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Abstract: The effects of the Al2O3 content and basicity of CaO–SiO2–Al2O3–10 wt.% MgO refining
slag on inclusions removal in 55SiCr spring steel were investigated. The viscosity of slag was studied
using a viscometer, while the microstructure investigation involved using a water-quenching furnace
and a Fourier-transform infrared spectrometer. The influence mechanism of the slag adjustment
on inclusions was explored through thermodynamic calculations and kinetic analysis. The results
indicated that the viscosity of the molten slag increased gradually with the content of Al2O3 increasing
due to it increasing the degree of polymerization of the slag network structure, especially the [AlO4]5−

and [Si-O-Si] structures. In contrast, the viscosity of molten slag experienced the opposite pattern,
with the basicity of molten slag increasing. This was due to the fact that Ca2+ can significantly reduce
the degree of polymerization of a slag network structure, especially the percentages of the [SiO4]4−,
[AlO4]5− and [Si-O-Si] network structures. Finally, the changes in physical properties and structure of
slag significantly affected the removal effect of the inclusions in molten steel. As a result, the number,
size distribution, composition distribution and morphology of the inclusions displayed significant
changes when the content of Al2O3 increased from 3 wt.% to 12 wt.% and the basicity of the slag
gradually increased from 0.5 to 1.2.

Keywords: 55SiCr steel; spring steel; refining slag; non-metallic inclusions; high temperature viscosity

1. Introduction

High strength, fatigue resistance and impact resistance are important properties of
spring steels [1,2]. Non-metallic inclusion is one of the most important factors that cause
fatigue fractures in spring steel [3,4]. Inclusions with high hardness and melting points,
such as alumina and spinel, often act as crack sources of fatigue failure [5–7]. The total
oxygen (T.O) of steel, as well as the type, number, size, morphology and distribution of
inclusions in steel, play essential roles in spring steel cleanness, and an improvement in
cleanliness can effectively prolong the fatigue life of the steel [8–10].

Ladle furnace (LF) slag refining is a widely used technology to control inclusions in
spring steel production [11,12]. Appropriate optimization of the refining slag composition
can reduce the T.O and the number and size of inclusions in spring steel, as well as control
the composition of inclusions located in the low melting area [13,14]. Zhang et al. [15]
studied the low-melting-point region (at 1673 K) in a MnO−CaO−SiO2−Al2O3 system
with the largest area when the Al2O3 content in this system was 25 wt.%. He et al. [16]
showed that the inclusions are plastic at the end of the refining process, the basicity
(R = wt.%CaO/wt.% SiO2) of refining slag is in the range of 1.0~1.2 and the Al2O3 content
of slag is in the range of 3~9 wt.%. Yang et al. [17] showed that the inclusions located in
the low-melting-point region when the basicity was in the range of 1.00 to 1.19 had a C/A
value (wt.% CaO/wt.% Al2O3) above 9 at 1673 K. Similar results were mentioned in other
studies [18–20].

Wu et al. [21] studied the effect of refining slag with low basicity on the inclu-
sions in 55SiCr suspension spring steel. The results indicate that the composition of
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the CaO–SiO2–Al2O3 ternary system inclusions is located at the center of the low-melting-
point zone, and the plastic deformation ability of the inclusions is good. Nevertheless, the
authors did not study the influence of viscosity and structure of refining slag on removing
non-metallic inclusions in spring steel.

Du et al. [22] studied the influence of refining slag with high basicity on inclusions in
55SiCr suspension spring steel. The results showed that the number of inclusions decreased
sharply as the basicity of the slag gradually increased, and the diameter of most of the
inclusions was less than 10 µm. Similarly, the authors did not study the influence of the
alkalinity of refining slag on its viscosity and structure.

Non-metallic inclusions have significant effects on many mechanical properties of
suspension spring steel, including the strength, plasticity, toughness and fatigue properties.
Li et al. [23] studied the effect of inclusions on the tensile fracture properties of 55CrSi
spring steel. The results demonstrated that interior inclusions have a significant effect
on the ductility and a minimal effect on the tensile strength of spring steel. However,
the authors only selected the samples obtained under a single smelting condition as the
research object, and the change rules of mechanical properties of spring steel treated with
refining slag with different compositions have not been studied.

As for the influence of basicity and Al2O3 content on the inclusions in spring steel,
most researchers only made a one-sided analysis from the perspective of thermodynamics.
Few researchers elaborated on the influence of basicity and Al2O3 content on inclusions
in steel from the perspective of dynamics according to their influence on the physical
properties and structure of slag. Therefore, in this study, the effects of basicity and Al2O3
content on the viscosity and structure of slag were studied in detail, and their effects on the
removal of inclusions in steel were explored. In addition, the effects of inclusions on the
mechanical properties of spring steel are discussed.

2. Materials and Methods
2.1. Materials

The effect of the Al2O3 content and basicity in refining slag on the inclusions in spring
steel was investigated in a MoSi2 high-temperature resistance furnace. Table 1 shows the
main chemical composition of the 55SiCr spring steel.

Table 1. Chemical compositions of the 55SiCr spring steel (wt.%) used in this experiment.

Elements C Si Mn Cr Ni P S V

Range 0.55–0.59 1.40–1.60 0.60–0.80 0.60–0.80 0.20–0.30 ≤0.012 ≤0.008 0.08–0.20
Target 0.57 1.50 0.70 0.70 0.25 ≤0.012 ≤0.008 0.15

2.2. Experimental Equipment and Procedure

Seven sample types were created by treating different synthetic LF refining slags
with four different Al2O3 contents of 3.0 wt.%, 5.0 wt.%, 8.0 wt.% and 12.0 wt.% and four
basicities of 0.5, 0.8, 1.0 and 1.2, as shown in Table 2.
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Table 2. Chemical compositions of the low-basicity refining slag (wt.%).

Heat CaO SiO2 MgO Al2O3 R

1# 38.7 48.3 10.0 3.0 0.8
2# 37.8 47.2 10.0 5.0 0.8
3# 36.4 45.5 10.0 8.0 0.8
4# 34.7 43.3 10.0 12.0 0.8

5# 28.3 56.7 10.0 5.0 0.5
2# 37.8 47.2 10.0 5.0 0.8
6# 42.5 42.5 10.0 5.0 1.0
7# 46.3 38.7 10.0 5.0 1.2

Note: R = CaO/SiO2.

Experiments were carried out in a MoSi2 high-temperature resistance furnace. An
argon atmosphere was kept in the experiments all the time, blowing from the bottom of the
furnace tube to the top. The experimental procedures were carried out as follows. First, a
1.00 kg steel rod was placed into a MgO crucible with a 60 × 10−3 m inner diameter and an
80 × 10−3 m depth. Then, the crucible was placed in a graphite crucible to prevent liquid
metal from leaking. After the whole crucible was placed in the chamber, the power was
switched on and the furnace was heated to the experimental temperature of 1873 K. Alloys
were added into the molten steel when the temperature reached 1873 K, and the molten
steel was deoxidized using Si. After that, 0.05 kg of synthetic LF refining slag powder was
put into the surface of the molten steel. The refining time was constant at 45 min for all of
the experiments.

A direct reading spectrometer was utilized to detect the compositions of Si, Mn, Cr, V,
Mo, Ni, Al, P and S. For C and S, an infrared C/S analyzer was applied. Furthermore, a
LECO® TC 500 O2/N2 analyzer was selected to detect O and N. The ASPEX (FEI Company,
Hillsboro, USA) was used to indicate the number, size and compositional distribution of
the inclusions. Finally, SEM-EDS was selected to analyze the morphology of the inclusions.

The sample treatment method for inclusion observation and mechanical properties is
shown in Figure 1. A cylindrical ingot was cut into two semi-cylinders along the diameter.
One was forged and a heat treatment was conducted for a tensile test, and the other was
used to acquire samples for inclusion observation. The forging process started at 1200 °C
after heat preservation for 2 h, and was finally air-cooled to room temperature The cross-
section of the forging cylinder had an 18 mm diameter. Forged steel was austenized at
880 °C for 30 min and oil-quenched to room temperature, followed by tempering at 450 °C
for 120 min. The atmosphere of the heat treatment process was air. For the mechanical
property characterization, tensile tests were conducted on a Shimadzu AGS-X100KN
(Shimadzu, Kyodo, Japan) electronic tensile testing machine following standard GB/T
228.1-2010 (ISO 6892-1:2009, MOD) [24].
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Figure 1. Sample treatment method for the inclusion observation and mechanical properties testing.

2.3. Equipment and Specific Experimental Steps for the Viscosity Measurements of Refining Slag

In this study, a Brookfield DVT rotary viscometer was selected to measure the viscosity
of the slag. A schematic diagram of the equipment is shown in Figure 2. The error range of
the viscosity measurement was ±1%, and the reproducibility of the experimental data was
±0.2%. The crucible material used in the experiment was molybdenum, and the size of the
crucible was Φ 31 mm × 61 mm. The material of the adopted rotor was molybdenum, and
its size was Φ 17 mm × 25 mm, with an angle of 120◦ at the top and tail of the rotor. During
the experiment, the distance between the top of the rotor and the molybdenum crucible
was 3 mm. In order to ensure that the slag liquid level did not exceed 3~5 mm from the tail
of the rotor during the experiment, 65 g of slag was weighed for each experiment.
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Figure 2. Diagram of the high-temperature viscometer and its auxiliary device.

The detailed steps of the viscosity test were as follows: (1) Preparation of experiment:
65 g of slag was prepared and put into the molybdenum crucible after the compression.
(2) Zero adjustment of the viscometer: the viscometer was left to idle for the zero calibration
without hanging the rotor. (3) Power on and temperature increase: after the zero calibration,
the equipment was sealed, the power was turned on, the temperature was increased and
the vacuum pumping began to work. After a vacuum was achieved, the shielding Ar
gas was introduced at the flow rate of 100 mL·min−1 (to prevent the rotor fluctuation
caused by excessive air flow and experimental error). Cooling water was fed into the
circulation when the furnace temperature reached 673 K. (4) Measuring the viscosity: the
temperature was kept constant for half an hour when the temperature reached 1873 K, and
then the rotor was lowered to 3 mm from the bottom of the molybdenum crucible and
the slag viscosity was measured at the speed of 100 r·min−1, where viscosity data was
recorded every 10 s and continued for 5 min. (5) Viscosity measurement during the cooling
process: the temperature was decreased by 20 K each time after the viscosity at 1873 K was
measured. The temperature was kept constant for 10 min, and then the viscosity of the slag
was measured at this temperature at the speed of 100 r·min−1. (6) Finally, the temperature
was increased again to 1773 K, and the rotor was lifted to stop measuring the viscosity
when the torque was greater than 100%. The viscometer was powered off and cooled down.
The switches of the Ar gas and cooling water were closed when the furnace temperature
reached 873 K and 673 K, respectively.
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2.4. Apparatus and Specific Experimental Steps for the Structure Measurement of Refining Slag

A schematic diagram of the water bath quenching equipment is shown in Figure 3.
The graphite crucible (20 mm diameter, 40 mm height) containing the refined slag sample
was hung in the furnace with platinum wire while ensuring it was located in the constant
temperature zone. A basin of ice water was placed at the vertical bottom of the furnace. The
power was turned on and the switches for the cooling water and argon gas were turned on
at the same time. The temperature increased gradually following the program that was
set in the equipment. The furnace was kept at a constant temperature for 1 hour when the
temperature reached 1873 K, and then the switch for the platinum wire was released to
make the graphite crucible quickly fall into the ice water at the bottom of the furnace. The
slag could maintain its structure in the molten state because the liquid refining slag was
rapidly cooled from 1873 K to 273 K.
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The refining slag was dried after it was removed from ice water, and then it was
ground to a particle size below 200 mesh. Finally, the structure of the refining slag was
detected using Fourier-transform infrared spectrometry (FTIR).
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3. Results and Discussion
3.1. Number and Size of Inclusions

The chemical compositions of the 55SiCr steels are shown in Table 3.

Table 3. Chemical compositions of the 55SiCr steels (wt.%).

C Si Mn Cr Ni V T.O N [Al]s P S

1# 0.577 1.446 0.729 0.732 0.267 0.172 0.0016 0.0039 0.0012 0.0084 0.0053
2# 0.582 1.480 0.741 0.746 0.252 0.163 0.0019 0.0028 0.0013 0.0077 0.0058
3# 0.570 1.478 0.713 0.715 0.276 0.163 0.0021 0.0032 0.0014 0.0076 0.0050
4# 0.556 1.498 0.683 0.697 0.251 0.162 0.0023 0.0027 0.0015 0.0092 0.0064

5# 0.560 1.452 0.705 0.716 0.257 0.158 0.0020 0.0034 0.0013 0.0075 0.0056
2# 0.582 1.480 0.741 0.746 0.252 0.163 0.0019 0.0028 0.0013 0.0077 0.0058
6# 0.575 1.427 0.750 0.721 0.266 0.163 0.0017 0.0034 0.0013 0.0072 0.0050
7# 0.564 1.512 0.676 0.716 0.248 0.152 0.0015 0.0036 0.0012 0.0096 0.0060

The T.O and [Al]s contents increased from 0.0016 wt.% to 0.0023 wt.% and from
0.0012 wt.% to 0.0015 wt.%, respectively, as the content of Al2O3 increased from 3 wt.%
to 12 wt.%. In contrast, the T.O content decreased from 0.0020 wt.% to 0.0015 wt.% as the
basicity increased from 0.5 to 1.2.

The number and size distribution of inclusions in the 1#~7# steel samples is shown
in Table 4. Obviously, the quantity density gradually increased from 8.81 to 8.96, while
the percentage of inclusions with sizes smaller than 5 µm increased from 61% to 77% with
increasing Al2O3. In contrast, the quantity density gradually decreased from 8.92 to 8.54,
while the percentage of inclusions with a size smaller than 5 µm decreased from 76% to
55% as the basicity increased.

Table 4. Results of the inclusions in the 1#~7# cast samples.

No. Total Number Area (mm2) Quantity Density

1# 705 80 8.81
2# 692 80 8.65
3# 701 80 8.76
4# 717 80 8.96

5# 714 80 8.92
2# 692 80 8.65
6# 687 80 8.56
7# 683 80 8.54

The size distribution of the inclusions in the 1#~7# steel samples is shown in Table 5.
For the 1#~4# samples with different Al2O3 contents, the percentage of inclusions with
a diameter larger than 10 µm decreased from 13% to 4%. In contrast, the percentage of
inclusions with a diameter smaller than 2 µm increased from 20% to 33%. For the 2#, 5#,
6# and 7# samples with different basicities, the percentage of inclusions with a diameter
larger than 10 µm increased from 6% to 19%. In contrast, the percentage of inclusions with
a diameter smaller than 2 µm increased from 31% to 17%.
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Table 5. The size distribution of the inclusions in the 1#~7# steel samples (percentage).

<1 µm 1–2 µm 2–5 µm 5–10 µm 10–15 µm >15 µm

1# 2 18 41 26 7 6
2# 3 22 41 23 6 5
3# 5 24 44 21 4 2
4# 7 26 44 19 3 1

5# 6 25 45 18 4 2
2# 3 22 41 23 6 5
6# 2 18 40 24 10 6
7# 1 16 38 26 11 8

3.2. Composition and Morphology of Typical Inclusions

SEM-EDS was selected to analyze the composition and morphology of the inclusions.
Several randomly selected inclusions were tested and analyzed regarding the composition
of the inclusions. The mapping method of typical composite inclusions was carried out
to accurately analyze the elemental distribution and structure of the structural inclusions.
According to the results, four kinds of typical inclusions were observed in the steel samples,
namely, CaO–SiO2–Al2O3–MgO, CaO–SiO2–Al2O3–MgO–MnS, MnS, and SiO2, as shown
in Figure 4.
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Figure 4. The typical inclusions in steel samples. 1#: (a–c); 2#: (d–f); 3#: (g–i); 4#: (j–l); 5#: (m–o);
6#: (p–r); 7#: (s–u).

Most of the compounds contained oxide inclusions, especially the CaO–SiO2–Al2O3–MgO
inclusions with a diameter of 10µm. The MnS inclusions generally formed during solidification
with a diameter larger than 5 µm. In contrast, the SiO2 inclusions had a smaller diameter of
approximately 1 µm.

The multi-component composite inclusions were generally uniform; that is, the ele-
ments in the inclusions were evenly distributed in the whole inclusion without delamina-
tion, as shown in Figure 5. Generally, these inclusions would not cause obvious harm to
spring steel. In addition, the structure of the layered composite inclusions was usually a
homogeneous composite with a layer of MnS inclusions wrapped around the edges. This
kind of inclusion will be separated during the hot rolling and cold drawing of spring steel
due to the composition and plasticity of the inner and outer layers being different; they
would appear as long strips along the rolling direction or drawing direction.
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Figure 5. Elemental mapping of inclusions in steel samples.

3.3. Composition Distribution of Typical Inclusions

The composition distribution of inclusions overlayed on a phase diagram with differ-
ent Al2O3 contents and different basicities in the refining slag are shown in Figures 6 and 7,
respectively. The “small symbols” are the compositions of each inclusion in a ternary phase
diagram, and the “colored square” is the average composition of all the inclusions in the
1#~7# steel samples. The detail composition of typical inclusions in samples were shows in
Table 6.

Figure 6 shows that the content of Al2O3(inc) in the inclusions and aluminosilicate
inclusions had a tendency of increasing with the content of Al2O3(slag) increasing in the slag.
The compound oxide inclusions were mainly concentrated in low-melting-point regions
for all of the steel samples. In detail, the average contents of inclusions were SiO2(inc):
48.27%, CaO(inc)+MgO(inc): 34.39%, Al2O3(inc): 17.34%; SiO2(inc): 48.87%, CaO(inc)+MgO(inc):
30.01%, Al2O3(inc): 21.12%; SiO2(inc): 53.46%, CaO(inc)+MgO(inc): 17.44%, Al2O3(inc): 29.10%,
SiO2(inc): 49.63%, CaO(inc)+MgO(inc): 18.40% and Al2O3(inc): 31.97%.
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Table 6. Chemical compositions of typical inclusions in the experimental steel samples (mass fraction, %).

Exp. No. Size (µm) CaO Al2O3 SiO2 MgO MnO

1# (3wt.% Al2O3, R = 0.8)

1 5.7 3 28 35 19 15
2 6.3 1 30 40 28 1
3 4.8 4 21 43 32 0
4 7.1 1 30 37 29 3
5 6.5 8 26 45 21 0
6 2.3 5 23 51 11 10
7 4.2 8 25 43 24 0

2# (5wt.% Al2O3, R = 0.8)

1 3.3 15 21 38 13 13
2 2.9 4 45 27 24 0
3 5.8 1 31 32 26 10
4 7.6 4 15 25 21 35
5 4.7 10 17 43 27 3
6 4.1 8 15 40 27 10
7 4.2 4 20 45 31 0

3# (8wt.% Al2O3, R = 0.8)

1 5.2 2 18 44 5 31
2 6.6 2 24 46 6 22
3 4.3 2 24 54 7 13
4 2.8 6 31 49 12 2
5 4.7 5 26 40 13 16
6 5.2 3 27 51 9 10
7 6.7 2 23 57 6 12

4# (12 wt.% Al2O3, R = 0.8)

1 3.7 0 26 56 5 13
2 4.6 6 26 49 12 7
3 4.1 5 29 50 16 0
4 6.3 3 25 40 16 16
5 5.5 2 23 33 13 29
6 3.7 5 27 52 8 8
7 4.3 3 31 49 11 6

5# (5 wt.% Al2O3, R = 0.5)

1 5.6 2 19 49 5 25
2 4.2 1 26 34 6 33
3 2.9 1 19 41 5 34
4 4.7 1 24 26 5 44
5 4.4 3 27 40 7 23
6 5.1 2 20 33 6 39
7 6.0 2 35 44 9 10

6# (5 wt.% Al2O3, R = 1.0)

1 5.2 2 24 50 0 24
2 6.0 4 25 51 12 8
3 4.9 4 24 53 10 9
4 4.1 1 27 53 16 3
5 3.8 3 25 55 10 7
6 2.6 1 19 38 6 36
7 5.5 4 22 53 9 12

7# (5 wt.% Al2O3, R = 1.2)

1 3.3 1 21 52 24 2
2 4.7 9 22 44 16 9
3 5.8 6 27 50 13 4
4 2.8 1 20 29 9 41
5 6.0 12 22 48 10 8
6 4.6 3 18 52 9 18
7 2.7 3 25 47 25 0

Figure 7 shows that most inclusions were located in the low-melting-point region, the
inclusions distribution was dispersed in the 5# steel sample with a basicity of 0.5 in the
slag, and the inclusions distribution was concentrated in the 2#, 6# and 7# steel samples
with basicities of 0.8, 1.0 and 1.2 in the slag, respectively. In detail, the average contents
of inclusions in these steel samples were SiO2(inc): 60.26%, CaO(inc)+MgO(inc): 15.49%,



Crystals 2022, 12, 1721 13 of 22

Al2O3(inc): 24.25%; SiO2(inc): 48.87%, CaO(inc)+MgO(inc): 30.01%, Al2O3(inc): 21.12%; SiO2(inc):
54.56%, CaO(inc)+MgO(inc): 18.27%, Al2O3(inc): 27.17%, SiO2(inc): 49.06%, CaO(inc)+MgO(inc):
24.34% and Al2O3(inc): 26.60%.

3.4. Mechanical Properties of the Experiment Steels

The mechanical properties of the experimental steels are shown in Table 7. It is
obvious that the tensile strength gradually increased from 1357.83 MPa to 1437.04 MPa as
the content of Al2O3 in the slag increased from 3 wt.% (1#) to 12 wt.% (4#). In contrast, the
reduction in area and elongation slightly decreased from 27.58% and 10.24% to 24.31% and
9.36%, respectively.

Table 7. Mechanical properties of the experiment steels.

No. 1# 2# 3# 4# 5# 2# 6# 7#

Rm (MPa) 1357.83 1390.64 1397.40 1437.04 1442.12 1390.64 1386.41 1367.84
Ψ (%) 27.58 25.52 25.24 24.31 24.23 25.52 25.78 27.32
δ (%) 10.24 9.60 9.56 9.36 9.32 9.60 9.63 9.96

The fracture morphologies are shown in Figure 8. From the macroscopic appearance
of the fractures, the fractures of the four samples were typically cup-shaped and were
divided into a fiber area, radiation area and shear lip area from the center to the edge. The
radiation areas of the fractures of samples 1# and 2# were relatively flat, and there were
few secondary microcracks, showing certain brittle fracture characteristics. In particular,
many long and deep but directionless cracks appeared in the radiation area of sample 1#,
as shown in the white triangle area in the figure. In addition, the area of the radiation
area tended to gradually increase; in contrast, the area of the shear lip gradually decreased.
Moreover, the shape of the radiation area also gradually changed from an irregular shape
and ellipse to a more regular circle. Finally, the number of secondary microcracks in the
radiation area of the fracture surface of samples 3# and 4# significantly increased, radiating
from the center to the edge along the radial direction. Furthermore, the length and depth
of the secondary crack gradually became more uniform.

Comparing the microstructures of the four steel samples’ fractures, it was found that
they all contained three kinds of microstructures, namely, secondary microcracks, tear
dimples and fine equiaxed dimples. There was no significant difference in the fracture
morphology of the four steel samples.

The tensile strength decreased gradually from 1442.12 MPa to 1367.84 MPa as the
basicity of slag increased from 0.5 (5#) to 1.2 (7#). In contrast, the reduction in area and
elongation slightly increased from 24.23% to 27.32% and from 9.36% to 9.96%, respectively.

The fracture morphologies of samples 5#, 2#, 6# and 7# are shown in Figure 9. By
comparing the macro morphology of these four samples, it can be seen that all the fracture
morphologies were typical cup-shaped vertebrae, which was their common point. The 5#

sample had the largest radiation area, and the shape tended to be a regular circle. Secondary
microcracks with high density were evenly distributed in the radiation area. This indicated
that the sample’s structure was relatively uniform. The radiation area of sample 2# was
an irregular oval with a small area. In contrast, the shear lip area was large. Moreover,
the fracturing of the 2# sample was relatively flat, with only a small number of secondary
cracks, which generally presented the characteristics of brittle fracture. The fiber area at the
fracture of the 6# sample was near the center of the circle, and the shape of the radiation
area was a regular circle with a large area. The regularity of the fracture morphology of
sample 7# was the worst, where the fiber area was far away from the center of the circle, the
morphology of the radiation area was irregular, and the radiation area was very uneven
with a large number and distribution of long and deep cracks. In addition, the area of the
shear lip was large.
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Figure 8. Micro and macro fracture morphologies of the steel samples.

When comparing the microstructures of the four steel samples’ fractures, it was found
that they all contained three kinds of microstructures, namely, secondary microcracks, tear
dimples and fine equiaxed dimples. With the increase in alkalinity, the microstructure at
the fracture surface of the samples changed greatly: the number and size of secondary
microcracks gradually increased, there were high-density large and deep holes in the
fracture of the 6# sample (these holes were likely caused by large hard inclusions), and
there were not only large and deep holes but also many cleavage planes at the fracture
of sample 7#.
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3.5. Thermodynamic Calculations of Isoactivity Lines

The calculation of the component activity of the CaO–SiO2–Al2O3–MgO (10 wt.%)
quaternary inclusion system was mainly completed by the phase diagram module in Fact-
sage software. This part mainly calculated the isoactivity lines of CaO, SiO2 and Al2O3
when the reaction reached equilibrium at 1873 K. The results are shown in Figure 10. It
was obvious that the value of aSiO2 decreased sharply from 0.7 to 0.02 as the value of R
gradually increased. In contrast, the values of aCaO and aAl2O3 increased from 0.00001 to
0.01 and from 0 to 0.05, respectively. Within the low-melting-point zone, the value of aSiO2

was one order of magnitude larger than that of aCaO, which meant that the content of SiO2
in the generated inclusions was significantly higher than that of CaO, which was consistent
with the experimental results.
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The contents of [O] and [Al] in steel have an important influence on the number,
size and morphology of inclusions. Too high of a content of [O] will produce a large
number of oxide inclusions and too high of a content of [Al] will produce brittle and hard
inclusions with edges and corners, such as Al2O3 and MgO·Al2O3, which will seriously
endanger the mechanical properties of spring steel. Therefore, the isooxygen (Iso-[O]) line
and isoaluminum (Iso-[Al]) line were calculated to determine the ranges of [O] and [Al]
contents where low-melting-point inclusions were formed.

The Equilib module and Phase Diagram module in Fact-sage software were used to
calculate the Iso-[O] line and Iso-[Al] line when the 55SiCr molten steel was in equilibrium
with CaO–SiO2–Al2O3–MgO quaternary inclusions. The chemical composition of 55SiCr
steel is shown in Table 1. The activity coefficients of C, Si, Mn, Cr, Ni, V, Al, O, S, P and
other elements were mainly used in the calculation. The activity coefficients fi of each
element can be calculated according to Equation (1).

lg fi = ∑ ej
i [%j] (1)

where fi is the activity coefficient of element i and ej
i is the interaction coefficient of element

j with i, as shown in Table 8.

Table 8. Interaction coefficients of elements in molten steel at 1873 K [25].

i
j

Al Si Mn O P S C Cr V Ni

Al 0.043 [26] 0.0056 0.0065 −1.867 [27] 0.0033 0.030 0.091 0.0120 / −0.017
Si 0.058 0.1100 0.0020 −0.230 [28] 0.1100 0.056 0.180 0.0003 0.025 0.005
O −3.900 [29] −0.1310 −0.0210 −0.200 0.0700 0.133 0.450 0.0459 −0.300 0.006

(1) The isooxygen (Iso-[O]) line

The chemical reaction of [Si] and [O] in molten steel is shown in Equation (2) [25] and
Equation (3) can be derived from it.

The activity value of SiO2 in Figure 10 and the relevant data in Tables 1 and 6 were
substituted into Equation (3) to calculate the isooxygen (Iso-[O]) line of 55SiCr molten steel
and CaO–SiO2–Al2O3–MgO quaternary inclusions in molten steel at 1873 K. The results
are shown in Figure 11a. It was obvious that the oxygen content in the low-melting-point
region near the calcline in the phase diagram was 0.0015 wt.%~0.0085 wt.%, with a large
controllable range.

[Si] + 2[O] = SiO2; ∆Gθ = −581900 + 221.8T J/mol (2)
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[%O] = (
aSiO2

K × fSi × [%Si]× f 2
O
)

1/2
(3)
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(2) The isoaluminum (Iso-[Al]) line

The chemical reaction of [Al] and [O] in molten steel is shown in Equation (4) [30] and
Equation (5) can be derived from it.

The activity value of SiO2 in Figure 10 and the relevant data in Tables 1 and 6 were
substituted into Equation (5) to calculate the isooxygen (Iso-[Al]) line of 55SiCr molten steel
and CaO–SiO2–Al2O3–MgO quaternary inclusions in molten steel at 1873 K. The results
are shown in Figure 11b. It was obvious that the oxygen content in the low-melting-point
region near the calcline in the phase diagram was 0.00001 wt.%~0.0040 wt.%, with a small
controllable range. Thus, the content of [Al] in steel needs to be strictly controlled at a very
low level in order to obtain low-melting-point inclusions in the smelting process of low
alkalinity refining slag combined with silicon deoxidation.

4[Al] + 3[SiO2] = 2(Al2O3) + 3[Si]; ∆Gθ = −658300 + 107.2T J/mol (4)

[%Al] =(
a2

Al2O3
× f 3

[Si] × [%Si]3

a2
SiO2

× f 4
[Al] × K

)1/4 (5)

In this study, the content of T.O in all steels was about 0.0020 wt.% and the content of
all [Al] was about 0.0015 wt.%. Therefore, the inclusions in all of the group steels can be
controlled in the low-melting-point region, which is consistent with the actual test results.

For the group made up of the 1#~4# steels, the compositions of inclusions were
consistent with those of refining slag when the three phases of steel–slag–inclusion reached
equilibrium. Therefore, the content of [Al]s in the molten steel and the Al2O3 content of
inclusions in steel increased gradually as the Al2O3 content in the slag gradually increased.

For the group made up of the 5#, 2#, 6# and 7# steels, the activity of SiO2 gradually
decreased with the increasing alkalinity of the slag, which inhibited the progress of the
reaction shown in Equation (4); as a result, the T.O content and the total number of inclu-
sions in steel decreased gradually. In addition, the content of CaO in inclusions increased
gradually with the basicity of slag gradually increasing due to the composition of inclusions
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being consistent with that of refining slag when the three phases of steel–slag–inclusion
reached equilibrium.

3.6. Influence of Al2O3 Content and Basicity on the Viscosity and Structure of the Slag

Increasing the Al2O3 content and basicity in the refining slag had an obvious impact
on the thermochemical and thermophysical properties of the slag, including their structure,
viscosity and surface tension [31,32]. The effect of Al2O3 content and basicity on the
viscosity of the slag at different temperatures was studied using a viscometer and the
results are shown in Figure 12.
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It was obvious that the viscosity of the slag increased gradually with the increase in the
Al2O3 content. In contrast, the viscosity of the slag gradually decreased with the increase
in basicity. In addition, the viscosity of the slag increased sharply as the temperature
gently decreased. The change in slag viscosity was caused by the significant change in its
microstructure.

The network structure of slag is shown in Figure 13. The viscosity of slag is often
indirectly characterized by the degree of polymerization of the network structure, and the
viscosity increases with the increase in the degree of polymerization.
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In order to research the relationship between the structure and composition of molten
slag, the molten slag quenched in water was further analyzed by using FTIR. Characteristic
transmittance peaks in the FTIR spectra for silicate systems were observed in the wavenum-
ber region between 1200 and 400 cm−1 [33]. In detail, the band group of Si-O bonds existed
between 1030 and 750 cm−1, which corresponds to NBO (non-bridging oxygen) of 1 to
4 [34]. The band group shown in the range of 750-630 cm−1 was related to the asymmetric
stretching vibration of [AlO4]5− tetrahedral units, and the trough near 500 cm−1 indicates
Si-O-Al bending.

Figure 14 shows the effect of Al2O3 and basicity on the FTIR transmittance spectra of
the CaO–SiO2–Al2O3–10 wt% MgO slag. As can be seen in Figure 14a, the transmittance
trough for the [AlO4] 5− tetrahedral stretching for wavenumbers of 750–630 cm−1 became
deeper and more pronounced with the increase in Al2O3 content. This suggested the
occurrence of the polymerization of complex aluminate structures using the tetrahedral
[AlO4]5− structural units with higher Al2O3. In addition, the Si-O-Al bending trough
moved to higher wavenumbers, which suggested that the distance between Si/Al and
O became shorter, i.e., the network structure was polymerized, as proposed by Badger’s
rule [35]. Moreover, the trough of the [SiO]−4 tetrahedral band group experienced only a
small change, which means that, in this experiment, Al2O3 content had little effect on the
[SiO]−4 tetrahedral structure. This showed that the amount of complex silicate structures
increased. These results correlated well with the viscosity measurements.
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As can be seen from Figure 14b, the lower limit of the [SiO4]− tetrahedral bands at
about 1030-750 cm−1 shifted to a lower wavenumber from about 790 to 750 cm−1 with an
increase in the basicity of the slag from 0.5 to 1.2. Furthermore, the broadening of the width
of the [SiO4]− tetrahedral bands suggested an increase in distance between the Si and O.
This shows that the silicate network structures in the slag melt were depolymerized with
an increase in the basicity of the slag. In addition, the trough of the [AlO4]− tetrahedral
bands at about 750–630cm−1 dampened with increasing basicity and almost disappeared
at the basicity of 1.2 [36,37]. This indicated that the aluminate network structures in the
slag melt were also depolymerized with increasing basicity. It seems reasonable to consider
that the band groups observed at about 500 cm−1 were the Si-O-Al bending vibrations.
It can be concluded that further depolymerization of a complex silicate and aluminate
network structure occurred at a higher basicity. These results correlated well with the
viscosity measurements.
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3.7. Removal of Inclusions via the Adsorption of Refining Slag

The physical properties of slag can significantly affect its adsorption and removal of
inclusions. The melting point of slag decreased with the increase in Al2O3 content, and
the fluidity increased, which increased the adsorption capacity of slag to inclusions. In
contrast, the viscosity of slag increased with the increase in Al2O3 content, which made
it more difficult for inclusions to pass through the steel–slag interface. Therefore, the
comprehensive effect caused the number of inclusions in the steel gradually decrease before
it increased. In addition, the gradual increase in slag viscosity reduced the situation where
it was entrapped in molten steel and became foreign inclusions, and thus, the proportion of
large-sized inclusions in steel continued to decrease [38–40].

When the viscosity of slag decreased with the increase in slag basicity, it makes it easier
for refining slag to be entrapped in molten steel and become foreign inclusions [38–40]. In
addition, the fluidity will weaken sharply due to the melting point of slag increasing with
the increase in CaO content in slag, resulting in a decrease in its adsorption capacity for
inclusions [41]. Therefore, the comprehensive effect is that the percentage of the number of
large inclusions in steel increased with the increase in slag basicity.

4. Conclusions

The effects of Al2O3 and basicity in the CaO–SiO2–Al2O3–10 wt.% MgO system LF
refining slag on inclusions removal in 55SiCr spring steel were investigated at 1873 K. The
results can be summarized as follows:

(1) With the Al2O3 content increasing from 3 wt.% to 12 wt.%, the number percentage
of inclusions with a diameter larger than 5 µm decreased sharply. Furthermore, the
quality density of inclusions gradually increased simultaneously.

(2) In contrast, the opposite pattern was found as the basicity increased from 0.5 to 1.2.
(3) There were four kinds of typical inclusions in all steel samples, namely,

CaO–SiO2–Al2O3–MgO, CaO–SiO2–Al2O3–MgO–MnS, MnS, and SiO2. In addition,
most of the compound oxide inclusions, especially for CaO–SiO2–Al2O3–MgO inclu-
sions, were concentrated in the low-melting-point region.

(4) The viscosity of the molten slag gradually increased with the content of Al2O3 in-
creasing, which increased the degree of polymerization of the slag network structure,
especially the [AlO4]5− and [Si-O-Si] structures. In contrast, the viscosity of molten
slag experienced the opposite pattern with the basicity of molten slag increasing. This
was due to the fact that Ca2+ can significantly reduce the degree of polymerization of a
slag network structure, especially the percentages of [SiO4]4−, [AlO4]5− and [Si-O-Si]
network structures.
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