Electro-Optical Characteristics of Solution-Derived Zinc Oxide Film According to Number of Rubbing Iterations for Liquid Crystal Alignment
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yin, K.; Hsiang, E.-L.; Zou, J.; Li, Y.; Yang, Z.; Yang, Q.; Lai, P.-C.; Lin, C.-L.; Wu, S.-T. Advanced liquid crystal devices for augmented reality and virtual reality displays: Principles and applications. Light Sci. Appl. 2022, 11, 161. [Google Scholar] [CrossRef]
- Hsiang, E.-L.; Yang, Z.; Yang, Q.; Lai, P.-C.; Lin, C.-L.; Wu, S.-T. AR/VR light engines: Perspectives and challenges. Adv. Opt. Photonics 2022, 14, 783–861. [Google Scholar] [CrossRef]
- Ishihara, S.; Wakemoto, H.; Nakazima, K.; Matsuo, Y. The effect of rubbed polymer films on the liquid crystal alignment. Liq. Cryst. 1989, 4, 669–675. [Google Scholar] [CrossRef]
- Schwartz, J.J.; Mendoza, A.M.; Wattanatorn, N.; Zhao, Y.; Nguyen, V.T.; Spokoyny, A.M.; Mirkin, C.A.; Baše, T.; Weiss, P.S. Surface dipole control of liquid crystal alignment. J. Am. Chem. Soc. 2016, 138, 5957–5967. [Google Scholar] [CrossRef][Green Version]
- Wei, X.; Hong, S.-C.; Zhuang, X.; Goto, T.; Shen, Y.R. Nonlinear optical studies of liquid crystal alignment on a rubbed polyvinyl alcohol surface. Phys. Rev. E 2000, 62, 5160–5172. [Google Scholar] [CrossRef][Green Version]
- Chaudhari, P.; Lacey, J.; Doyle, J.; Galligan, E.; Lien, S.-C.A.; Callegari, A.; Hougham, G.; Lang, N.D.; Andry, P.S.; John, R.; et al. Atomic-beam alignment of inorganic materials for liquid-crystal displays. Nature 2001, 411, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Hegmann, T. Multiple Alignment Modes for Nematic Liquid Crystals Doped with Alkylthiol-Capped Gold Nanoparticles. ACS Appl. Mater. Interfaces 2009, 1, 1731–1738. [Google Scholar] [CrossRef]
- Singh, G.; Vijaya Prakash, G.; Choudhary, A.; Biradar, A.M. Homropic alignment of nematic liquid crystals with negative dielectric anisotropy. Phys. B 2010, 405, 2118–2121. [Google Scholar] [CrossRef]
- Prasannan, P.; Malik, P.; Kumar, A.; Castagna, R.; Singh, G. Recent advances and future perspectives on nanoparticles-controlled alignment of liquid crystals for displays and other photonic devices. Crit. Rev. Solid State Mater. Sci. 2022, 47, 1–36. [Google Scholar]
- Singh, G.; Fisch, M.; Kumar, S. Emissivity and electrooptical properties of semiconducting quantum dots/rods and liquid crystal composites: A review. Rep. Prog. Phys. 2016, 79, 056502. [Google Scholar] [CrossRef]
- Supreet; Singh, G. Recent advances on cadmium free quantum dots-liquid crystal nanocomposites. Appl. Mater. Today 2020, 21, 100840. [Google Scholar] [CrossRef]
- Kumar, A.; Sing, D.P.; Singh, G. Recent progress and future perspectives on carbon-nanomaterial-dispersed liquid crystal composites. J. Phys. D-Appl. Phys. 2022, 55, 083002. [Google Scholar] [CrossRef]
- Schadt, M.; Schmitt, K.; Kozinkov, V.; Chigrinov, V. Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers. Jpn. J. Appl. Phys. 1992, 31, 2155–2164. [Google Scholar] [CrossRef]
- Tatipamula, A.K.; Kirzhner, M.G.; Chaudhary, A.; Klebanov, M.; Abdulhalim, I. Electro-optical properties of photoaligned liquid crystal cells prepared with obliquely irradiated chalcogenide glasses. J. Mol. Liq. 2022, 349, 118087. [Google Scholar] [CrossRef]
- Sharpnack, L.; Kirzhner, M.G.; Agra-Kooijman, D.M.; Chaudhary, A.; Kumar, T.A.; Klebanov, M.; Sheremet, N.; Reznikov, Y.; Abdulhalim, I.; Kumar, S. Morphological anisotropy of nano-dimensional arsenic trisulfide glass films and liquid crystal photoalignment. Mol. Cryst. Liq. Cryst. 2017, 647, 307–319. [Google Scholar] [CrossRef]
- Sheremet, N.V.; Sharpnack, L.; Gelbaor-Kirzhner, M.; Agra-Kooijman, D.M.; Chaudhary, A.; Kumar, T.A.; Klebanov, M.; Abdulhalim, I.; Kumar, S.; Reznikov, Y.A. Liquid crystal photoalignment on As2S3 chalcogenide thin films. J. Phys. D Appl. Phys. 2017, 50, 065306. [Google Scholar] [CrossRef]
- Lee, J.J.; Park, H.-G.; Han, J.-J.; Kim, D.-H.; Seo, D.-S. Surface reformation on solution-derived zinc oxide films for liquid crystal systems via ion-beam irradiation. J. Mater. Chem. C 2013, 1, 6824–6828. [Google Scholar] [CrossRef]
- Park, H.-G.; Kim, Y.-H.; Oh, B.-Y.; Lee, W.-K.; Kim, B.-Y.; Seo, D.-S.; Hwang, J.-Y. Vertically aligned liquid crystals on a γ-Al2O3 alignment film using ion-beam irradiation. Appl. Phys. Lett. 2008, 93, 233507. [Google Scholar] [CrossRef]
- Jang, J.I.; Jeong, H.-C. Shear induced TiO2 nano structure using brush-coating for liquid crystal alignment. Crystals 2020, 10, 860. [Google Scholar] [CrossRef]
- Park, H.-G.; Jeong, H.-C.; Park, T.-K.; Seo, D.-S. Ion-beam-irradiated solution-derived tin oxide films for liquid crystal orientation. RSC Adv. 2015, 5, 1918–1922. [Google Scholar] [CrossRef]
- Liu, M. Liquid crystal orientation induced by van der Waals interaction. Jpn. J. Appl. Phys. 2004, 43, 8156–8160. [Google Scholar] [CrossRef]
- Park, H.-G.; Kim, E.-M.; Heo, G.-S.; Jeong, H.-C.; Lee, J.H.; Han, J.-M.; Kim, T.W.; Seo, D.-S. Electro-optical properties of liquid crystal displays based on the transparent zinc oxide films treated by using a rubbing method. Opt. Mater. 2018, 75, 252–257. [Google Scholar] [CrossRef]
- Choi, S.-H.; Kim, J.-A.; Lee, S.-Y.; Hwang, K.-J.; Park, S.-E.; Ji, E.-S.; Park, H.-G. Effect of atmospheric plasma and rubbing coprocessing on liquid crystal alignment on a polyimide layer. Opt. Mater. 2021, 122, 111759. [Google Scholar]
- Han, K.Y.; Miyashita, T.; Uchida, T. Accurate measurement of the pretilt angle in a liquid crystal cell by an improved crystal rotation method. Mol. Cryst. Liq. Cryst. 1994, 241, 147–157. [Google Scholar] [CrossRef]
- Guo, Y.; Jiang, M.; Afghah, S.; Peng, C.; Selinger, R.L.B.; Lavrentovich, O.D.; Wei, Q.-H. Photopatterned designer disclination networks in nematic liquid crystals. Adv. Opt. Mater. 2021, 9, 2100181. [Google Scholar] [CrossRef]
- Park, H.-G.; Lee, Y.-G.; Jang, S.B.; Lee, J.H.; Jeong, H.-C.; Seo, D.-S.; Oh, B.-Y. Effect of the annealing temperature and ion-beam bombardment on the properties of solution-derived HfYGaO films as liquid crystal alignment layers. J. Vac. Sci. Technol. A 2015, 33, 061507. [Google Scholar] [CrossRef]
- Nie, X.; Lu, R.; Xianyu, H.; Wu, T.X.; Wu, S.-T. Anchoring energy and cell gap effects on liquid crystal response time. J. Appl. Phys. 2007, 101, 103110. [Google Scholar] [CrossRef][Green Version]
- Weng, L.; Liao, P.-C.; Lin, C.-C.; Ting, T.-L.; Hsu, W.-H.; Su, J.-J.; Chien, L.-C. Anchoring energy enhancement and pretilt angle control of liquid crystal alignment on polymerized surfaces. AIP Adv. 2015, 5, 097218. [Google Scholar] [CrossRef]
- Oswald, P. Comment on the Determination of the Polar Anchoring Energy by Capacitance Measurements in Nematic Liquid Crystals. Appl. Sci. 2021, 11, 7387. [Google Scholar] [CrossRef]
- Kirzhner, M.G.; Kumar, T.A.; Chaudhary, A.; Klebanov, M.; Abdulhalim, I. Polar anchoring energy measurement of photoaligned nematic liquid crystal on nanodimensional chalcogenide glass films. J. Mol. Liq. 2018, 267, 182–186. [Google Scholar] [CrossRef]
- Chaudhary, A.; Klebanov, M.; Abdulhalim, I. Liquid crystals alignment with PbS nanosculptured thin films. Liq. Cryst. 2018, 56, 3–10. [Google Scholar] [CrossRef]
- Pereira, H.A.; Batalioto, F.; Evangelista, L.R. Contribution of the ionic adsorption phenomenon to the effective anchoring energy of a nematic liquid-crystal sample. Phys. Rev. E 2003, 68, 04071. [Google Scholar] [CrossRef] [PubMed]
- Park, K.A.; Lee, S.M.; Lee, S.H.; Lee, Y.H. Anchoring a liquid crystal molecule on a single-walled carbon nanotube. J. Phys. Chem. C 2007, 111, 1620–1624. [Google Scholar] [CrossRef]
Sample | V–T (V) | RT (ms) | ||
---|---|---|---|---|
Rubbing Iteration Number | Threshold Voltage | Rise Time | Fall Time | Total RT |
1 | 1.72 | 3.55 | 7.87 | 11.42 |
3 | 1.60 | 3.45 | 7.21 | 10.66 |
5 | 1.54 | 2.02 | 6.22 | 8.24 |
7 | 1.65 | 2.22 | 6.90 | 9.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.-G.; Kim, J.-A.; Ko, B.-J. Electro-Optical Characteristics of Solution-Derived Zinc Oxide Film According to Number of Rubbing Iterations for Liquid Crystal Alignment. Crystals 2022, 12, 1711. https://doi.org/10.3390/cryst12121711
Park H-G, Kim J-A, Ko B-J. Electro-Optical Characteristics of Solution-Derived Zinc Oxide Film According to Number of Rubbing Iterations for Liquid Crystal Alignment. Crystals. 2022; 12(12):1711. https://doi.org/10.3390/cryst12121711
Chicago/Turabian StylePark, Hong-Gyu, Jin-Ah Kim, and Bong-Jin Ko. 2022. "Electro-Optical Characteristics of Solution-Derived Zinc Oxide Film According to Number of Rubbing Iterations for Liquid Crystal Alignment" Crystals 12, no. 12: 1711. https://doi.org/10.3390/cryst12121711