown in
Figure 1 (taken from [54]). It can be seen clearly that the BCC→RH1 transition is not at 30 GPa,
where RH1 is dynamically instable and spontaneously collapses to BCC phase. According to
Wang et al. [54], the relaxation of the RH1 phase to the BCC phase is far from being perfect,
and the angle is about 109.51◦ at 20–40 GPa, which reflects a possibility that non-hydrostatic
loading can easily drive vanadium towards RH-like deformations. It is worth noting that
another RH phase (RH2) transforms to a similar twisted BCC structure with α = 109.39◦ when
below 110 GPa. In addition, when the pressure is about 98 GPa, the RH1 phase becomes the
ground state with an angle of α = 110.17◦. With the further increase of pressure, the RH1
phase transforms into another RH phase (RH2) at about 128 GPa. At the pressure of 211 GPa,
RH2 reaches the maximum stability, with α = 108.23◦. As compression increases, the RH2
phase eventually collapses to the BCC phase at about 300 GPa.
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Figure 1. (a) Enthalpy difference of vanadium in RH1 and RH2 structures at zero Kelvin with respect
to the BCC phase as a function of pressure. (b) Variation of angle α in RH1 and RH2 structures as a
function of pressure at zero Kelvin. Note that α = 109.47◦ corresponds to the perfect BCC structure.
(By the courtesy of Ref. [54]).

In the second method, Wang et al. [54] adopted the same method as Lee et al. [36], that
is, twisting the BCC structure along a predetermined path. Note that the unit volume is
conserved in this approach. Qiu et al. [39] argued that such a treatment would result in a
higher phase transition pressure. According to Lee et al., the error caused by fixed volume
can be corrected by the following formula

H(δ, P0) ≈ U(δ, V0) + P0V0 −
1

2B(δ, V0)
∆P(δ, V0)

2V0. (1)

It is worth noting that only the first term was used in Lee et al.’s calculations [36].
After careful examination, Wang et al. [54] found that the correction of the third term is
indeed small, which means that the contribution of volume relaxation can be safely ignored
when studying the relative phase stability. This supports the assessment of Lee et al. [36]. In
addition, the transition pressures of ‘unrelaxed’ calculations (method II) by Wang et al. [54]
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are in good accordance with the full structural relaxation calculations (method I), therefore,
Qiu et al.’s comment on Lee et al.’s results is inappropriate.

Wang et al. [54] further studied the influence of changing the position of Fermi level
on the structural stability of vanadium by using a partial jellium model, see Figure 2 (taken
from [54]). Here, the Fermi level is shifted by charge transfer (chemical doping) changing
the orbital occupations. Since the RH2 phase reaches the maximal stability at 211 GPa, it
should have the optimum orbital occupation. Thus, raising (adding electrons) or lowering
(removing electrons/adding holes) the Fermi level pushes the system away from the optimum
occupation, so the stability of RH2 phase will be weakened in both cases. However, Wang
et al.’s calculations showed that moving the Fermi level down further stabilized the RH2
phase, while moving the Fermi level up greatly destabilized the RH2 phase. This is consistent
with Landa et al.’s band-filling argument when alloying vanadium with the same transition
series [41]; however, it is incompatible with Jahn–Teller mechanism.
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Figure 2. Calculated enthalpy difference with respect to BCC phase as a function of the RH defor-
mation parameter δ when the Fermi level is shifted up or down at a pressure of 211 GPa. Inset:
Calculated differential charge density between ∆ = −0.77% and ∆ = 0. (By the courtesy of Ref. [54]).

According to the calculation of Wang et al. [54], RH2 phase reaches the maximal
stability at 211 GPa when ∆ = −2.15% (∆ represents the percentage of total charge added to
/removed from the system). Further shifting down the Fermi level reduces the stability of
RH phase. When ∆ < −4.85%, BCC becomes stable again. In the inset of Figure 2, Wang
et al. plotted the differential charge density between ∆ = −0.77% and ∆ = 0. As shown, the
removed electrons/added holes are distributed around the nucleus and mainly exhibit d
orbital characteristics. Since the d orbitals’ delocalization results in lower electronegativity
of the RH2 phase relative to the BCC phase, the localization (or delocalization) of d electrons
has an important effect on the stability of the RH phase.

In addition, Wang et al. [54] found that even if the absolute convergence is achieved,
the DFT method still has the problem of insufficient accuracy when exploring the phase
transition of vanadium. Consider that the semi-local functional PBE may not be able to
handle strong electron correlations in narrow-band systems, so they thought that the quality
of the exchange-correlation (XC) functional may be an important factor affecting the results.
For this reason, an evaluation of the advanced hybrid functionals in vanadium and niobium
was further carried out by Wang et al. [66]. The results show that the common HSE06,
PBE0, and B3LYP hybrid functionals are complete failures in describing the mechanical
properties of these metals. The unexpected failure is due to the very rare localization error
in these functionals, which is further supported by a similar failure of the DFT + U method.
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To solve this problem, Wang et al. [66] proposed a DFT + J method to promote on-site
electron exchange, which well reproduces the experimental shear modulus under ambient
conditions. However, Wang et al. found that the PBE + J increases the BCC→RH transition
pressure, and the correction of localization error weakens (or even eliminates) the RH
phases. They concluded that RH phase could be unstable under more accurate calculation
methods, which is a striking prediction and challenges the previously reported structural
transition in vanadium.

Following this prediction, an independent XRD experiment was performed by Aka-
hama et al. [73] to study the structural stability of vanadium. The results showed that BCC
vanadium is stable up to 189 GPa at room temperature, while the RH phase (α > 109.47◦)
reported in previous studies should be a metastable phase induced by non-hydrostatic pres-
sure. This supports the prediction of Wang et al. [66] that RH phase may be unstable in vana-
dium. Furthermore, they observed a new high-pressure phase after annealing at 242 GPa,
which was also confirmed from a different experiment at room temperature. Akahama et al.
interpreted the phase as RH phase with α < 109.47◦. However, the pressure range does not
agree with the previous theoretical [35–37,54] and experimental results [21,47,51,55].

At the same time, Stevenson et al. [74] re-performed the XRD experiment at pressures
up to 154 GPa using polycrystalline (powder) and single crystal samples with various
pressure transfer media (PTM). It was found that only the single-crystal samples reveal
two RH phases, and the distortions from cubic symmetry are much smaller than previous
results. That is to say, the observed RH phase is far from being perfect, and should be
interpreted as a kind of lattice distortion rather than a phase transition. Moreover, Wang
et al. [72] measured the sound velocity of vanadium through shock wave experiment
recently. They found that when the pressure was above 79 GPa, the sound velocity of the
shocked vanadium was closer to the RH phase rather than the BCC phase. The unexpected
high-pressure phases along the Hugoniot can be seen as slight distortions of the BCC
structure, which may be caused by the dynamic, nonequilibrium, and nonhydrostatic
nature of planar shock waves. The above two experimental signatures are compatible
with the experimental results of Akahama et al. [73] and further confirm the theoretical
assessment of Wang et al. made in Ref. [66].

In other experimental research, Jenei et al. [47] performed DAC experimental studies
and found that the BCC structure transformed to RH1 phase at about 30 GPa in non-pressure
medium, while it was around 60 GPa when Ne pressure medium was used. In addition,
the transition can occur at a much lower pressure if under nonhydrostatic conditions.
Nonetheless, in Ding et al.’s experiments [20], the transition pressure of BCC→RH in non-
pressure medium and He pressure medium was 69 GPa and 63 GPa, respectively. Thus,
the deviation in transition pressure of BCC→RH might not be due to the non-hydrostatic
condition. In addition, Antonangeli et al. [55] used inelastic X-ray scattering to detect the
phonon dispersion of single crystal vanadium under pressure up to 45 GPa. Their results
showed that the transverse acoustic mode has abnormally high-pressure behavior along
(100) direction, and the softening of C44 causes the RH distortion around 34–39 GPa. It is
obvious that the transition pressure is consistent with the diffraction results of 30 GPa in non-
hydrostatic conditions by Jenei et al. [47]. It should be noticed that Antonangeli et al. [55]
performed the measurements on relatively large single crystals, which are more susceptible
to non-hydrostatic stress than powders. Moreover, according to the experimental study of
Stevenson et al. [74], an RH high-pressure phase was indeed observed when using single
crystal samples; but the high-pressure diffraction profiles from the polycrystalline samples
is not suitable for RH lattice, regardless of the PTM used. Why there is such a big difference
between the experimental data of powder and single crystal is still an open question that
needs further study.

On the other hand, Yu et al. [51] recently measured the sound velocities and yield
strength of vanadium through reverse impact experiments. They found an indication of the
shock induced BCC→RH transition at about 60.5 GPa by the discontinuity of longitudinal
sound velocity against shock pressure, which disagrees with the results of Jenei et al. [47]
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and Antonangeli et al. [55] but remains consistent with both DAC measurements by Ding
et al. [20]. The aforementioned experiment studies cautioned that the phase transition in
group VB metals is elusive, which remains an open question and no general consensus on
this issue has been achieved.

2.2. Temperature Effect on Structure Stability

In 2014, Landa et al. [78] explored the phase stability of vanadium at high temperatures
and pressures by using the self-consistent ab initio lattice dynamics (SCAILD) approach
combined with DFT. In this study, the phonon-phonon interactions at elevated temperatures
were considered. In Figure 3 (taken from [78]), Landa et al. showed the calculated phonon
frequencies for vanadium under different temperatures at 182 GPa. The maximum stability of
RH phase was measured by analyzing the variation in phonon dispersion of BCC phase. Their
results showed that temperature promoting the phonon frequencies from being imaginary
to being real along the Γ→H and Γ→N lines. When the temperature is above 8000 K, BCC
phase becomes stable again. Since this temperature is significantly higher than the shock
melting temperature of 6800± 800 K at 182 GPa [79], Landa et al. [78] concluded that the BCC
phase is actually never stable at this density. Namely, high-pressure RH phases of compressed
vanadium should have a very broad pressure-temperature stability region.
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Nonetheless, lattice dynamics stability is not the unequivocal criterion for the ther-
modynamic stability of a phase. For the latter purpose, one should resort to free energy
difference. To this end, based on Landa et al.’s initial results [78], Wang et al. further investi-
gated the effect of thermo-electrons on the structure stability of vanadium by calculating the
free energy using finite temperature DFT method [54]. Since the phase transitions of vana-
dium are closely related to the changes in the electronic structure, Wang et al. estimated
that the contribution of thermo-electrons may be greater than that of lattice dynamics.
As shown in Figure 4 (taken from [54]), the electronic temperature significantly reduces
the stability of RH phases, and RH1 and RH2 transform back to BCC at around 1440 K
(at 140 GPa) and 1915 K (at 211 GPa), respectively. Compared with the results of Landa
et al. [78], this new transition temperature is much lower. It clearly demonstrated that
compressed vanadium should transition back to BCC structure in the solid state; and the
transition temperature is much lower than the melting temperature. Wang et al. analyzed
the impact of lattice dynamics by including both thermo-electronic and phonon corrections
in their assessment. It revealed that phonon correction will further reduce the transition
temperature by about 260 K at 200 GPa [54], comparable to the usual expectation. Further
study by Wang et al. indicated that this heating-induced reentrant transition in vanadium
was mainly driven by electronic entropy.
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Based on these new theoretical data, Wang et al. [54] constructed a comprehensive
phase diagram for vanadium under high pressure and temperature for the first time. Ac-
cording to their diagram (see Figure 5 taken from [54]), RH1 phase stabilizes at 100–126 GPa
with a maximum transition temperature of 1440 K at 140 GPa, while RH2 phase stabilizes at
126–280 GPa with a maximum transition temperature of 1915 K at 211 GPa. In addition, the
stability of RH1 and RH2 phases decreases with increasing temperature, and both transform
back to BCC before melting. This picture completely changes our understanding about
vanadium which insisted that RH phases could stand up to the melting temperature [79,80].
Meanwhile, Wang et al. identified a triple point at about 1440 K and 140 GPa [54], where
there may be spectacular physical properties due to the structural frustration.

Crystals 2022, 12, x FOR PEER REVIEW 9 of 21 
 

 

 

Figure 5. High-pressure and high-temperature phase diagram of vanadium. (By the courtesy of Ref. 

[54]). 

Following Wang et al.’s prediction, Errandonea et al. [62] performed powder XRD 

experiments on vanadium up to 120 GPa and 4000 K. Under compression, the BCC 

vanadium was observed up to 53 GPa at room temperature. At higher pressure of 64 GPa, 

the measured XRD spectra at room temperature belonged to the RH structure of the R-3m 

space group. This observation supports the previous report by Ding et al. [20]. According 

to Errandonea et al. [62], the RH phase could be observed at temperatures up to 1560 K at 

64 GPa and up to 1700 K at 120 GPa. Under the higher temperature of 1840 K at 64 GPa, 

the existence of BCC phase can be seen through the measured XRD pattern. This result is 

in accordance with the prediction of Wang et al. [54] but is less than one quarter of the 

initial estimate of Landa et al. [78]. Moreover, Errandonea et al. [62] interpreted their 

observations as the RH lattice distortion in vanadium that is triggered by phonon 

anomalies at high pressure and can be eliminated by phonon-phonon scattering effects at 

high temperatures. 

According to the experimental results, Errandonea et al. further presented a phase 

diagram for vanadium under HPHT, as shown in Figure 6 (taken from [62]). The phase 

boundary of BCC→RH (dashed blue line) is tentatively drawn, which is qualitatively 

similar to the phase boundary given by Wang et al. [54] and consistent with other available 

results [19–21,47,78,81]. In addition, Wang et al. [54] also predicted the reentrance of the 

BCC phase at room temperature around 280 GPa, but this exceeded the pressure limit in 

Errandonea et al.’s experiments. This ultra-high pressure prediction still requires 

experimental verification. 

Figure 5. High-pressure and high-temperature phase diagram of vanadium. (By the courtesy of
Ref. [54]).

Following Wang et al.’s prediction, Errandonea et al. [62] performed powder XRD
experiments on vanadium up to 120 GPa and 4000 K. Under compression, the BCC vana-
dium was observed up to 53 GPa at room temperature. At higher pressure of 64 GPa, the
measured XRD spectra at room temperature belonged to the RH structure of the R-3m
space group. This observation supports the previous report by Ding et al. [20]. According
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to Errandonea et al. [62], the RH phase could be observed at temperatures up to 1560 K at
64 GPa and up to 1700 K at 120 GPa. Under the higher temperature of 1840 K at 64 GPa, the
existence of BCC phase can be seen through the measured XRD pattern. This result is in
accordance with the prediction of Wang et al. [54] but is less than one quarter of the initial
estimate of Landa et al. [78]. Moreover, Errandonea et al. [62] interpreted their observations
as the RH lattice distortion in vanadium that is triggered by phonon anomalies at high
pressure and can be eliminated by phonon-phonon scattering effects at high temperatures.

According to the experimental results, Errandonea et al. further presented a phase
diagram for vanadium under HPHT, as shown in Figure 6 (taken from [62]). The phase
boundary of BCC→RH (dashed blue line) is tentatively drawn, which is qualitatively
similar to the phase boundary given by Wang et al. [54] and consistent with other available
results [19–21,47,78,81]. In addition, Wang et al. [54] also predicted the reentrance of
the BCC phase at room temperature around 280 GPa, but this exceeded the pressure
limit in Errandonea et al.’s experiments. This ultra-high pressure prediction still requires
experimental verification.
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Most recently, Zhang et al. [69] also determined the phase stability of vanadium at
0–4400 K and 20–100 GPa by using synchrotron XRD independently. The results showed
that BCC vanadium stabilized below 44 GPa at room temperature. With increasing the
pressure above 52 GPa, a BCC→RH phase transition occurs, which is consistent with the
observations of Errandonea et al. using NaCl as the pressure medium at 53 GPa [62].
Moreover, Zhang et al.’s experimental results showed that the RH vanadium stabilized
between 50 and 100 GPa at room temperature [69]. At the pressure of 52 GPa, the RH phase
transformed back to BCC when increasing the temperature to 1881 K. This supports the
prediction by Wang et al. [54] that electronic temperatures will reduce the stability of RH
phase in vanadium, as well as the experiment of Errandonea et al. [62].

In contrast to vanadium, only few studies [65,82] on the structure stability of niobium and
tantalum have been carried out in the literature. In 2018, Haskins et al. [82] examined possible
HPHT polymorphism in tantalum with complementary DFT-based model generalized pseu-
dopotential theory (MGPT) multi-ion interatomic potentials. Their results showed that four
orthorhombic structures of Pnma, Fddd, Pmma, and α-U are similarly energetically favorable.
Moreover, the MGPT-MD simulations of them further revealed possible spontaneous heating-
induced Pnma→BCC and Fddd→BCC transitions at modest temperatures. Nevertheless,
neither unequivocal experimental (DAC or shock wave) nor direct DFT calculation evidence
exists for these proposed phase transitions in tantalum by far.
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As for niobium, Errandonea et al. [65] recently reported a result of static laser-heated
DAC experiments up to 120 GPa, as well as ab initio quantum molecular dynamics sim-
ulations. They found that niobium undergoes a BCC→Pnma phase transition at high
temperatures, which can be seen from their experimental XRD data. Errandonea et al.’s
finding could provide evidence for the topological similarity of the phase diagrams of
niobium and tantalum. All of them may undergo orthogonal phase transitions, and the
HPHT phase is Pnma. However, this phase transition in niobium is the only report available
so far; and no other relevant studies have been reported. Errandonea et al.’s experiments
and theoretical calculations seem to be self-consistent, suggesting that such a type of phase
transition may exist. However, more accurate experimental and theoretical studies are still
needed for final confirmation.

2.3. Elastic Anomalies in V, Nb, Ta

In addition to the investigations on structural stability, the anomaly in the elastic
constants of the group VB transition elements also attracts a lot of attention. Early theoretical
and experimental studies [17,21] have shown that the transverse acoustic phonon mode
of vanadium and niobium all exhibit softening. Since the shear elastic constant C44 is
directly related to the transverse acoustic mode in the limit of short q-vector lengths,
anomalous softening in this phonon mode implies that vanadium and niobium should
have extraordinary elastic moduli. Landa et al. [18,19] confirmed this anomaly in the elastic
constants of vanadium and niobium through first-principles calculations. The results show
that vanadium is mechanical instability in C44 at pressures between 120 and 245 GPa. The
results also show a softening in niobium at around 50 GPa. Their further study suggested
that the pressure-induced shear instability (softening) in vanadium (niobium) is mainly
due to the electronic structure with FSN.

Later, Koči et al. [22] confirmed the mechanical instability of C44 in vanadium through
first-principles calculations. Meanwhile, they found that the elastic constants of group VB
elements (V, Nb, Ta) exhibit anomalous behaviors, while those of group VIB elements (Mo, W)
increase monotonically with pressure. According to Koči et al. [22], the calculated C44 of both
vanadium and niobium is significantly underestimated by comparing to experimental data,
while C11 and C12 are consistent with the experimental results. They further analyzed these
metals by Fermi surface calculations and found that the nesting vectors of vanadium, niobium,
and tantalum contracted with increasing pressure. This phenomenon, however, was not
observed in molybdenum and tungsten. To explore the reason why C44 was underestimated
in theoretical calculation, Liu et al. [48] further calculated the Fermi surface of these metals.
The results suggested that the underestimation of C44 is mainly caused by the FSN.

To verify the theoretically predicted shear modulus anomalies, Jing et al. conducted
XRD experiments on niobium powders under pressures up to 61 GPa at room temperature
using DAC technique [60]. They observed an obvious softening in the yield strength
of niobium between 42 and 47 GPa, which unexpectedly follows the trend of abnormal
softening in the shear modulus predicted by recent theoretical studies [56]. Therefore, Jing
et al. predicted that there should be a close relationship between the abnormal strength
softening of niobium and the abnormal shear modulus softening [60]; however, this needs
to be confirmed by further experimental evidence.

Furthermore, Li et al. [75] experimentally investigated the sound velocities of niobium
up to 69 GPa and 1100 K under shock compression. It was found that both the compres-
sional and shear sound velocities soften significantly between 50 and 60 GPa. Li et al. [75]
suggested this anomalous behavior might be due to a pressure-induced ETT at 50–60 GPa.
However, their data deviate significantly from all theoretical calculations [18,19,22,48].
Especially, by extrapolating their sound velocity to an impact pressure above 100 GPa, the
longitudinal sound velocity of niobium would be much higher than that of vanadium; that
is unphysical. In this regard, it is still an open question, and more experimental data with
much higher precision are needed to pin down the predicted elastic anomalous softening
in niobium.
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It should also be mentioned that a similar softening in C44 was predicted by calcu-
lations for tantalum [83,84]. According to Gülseren et al. [84], the C44 of tantalum shows
softening at pressures of 100–200 GPa. They also found that the C44 softens with tempera-
ture at low pressures, but then it becomes rather flat at higher pressures. Soon after, Landa
et al. [41] further predicted a similar softening of C44 in tantalum between 50 and 80 GPa
through first-principles calculations. Later, Antonangeli et al. [43] studied the elasticity of
tantalum under pressures over 100 GPa. Their experiments showed that the shear velocity
softened between 90 and 100 GPa, and with a pressure dependence above 120 GPa. They
suggested that this abnormal behavior may be due to the intraband FSN that causes an
ETT and a concomitant transverse acoustic phonon mode softening, which is consistent
with the other theoretical predictions [22,48].

Jing et al. thought that there was a potential physical relationship between yield
strength and shear modulus, so they further measured the yield strength of tantalum up to
101 GPa at room temperature by XRD-DAC experiment [53]. They detected a yield strength
softening at 52–84 GPa, which is in accordance with one of the previous calculations [41]
that suggested a significant softening in the shear modulus of tantalum between 50 and
80 GPa, but not others [43,84]. In addition, their measurements showed that the softening
trend of the yield stress is roughly the same as that of the shear modulus given by the
first-principles calculations [41]. To verify this result, Zhang et al. [85] re-studied the
elastic properties of tantalum at high pressures through first-principles calculations. Their
calculations showed elastic softening for both the C11 and C44 at pressures above 100 GPa,
rather than at 50 GPa. The softening in C44 overall agrees with previous powder tantalum
IXS data by Antonangeli et al. [43], but is different from Jing et al.’s results of 52–84 GPa [53].

In order to have a comprehensive understanding about the elastic anomalies of
compression-induced softening, Wang et al. [54,56] revisited the elastic properties of the
group VB transition metals, by noticing that DFT already correctly predicted many metals
that also having Fermi surface nesting or Van Hove singularities. They first calculated the
C44 and C’ of BCC vanadium under different pressures [54], as shown in Figure 7 (taken
from [54]). The obtained C44 is negative between 125 and 260 GPa, which is in agreement
with that of Landa et al.’s full-potential linear muffin-tin orbitals (FP-LMTO) [18]. However,
the calculated C44 from first-principles by Qiu et al. [39] shows that the first mechanical
instability pressure for vanadium occurs at about 60 GPa, which is markedly different from
the results of Landa et al. [18,19]. Qiu et al. suggested that this difference is mainly due to
the fact that Landa et al.’s work ignored the pressure correction. However, Wang et al. [54]
explicitly included the same pressure correction as Qiu et al. [39] when calculating the
elastic modulus C44. The obtained results perfectly match with that of Landa et al. [19],
demonstrating that the pressure correction is not the reason for the difference between
them. By using DFT, Wang et al. [56] further studied the elastic properties of niobium
under pressure through first-principles calculations. The results demonstrated that the
C44 and C’ of niobium soften significantly in the range of 20–150 GPa. In addition, a new
softening range for C44 at 275–400 GPa was also discovered. They suggested that the first
anomaly was directly related to the underlying RH distortion, whereas the latter originated
in an ETT.

In addition, the shear modulus C44 calculated by Wang et al. [66] through GGA (in
PBE) is underestimated by about −40% (−30%) for vanadium (niobium) compared with
the experimental results [86–89], which is consistent with the evaluation of Liu et al. [48]
and Koči et al. [22]. Since the semi-local functional (such as PBE) may not be able to handle
strong electron correlations in narrow-band systems, Wang et al. [66] further thoroughly
evaluated the accuracy of different XC functionals in describing the C44 of vanadium and
niobium. The results unexpectedly showed that C44 calculated by the common hybrid
functionals (PBE0, HSE06, and B3LYP) are negative value at 0 GPa, which means that
these functionals incorrectly predict the mechanical stability of these metals. Through
systematic analysis, Wang et al. suggested that this unexpected failure is mainly caused by
the localization error of these functionals.
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Figure 7. Calculated elastic moduli of BCC vanadium as a function of pressure. (By the courtesy of
Ref. [54]).

Subsequently, Wang et al. [66] tentatively proposed a DFT + J method to correct the
localization error, which corrected the C44 from 25.5 to 37.34 GPa for vanadium, and from
19.77 to 22.07 GPa for niobium at 0 GPa, respectively. To explore the influence of this
correction on the high-pressure properties, Wang et al. further used the PBE + J method
to study the elastic properties of vanadium under pressure, as shown in Figure 8 (taken
from [66]). Obviously, the C11 and C12 calculated by different methods are consistent
with each other, but the C44 calculated by different methods as a function of pressure is
quite different. Among them, the PBE + J method has the largest correction, especially
in the softening pressure range, which means that the correction of localization error
could slightly weaken the elastic anomaly of compression-induced softening in group VB
transition metals.
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Figure 8. Calculated elastic moduli of BCC vanadium as a function of pressure by using different XC
functionals and the PBE + J method (with J = 2 eV): (a) C11 and C12, and (b) C44. (By the courtesy of
Ref. [66]).

Although vanadium, niobium, and tantalum have nearly identical valence electronic
configuration, their compression-induced softening ranges of C44 are not the same. To
explore the potential connection between them, Wang et al. [56] carefully calculated and
compared the band structures of these metals under pressure of 0–400 GPa (see Figure 9
taken from [56]). They discovered two electronic topological transitions in the Γ→H
direction for vanadium, niobium, and tantalum. The first ETT occurs around 300, 110, and
280 GPa in vanadium, niobium, and tantalum, respectively. The second ETT occurs at
300 GPa in niobium and at about 600 GPa in both vanadium and tantalum. According to
Wang et al. [56], the second pressure-induced ETT should be the cause of the abnormal
softening of C44 in niobium at 275–400 GPa, thus they predicted that vanadium and
tantalum should have the same elastic modulus C44 softening at about 600 GPa. This is a
quite interesting prediction that needs to be further confirmed by more precise experimental
and theoretical studies.

In addition to the elastic anomaly of compression-induced softening, the heating-
induced hardening in group VB metals was further predicted by Wang et al. [54]. They
evaluated the effect of electronic temperature on the C44 of BCC vanadium and found that
C44 increases with the temperature (see Figure 10 taken from [54]). This means that there
is a heating-induced hardening in this metal, which is against our empirical intuition. In
addition, as shown in the inset of Figure 10, at selected pressures of 50 GPa and 300 GPa,
when the temperature increases from 0 to 3000 K, C44 increases by about 75% and 53%,
respectively. At higher temperatures, however, the thermal motion of the nucleus will
inevitably soften the metal. Therefore, as the temperature increases, the strength and shear
modulus of vanadium will rise to a maximum and then drop to zero.
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Further investigation by Wang et al. showed that thermo-electrons also have a signifi-
cant effect on the elastic anomalies of niobium [56]. Like its light neighbor vanadium, the
elastic softening in niobium is gradually diminished with increased electronic temperature,
effectively causing a heating-induced hardening phenomenon. Wang et al. [56] noticed that
this thermo-electron effect only presents in the softening pressure ranges for niobium. At
the pressure of 75 GPa, the C44 of niobium increases by about 135% when the temperature
increases from 0 to 2000 K. Further research by Wang et al. [56] showed that the inclusion
of phonon contribution could slightly soften the metal; however, it cannot change the
conclusion qualitatively.

Subsequently, Keuter et al. [63] studied the anomalous thermoelastic properties of vana-
dium, niobium, and tantalum based on a DFT model, which could calculate the C44 under
different temperatures. The results showed that the calculated elastic constants of cuprum
and molybdenum decrease monotonically with the increase of temperature, which accords
with the general thermoelastic behavior. However, for vanadium and niobium, the C44 falls
to a minimum at about 500 K and then increases at higher temperatures, which is consistent
with the heating-induced hardening observed by Wang et al. [56] in these elements.

As a rule of thumb, solids usually harden under compression and soften at high
temperatures. Therefore, the theoretical predicted compression-induced softening and
heating-induced hardening in group VB metals is quite remarkable. Nevertheless, direct
experimental evidence has long been lacking. Until recently, Wang et al. [72] measured the
HPHT sound velocities at Hugoniot states generated by shock waves and reported the first
evidence for the CISHIH counterintuitive phenomenon in group VB metals. They observed
that the shock vanadium not only had a significant reduction in sound velocity due to
compression, but also had a strong increase in sound velocity due to heating. The former
reflects the softening of the shear modulus by compression, while the latter corresponds to
the reverse hardening by heat. Their experimental study further highlights the CISHIH
dual anomaly behavior in group VB metals and provided inspiration for further theoretical
and experimental research on this outstanding problem. The conceptual advancement
also might be inspirational in understanding the general exotic behavior of matter, such as
electrides [90,91], under extreme conditions.

3. Conclusions

In summary, it is a basic topic in condensed matter physics to reveal and elucidate the
trend and mechanism of structural transformation and elastic anomaly of elemental metals.
This review covers a large number of theoretical and experimental research on the phase
stability and elastic anomalies in group VB transition metals over the last two decades. Two
quite different scenarios are emerging from this progress. The first one is focused on phase
transition and is represented by the phase diagram shown in Figures 5 and 6. As the basis of
this scenario, a tentative theoretical “consensus” has been established on the phase transition
sequence of BCC→RH1→RH2→BCC in vanadium under pressure, and RH→BCC under
high temperature. Meanwhile, we also showed that some experimental and theoretical facts
are incompatible with this scenario. They suggested that the resultant RH is far from being
perfect and should be interpreted as lattice distortion rather than a phase transition. The
same issue exists for niobium and tantalum. The above discussions cautioned that the phase
transition in group VB metals is elusive, and the main problem of this scenario is that it cannot
provide a unified and general description for all group VB elements.

The second scenario emphasizes on electronic structure and the resultant elastic anoma-
lies. It viewed the phase transition in vanadium as the natural outcome of the anomaly,
rather than the cause of it. In this direction, recent investigations revealed that different
from other groups of transition metals, the group VB transition elements exhibit striking
anomalous elastic softening under pressure. It is known that vanadium, niobium, and
tantalum have nearly identical valence electronic configuration, but the variation of the
C44 under pressure for them is not the same. According to existing literature reports, the
pressure-induced softening of C44 in vanadium, niobium, and tantalum originates from the
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electronic structure, which is closely related to the FSN and ETT. In addition, the elastic
softening in vanadium and niobium are gradually diminished with increased temperature,
effectively giving rise to a heating-induced hardening phenomenon. The most striking
feature of this scenario is that there actually could be no phase transition in vanadium
at all. We have increasing confidence on this picture, especially after the reported facts
that accurate DFT + J method completely eliminates RH phases from the thermodynamic
equilibrium phase diagram [66], the absence/imperfect RH phase in Stevenson et al.’s
experiment [74], the stability of BCC and meta-stability of RH as reported in Akahama
et al.’s experiment [73], and the unexpected appearance of RH in shock experiment as
reported by Wang et al. [72]. All of them cannot be consistently interpreted in the first
scenario. Nonetheless, they can be reconciled in the second scenario, in which the “imper-
fect” RH as reported in various DAC experiments is viewed as lattice distortions caused by
deviatoric stress rather than a new phase. These distortions lead to prominent change in
modulus and sound velocity, and are modulated by compression and temperature, leading
to CISHIH dual anomaly in both vanadium and niobium. We conclude that it seems the
second scenario is more promising, but a lot of investigation is still required to achieve a
general consensus.
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22. Koči, L.; Ma, Y.; Oganov, A.R.; Souvatzis, P.; Ahuja, R. Elasticity of the superconducting metals V, Nb, Ta, Mo, and W at high

pressure. Phys. Rev. B 2008, 77, 214101. [CrossRef]
23. Cynn, H.; Yoo, C.S. Equation of state of tantalum to 174 GPa. Phys. Rev. B 1999, 59, 8526. [CrossRef]
24. Ostanin, S.A.; Trubitsin, V.Y.; Savrasov, S.Y.; Alouani, M.; Dreyssé, H. Calculated Nb superconducting transition temperature

under hydrostatic pressure. Comput. Mater. Sci. 2000, 17, 202–205. [CrossRef]
25. Yang, L.H.; Söderlind, P.; Moriarty, J.A. Atomistic simulation of pressure-dependent screw dislocation properties in BCC tantalum.

Mater. Sci. Eng. A 2001, 309, 102–107. [CrossRef]
26. Singh, A.K.; Takemura, K. Measurement and analysis of nonhydrostatic lattice strain component in niobium to 145 GPa under

various fluid pressure-transmitting media. J. Appl. Phys. 2001, 90, 3269–3275. [CrossRef]
27. Louis, C.N.; Iyakutti, K. Electron phase transition and superconductivity of vanadium under high pressures. Phys. Rev. B 2003,

67, 094509. [CrossRef]
28. Nnolim, N.O.; Tyson, T.A.; Axe, L. Theory of the structural phases of group 5B-6B metals and their transport properties. J. Appl.

Phys. 2003, 93, 4543–4560. [CrossRef]
29. Dewaele, A.; Loubeyre, P.; Mezouar, M. Refinement of the equation of state of tantalum. Phys. Rev. B 2004, 69, 092106. [CrossRef]
30. Dewaele, A.; Loubeyre, P. Mechanical properties of tantalum under high pressure. Phys. Rev. B 2005, 72, 134106. [CrossRef]
31. Takemura, K.; Singh, A.K. High-pressure equation of state for Nb with helium-pressure medium: Powder X-ray diffraction

experiments. Phys. Rev. B 2006, 73, 224119.
32. Klepeis, J.E. Electronic topological transitions in high-pressure bcc metals. In APS March Meeting Abstracts; American Physical

Society: Washington, DC, USA, 2005; p. L11-010. Available online: http://meetings.aps.org/link/BAPS.2005.MAR.L11.10
(accessed on 28 November 2022).

33. Orlikowski, D.; Söderlind, P.; Moriarty, J.A. First-principles thermoelasticity of transition metals at high pressure: Tantalum
prototype in the quasiharmonic limit. Phys. Rev. B 2006, 74, 054109. [CrossRef]

34. Suzuki, N.; Otani, M. The role of the phonon anomaly in the superconductivity of vanadium and selenium under high pressures.
J. Phys. Condens. Matter 2007, 19, 125206. [CrossRef]

35. Luo, W.; Ahuja, R.; Ding, Y.; Mao, H.K. Unusual lattice dynamics of vanadium under high pressure. Proc. Natl. Acad. Sci. USA
2007, 104, 16428–16431. [CrossRef]

36. Lee, B.; Rudd, R.E.; Klepeis, J.E.; Söderlind, P.; Landa, A. Theoretical confirmation of a high-pressure rhombohedral phase in
vanadium metal. Phys. Rev. B 2007, 75, 180101. [CrossRef]

37. Lee, B.; Rudd, R.E.; Klepeis, J.E.; Becker, R. Elastic constants and volume changes associated with two high-pressure rhombohedral
phase transformations in vanadium. Phys. Rev. B 2008, 77, 134105. [CrossRef]

38. Verma, A.K.; Modak, P. Structural phase transitions in vanadium under high pressure. Europhys. Lett. 2008, 81, 37003. [CrossRef]
39. Qiu, S.L.; Marcus, P.M. Phases of vanadium under pressure investigated from first principles. J. Phys. Condens. Matter 2008,

20, 275218. [CrossRef]
40. Bosak, A.; Hoesch, M.; Antonangeli, D.; Farber, D.L.; Fischer, I.; Krisch, M. Lattice dynamics of vanadium: Inelastic X-ray

scattering measurements. Phys. Rev. B 2008, 78, 020301. [CrossRef]
41. Landa, A.; Söderlind, P.; Ruban, A.V.; Peil, A.V.; Vitos, L. Stability in BCC transition metals: Madelung and band-energy effects

due to alloying. Phys. Rev. Lett. 2009, 103, 235501. [CrossRef]
42. Vekilov, Y.K.; Krasil’nikov, O.M. Structural transformations in metals at high compression ratios. Phys. Usp. 2009, 52, 831–834.

[CrossRef]
43. Antonangeli, D.; Farber, D.L.; Said, A.H.; Benedetti, L.R.; Aracne, C.M.; Landa, A.; Söderlind, P.; Klepeis, J.E. Shear softening of

tantalum at megabar pressures. Phys. Rev. B 2010, 82, 132101. [CrossRef]
44. Bondarenko, N.G.; Vekilov, Y.K.; Isaev, E.I.; Krasil’nikov, O.M. Deformation Phase Transition in Vanadium under High Pressure.

JETP Lett. 2010, 91, 611–613. [CrossRef]
45. Klepeis, J.H.P.; Cynn, H.; Evans, W.J.; Rudd, R.E.; Yang, L.H.; Liermann, H.P.; Yang, W. Diamond anvil cell measurement of

high-pressure yield strength of vanadium using in situ thickness determination. Phys. Rev. B 2010, 81, 134107. [CrossRef]
46. Landa, A.; Söderlind, P.; Velikokhatnyi, O.I.; Naumov, I.I.; Ruban, A.V.; Peil, O.E.; Vitos, L. Alloying-driven phase stability in

group-VB transition metals under compression. Phys. Rev. B 2010, 82, 144114. [CrossRef]
47. Jenei, Z.; Liermann, H.P.; Cynn, H.; Klepeis, J.H.P.; Baer, B.J.; Evans, W.J. Structural phase transition in vanadium at high pressure

and high temperature: Influence of nonhydrostatic conditions. Phys. Rev. B 2011, 83, 054101. [CrossRef]

http://doi.org/10.1088/0953-8984/14/44/392
http://doi.org/10.1016/j.jpcs.2006.05.027
http://doi.org/10.1088/0953-8984/18/22/008
http://doi.org/10.1103/PhysRevLett.98.085502
http://doi.org/10.1103/PhysRevLett.11.271
http://doi.org/10.1103/PhysRevB.77.214101
http://doi.org/10.1103/PhysRevB.59.8526
http://doi.org/10.1016/S0927-0256(00)00024-0
http://doi.org/10.1016/S0921-5093(00)01618-X
http://doi.org/10.1063/1.1397283
http://doi.org/10.1103/PhysRevB.67.094509
http://doi.org/10.1063/1.1562751
http://doi.org/10.1103/PhysRevB.69.092106
http://doi.org/10.1103/PhysRevB.72.134106
http://meetings.aps.org/link/BAPS.2005.MAR.L11.10
http://doi.org/10.1103/PhysRevB.74.054109
http://doi.org/10.1088/0953-8984/19/12/125206
http://doi.org/10.1073/pnas.0707377104
http://doi.org/10.1103/PhysRevB.75.180101
http://doi.org/10.1103/PhysRevB.77.134105
http://doi.org/10.1209/0295-5075/81/37003
http://doi.org/10.1088/0953-8984/20/27/275218
http://doi.org/10.1103/PhysRevB.78.020301
http://doi.org/10.1103/PhysRevLett.103.235501
http://doi.org/10.3367/UFNe.0179.200908f.0883
http://doi.org/10.1103/PhysRevB.82.132101
http://doi.org/10.1134/S0021364010110147
http://doi.org/10.1103/PhysRevB.81.134107
http://doi.org/10.1103/PhysRevB.82.144114
http://doi.org/10.1103/PhysRevB.83.054101


Crystals 2022, 12, 1762 18 of 19

48. Liu, Z.; Shang, J. First principles calculations of electronic properties and mechanical properties of BCC molybdenum and
niobium. Rare Met. 2011, 30, 354–358. [CrossRef]

49. Singh, A.K.; Liermann, H.-P. Strength and elasticity of niobium under high pressure. J. Appl. Phys. 2011, 109, 113539. [CrossRef]
50. Hu, J.; Dai, C.; Yu, Y.; Liu, Z.; Tan, Y.; Zhou, X.; Tan, H.; Cai, L.; Wu, Q. Sound velocity measurements of tantalum under shock

compression in the 10–110 GPa range. J. Appl. Phys. 2012, 111, 033511. [CrossRef]
51. Yu, Y.; Tan, Y.; Dai, C.; Li, X.; Li, Y.; Wu, Q.; Tan, H. Phase transition and strength of vanadium under shock compression up to 88

GPa. Appl. Phys. Lett. 2014, 105, 201910. [CrossRef]
52. Krasil’nikov, O.M.; Vekilov, Y.K.; Lugovskoy, A.V.; Mosyagin, I.Y.; Belov, M.P.; Bondarenko, N.G. Structural transformations at

high pressure in the refractory metals (Ta, Mo, V). J. Alloys Compd. 2014, 586, 242–245. [CrossRef]
53. Jing, Q.; Wu, Q.; Xu, J.-A.; Bi, Y.; Liu, L.; Liu, S.; Zhang, Y.; Geng, H. Anomalous softening of yield strength in tantalum at high

pressures. J. Appl. Phys. 2015, 117, 055903. [CrossRef]
54. Wang, Y.X.; Wu, Q.; Xiang, R.; Chen, X.R.; Geng, H.Y. Stability of rhombohedral phases in vanadium at high-pressure and

high-temperature: First-principles investigations. Sci. Rep. 2016, 6, 32419. [CrossRef] [PubMed]
55. Antonangeli, D.; Farber, D.L.; Bosak, A.; Aracne, C.M.; Ruddle, D.G.; Krisch, M. Phonon triggered rhombohedral lattice distortion

in vanadium at high pressure. Sci. Rep. 2016, 6, 31887. [CrossRef] [PubMed]
56. Wang, Y.X.; Geng, H.Y.; Wu, Q.; Chen, X.R.; Sun, Y. First-principles investigation of elastic anomalies in niobium at high pressure

and temperature. J. Appl. Phys. 2017, 122, 235903. [CrossRef]
57. Foster, J.M.; Comley, A.J.; Case, G.S.; Avraam, P.; Rothman, S.D.; Higginbotham, A.; Floyd, E.K.R.; Gumbrell, E.T.; Luis, J.J.D.;

McGonegle, D.; et al. X-ray diffraction measurements of plasticity in shock-compressed vanadium in the region of 10-70 GPa. J.
Appl. Phys. 2017, 122, 025117. [CrossRef]

58. Zou, Y.T.; Li, Y.; Chen, H.Y.; Welch, D.; Zhao, Y.S.; Li, B.S. Thermoelasticity and anomalies in the pressure dependence of phonon
velocities in niobium. Appl. Phys. Lett. 2018, 112, 011901. [CrossRef]

59. Xiong, L.; Liu, J. Structural phase transition, strength, and texture in vanadium at high pressure under nonhydrostatic compression.
Chin. Phys. B 2018, 27, 036101. [CrossRef]

60. Jing, Q.M.; He, Q.; Zhang, Y.; Li, S.R.; Liu, L.; Hou, Q.Y.; Geng, H.Y.; Bi, Y.; Yu, Y.Y.; Wu, Q. Unusual softening behavior of yield
strength in niobium at high pressures. Chin. Phys. B 2018, 27, 106201. [CrossRef]

61. Kramynin, S.P.; Akhmedov, E.N. Equation of state and properties of Nb at high temperature and pressure. J. Phys. Chem. Solids
2019, 135, 109108. [CrossRef]

62. Errandonea, D.; MacLeod, S.G.; Burakovsky, L.; Santamaria-Perez, D.; Proctor, J.E.; Cynn, H.; Mezouar, M. Melting curve and
phase diagram of vanadium under high-pressure and high-temperature conditions. Phys. Rev. B 2019, 100, 094111. [CrossRef]

63. Keuter, P.; Music, D.; Schnabel, V.; Stuer, M.; Schneider, J.M. From qualitative to quantitative description of the anomalous
thermoelastic behavior of V, Nb, Ta, Pd and Pt. J. Phys. Condens. Matter 2019, 31, 225402. [CrossRef] [PubMed]

64. Weck, P.F.; Townsend, J.P.; Cochrane, K.R.; Crockett, S.D.; Moore, N.W. Shock compression of niobium from first-principles. J.
Appl. Phys. 2019, 125, 245905. [CrossRef]

65. Errandonea, D.; Burakovsky, L.; Preston, D.L.; MacLeod, S.G.; Santamaría-Perez, D.; Chen, S.P.; Cynn, H.; Simak, S.I.; McMahon,
M.I.; Proctor, J.E.; et al. Experimental and theoretical confirmation of an orthorhombic phase transition in niobium at high
pressure and temperature. Commun. Mater. 2020, 1, 60. [CrossRef]

66. Wang, Y.X.; Geng, H.Y.; Wu, Q.; Chen, X.R. Orbital localization error of density functional theory in shear properties of vanadium
and niobium. J. Chem. Phys. 2020, 152, 024118. [CrossRef]

67. Tidholm, J.; Hellman, O.; Shulumba, N.; Simak, S.I.; Tasnádi, F.; Abrikosov, I.A. Temperature dependence of the Kohn anomaly in
BCC Nb from first-principles self-consistent phonon calculations. Phys. Rev. B 2020, 101, 115119. [CrossRef]

68. Weck, P.F.; Kalita, P.E.; Ao, T.; Crockett, S.D.; Root, S.; Cochrane, K.R. Shock compression of vanadium at extremes: Theory and
experiment. Phys. Rev. B 2020, 102, 184109. [CrossRef]

69. Zhang, Y.J.; Tan, Y.; Geng, H.Y.; Salke, N.P.; Gao, Z.P.; Li, J.; Sekine, T.; Wang, Q.M.; Greenberg, E.; Prakapenka, V.B.; et al. Melting
curve of vanadium up to 256 GPa: Consistency between experiments and theory. Phys. Rev. B 2020, 102, 214104. [CrossRef]

70. Yang, F.C.; Hellman, O.; Fultz, B. Temperature dependence of electron-phonon interactions in vanadium. Phys. Rev. B 2020, 101, 094305.
[CrossRef]

71. Wang, Y.X.; Liu, Y.Y.; Yan, Z.X.; Liu, W.; Geng, H.Y.; Chen, X.R. Ab initio dynamical stability and lattice thermal conductivity of
vanadium and niobium at high temperature. Solid State Commun. 2021, 323, 114130. [CrossRef]

72. Wang, H.; Li, J.; Zhou, X.M.; Tan, Y.; Hao, L.; Yu, Y.Y.; Dai, C.D.; Jin, K.; Wu, Q.; Jing, Q.M.; et al. Evidence for mechanical
softening-hardening dual anomaly in transition metals from shock-compressed vanadium. Phys. Rev. B 2021, 104, 134102.
[CrossRef]

73. Akahama, Y.; Kawaguchi, S.; Hirao, N.; Ohishi, Y. High-pressure stability of BCC-vanadium and phase transition to a rhombohe-
dral structure at 200 GPa. J. Appl. Phys. 2021, 129, 135902. [CrossRef]

74. Stevenson, M.G.; Pace, E.J.; Storm, C.V.; Finnegan, S.E.; Garbarino, G.; Wilson, C.W.; McGonegle, D.; Macleod, S.G.; McMahon,
M.I. Pressure-induced BCC-rhombohedral phase transition in vanadium metal. Phys. Rev. B 2021, 103, 134103. [CrossRef]

75. Li, P.; Huang, Y.F.; Wang, K.; Xiao, S.F.; Wang, L.; Yao, S.L.; Zhu, W.J.; Hu, W.Y. Crystallographic-orientation-dependence plasticity
of niobium under shock compressions. Int. J. Plasticity 2022, 150, 103195. [CrossRef]

http://doi.org/10.1007/s12598-011-0302-9
http://doi.org/10.1063/1.3594748
http://doi.org/10.1063/1.3681815
http://doi.org/10.1063/1.4902374
http://doi.org/10.1016/j.jallcom.2013.05.151
http://doi.org/10.1063/1.4906977
http://doi.org/10.1038/srep32419
http://www.ncbi.nlm.nih.gov/pubmed/27581551
http://doi.org/10.1038/srep31887
http://www.ncbi.nlm.nih.gov/pubmed/27539662
http://doi.org/10.1063/1.5006396
http://doi.org/10.1063/1.4994167
http://doi.org/10.1063/1.5009617
http://doi.org/10.1088/1674-1056/27/3/036101
http://doi.org/10.1088/1674-1056/27/10/106201
http://doi.org/10.1016/j.jpcs.2019.109108
http://doi.org/10.1103/PhysRevB.100.094111
http://doi.org/10.1088/1361-648X/ab099b
http://www.ncbi.nlm.nih.gov/pubmed/30794999
http://doi.org/10.1063/1.5094146
http://doi.org/10.1038/s43246-020-00058-2
http://doi.org/10.1063/1.5136052
http://doi.org/10.1103/PhysRevB.101.115119
http://doi.org/10.1103/PhysRevB.102.184109
http://doi.org/10.1103/PhysRevB.102.214104
http://doi.org/10.1103/PhysRevB.101.094305
http://doi.org/10.1016/j.ssc.2020.114130
http://doi.org/10.1103/PhysRevB.104.134102
http://doi.org/10.1063/5.0041208
http://doi.org/10.1103/PhysRevB.103.134103
http://doi.org/10.1016/j.ijplas.2021.103195


Crystals 2022, 12, 1762 19 of 19

76. Li, X.H.; Yang, C.; Gan, B.; Huang, Y.Q.; Wang, Q.M.; Sekine, T.; Hong, J.W.; Jiang, G.; Zhang, Y.J. Sound velocity softening in
body-centered cubic niobium under shock compression. Phys. Rev. B 2022, 105, 104110. [CrossRef]

77. Manghnani, M.H.; Nellis, W.J.; Nicol, M.F. Science and technology of high pressure. In Proceedings of the International Conference
on High Pressure Sciene and Technology (AIRAPT-17), Honolulu, HI, USA, 25–30 July 1999; University Press: Hyderabad, India,
2000; Volume 1.

78. Landa, A.; Söderlind, P.; Yang, L.H. Ab initio phase stability at high temperatures and pressures in the V-Cr system. Phys. Rev. B
2014, 89, 020101. [CrossRef]

79. Dai, C.; Jin, X.; Zhou, X.; Liu, J.; Hu, J. Sound velocity variations and melting of vanadium under shock compression. J. Phys. D
Appl. Phys. 2001, 34, 3064. [CrossRef]

80. Errandonea, D.; Schwager, B.; Ditz, R.; Gessmann, C.; Boehler, R.; Ross, M. Systematics of transition-metal melting. Phys. Rev. B
2001, 63, 132104. [CrossRef]

81. Landa, A.; Söderlind, P.; Naumov, I.I.; Klepeis, J.E.; Vitos, L. Kohn anomaly and phase stability in group VB transition metals.
Computation 2018, 6, 29. [CrossRef]

82. Haskins, J.B.; Moriarty, J.A. Polymorphism and melt in high-pressure tantalum. II. Orthorhombic phases. Phys. Rev. B 2018, 98, 144107.
[CrossRef]

83. Söderlind, P.; Moriarty, J.A. First-principles theory of Ta up to 10 Mbar pressure: Structural and mechanical properties. Phys. Rev.
B 1998, 57, 10340. [CrossRef]

84. Gülseren, O.; Cohen, R.E. High-pressure thermoelasticity of body-centered-cubic tantalum. Phys. Rev. B 2002, 65, 064103.
[CrossRef]

85. Zhang, Y.J.; Yang, C.; Alatas, A.; Said, A.H.; Salke, N.P.; Hong, J.W.; Lin, J.F. Pressure effect on Kohn anomaly and electronic
topological transition in single-crystal tantalum. Phys. Rev. B 2019, 100, 075145. [CrossRef]

86. Bolef, D.I.; Smith, R.E.; Miller, J.G. Elastic Properties of Vanadium. I. Temperature Dependence of the Elastic Constants and the
Thermal Expansion. Phys. Rev. B 1971, 3, 4100. [CrossRef]

87. Ko, C.R.; Salama, K.; Roberts, J.M. Effect of hydrogen on the temperature dependence of the elastic constants of vanadium single
crystals. J. Appl. Phys. 1980, 51, 1014. [CrossRef]

88. Kojima, H.; Shino, M.; Suzuki, T. Effects of hydrogen and deuterium on the temperature dependence of the shear constants C’ of
vanadium single crystals. Acta Metall. 1987, 35, 891. [CrossRef]

89. Trivisonno, J.; Vatanayon, S.; Wilt, M.; Washick, J.; Reifenberger, R. Temperature dependence of the elastic constants of niobium
and lead in the normal and superconducting states. J. Low Temp. Phys. 1973, 12, 153. [CrossRef]

90. Zhang, L.; Geng, H.Y.; Wu, Q. Prediction of anomalous LA-TA splitting in electrides. Matter Radiat. Extremes 2021, 6, 038403.
91. Zhang, L.; Wu, Q.; Li, S.; Sun, Y.; Yan, X.; Chen, Y.; Geng, H.Y. Interplay of anionic quasi-atoms and interstitial point defects

in electrides: Abnormal interstice occupation and colossal charge state of point defects in dense fcc-lithium. ACS Appl. Mater.
Interfaces 2021, 13, 6130–6139. [CrossRef]

http://doi.org/10.1103/PhysRevB.105.104110
http://doi.org/10.1103/PhysRevB.89.020101
http://doi.org/10.1088/0022-3727/34/20/310
http://doi.org/10.1103/PhysRevB.63.132104
http://doi.org/10.3390/computation6020029
http://doi.org/10.1103/PhysRevB.98.144107
http://doi.org/10.1103/PhysRevB.57.10340
http://doi.org/10.1103/PhysRevB.65.064103
http://doi.org/10.1103/PhysRevB.100.075145
http://doi.org/10.1103/PhysRevB.3.4100
http://doi.org/10.1063/1.327729
http://doi.org/10.1016/0001-6160(87)90167-2
http://doi.org/10.1007/BF00654733
http://doi.org/10.1021/acsami.0c17095

	Introduction 
	Phase Stability and Elastic Anomalies in V, Nb, Ta 
	Pressure Effect on Structure Stability 
	Temperature Effect on Structure Stability 
	Elastic Anomalies in V, Nb, Ta 

	Conclusions 
	References

