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Abstract: Electromagnetic levitation (EML) was employed for studying the velocity and morphology
of the solidification front as a function of undercooling of metallic materials. The limitation of the EML
technique with respect to low melting alloys that emit outside the visible light spectrum was overcome
by employing state-of-the-art high-speed mid-wavelength infrared cameras (MWIR cameras) with a
photon detector. Due to the additional thermography contrast provided by the emission contrast of
the solid and liquid phases, conductor, and semi-conductor, the pattern formation of Al-based alloys
was studied in detail, revealing information on the nucleation, phase selection during solidification,
and the influence of convection.
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1. Introduction

The Use of electromagnetic levitation (EML) facilities is a well-established method for
directly monitoring the solidification process of conductive samples and evaluating various
thermophysical parameters of the liquid phase using pyrometers and high-speed cam-
eras [1]. To obtain substantial undercoolings (typical up to 20% of the melting temperature),
samples are freely levitated in an ultraclean environment throughout the experiment,
thereby avoiding or minimizing heterogeneous nucleation sites at the crucible wall or
impurities, respectively [2,3]. The process allows for the fabrication of materials with
metastable phase equilibria that possess new physical properties, such as quasicrystals,
metallic glasses, supersaturated solids, and grain-refined materials [4–6].

Previous studies report various in-situ observation methods that are combined with
EML setups. The first published method by Schleip et al. in 1988 used two silicon photodi-
odes with a response time of 1 µs to catch the recalescence front and measure the growth
velocity of dendrites [7,8]. A metal needle was positioned at the south pole of the sample
and triggered solidification. The photodiodes recorded the recalescence generated by the
liquid–solid phase transition, and the solidification length and time interval between two
heating signals were utilized to calculate the dendritic growth velocity. Later, Eckler et al.
provided an idea to measure the solidification time from the sample bottom to top by using
capacitance proximity sensors (CPS) [9,10], a technique with a measurement principle
similar to the photodiode technique. The microstructure of the levitated samples was
studied post-mortem after complete solidification (see Figures 1 and 2). The reliability of
the above-mentioned photodiode-related methods relies on the relative spatial position of
the solidification direction and recalescence front. In this arrangement, in the worst-case
scenario, the photodiode misses the event of recalescence. In addition, the applied external
trigger, which is also used to control the solidification direction, can stick to the sample
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and lead to a contamination of the sample during the solidification process, hindering
the analysis.
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solidification of nickel droplets using HSC (see Figure 3) [11]. In this case, the requirement 
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approach and the photodiode technique, the effectiveness of the measurements is excep-

tionally high. Not only was it feasible to capture the progression of the recalescence fronts 

at various levels of undercooling, but it also provided proof of the formation of metastable 

phases [13]. Hartmann et al. found, in 2008, the formation of a metastable phase with a 

transition to a stable phase in the form of a double recalescence in titanium–aluminum 

alloys (see Figure 4). In both cases, as presented in Figures 3 and 4, one can well observe 

and evaluate recalescence fronts; however, they cannot be linked directly to the crystalline 
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Figure 2. Dendritic structure of an EML droplet.

With the development of image-recording technology, the use of high-speed cameras
(HSC) has allowed for the more detailed study of microstructure formation during EML
experiments [11,12]. It permits in-situ recording of half of the sample surface with enhanced
spatial resolution and enables the visualization of the path of recalescence fronts across the
entire surface of the droplet during periods of milliseconds or less. Matson was the first to
describe the recalescence front morphology and crystallization kinetics for the solidification
of nickel droplets using HSC (see Figure 3) [11]. In this case, the requirement for an
external trigger for nucleation is eliminated. When compared with both the CPS approach
and the photodiode technique, the effectiveness of the measurements is exceptionally
high. Not only was it feasible to capture the progression of the recalescence fronts at
various levels of undercooling, but it also provided proof of the formation of metastable
phases [13]. Hartmann et al. found, in 2008, the formation of a metastable phase with a
transition to a stable phase in the form of a double recalescence in titanium–aluminum
alloys (see Figure 4). In both cases, as presented in Figures 3 and 4, one can well observe
and evaluate recalescence fronts; however, they cannot be linked directly to the crystalline
structure of the bulk. With the use of mathematical methods of simulation, it became
possible to visualize both the two-dimensional structure of the recalescence/crystallization
front and the internal crystalline structure of the solidifying droplet (see Figure 5) [14].



Crystals 2022, 12, 1691 3 of 11

Crystals 2022, 12, x FOR PEER REVIEW 3 of 12 
 

 

The time resolution of the HSC technique is several orders lower than that of the CPS 

technique, which is a drawback of the HSC method. In addition, high-speed cameras op-

erating in the visible light spectrum only allow for an observation temperature starting 

from 798 K (Draper point) [15]. In contrast, IR and MWIR Bolometer cameras operate at 

lower temperatures but lack the necessary frame rate to capture the solidification process. 

For those reasons, the in-situ observation of low-melting alloys with EML was impossible 

until the present [16]. Now, state-of-the-art MWIR photon-detector cameras that use the 

photo effect instead of the change in resistivity, as with bolometer cameras, offer signifi-

cantly higher rates of data acquisition: 30,000 fps instead of the 60 fps for bolometer cam-

eras [17]. Although, they do not match the acquisition rate of VIS high-speed cameras, 

they offer, for the first time, the possibility to investigate the melting and solidification 

process in low-melting alloys [18,19]. 

 

Figure 3. Visualization of the solidification front as it propagates through the nickel sample [11]: 

solidification was triggered for initial undercooling (a) ΔT = 90 K and (b) ΔT = 140 K. Copyright 1998 

The Minerals, Metals & Materials Society; used with permission. 

 

Figure 4. Evolution of recalescence fronts over the surface of droplets from the Ti45Al55 alloy for 

different initial undercoolings [13]. The upper time sequence of droplet solidification shows the 

structure of the recalescence front after reaching the initial supercooling ΔT = 120 K. In this case, a 

stable face-centered cubic lattice (FCC-lattice) of the γ-phase is formed. The lower time sequence of 

droplet solidification shows the structure of the recalescence front after reaching the initial under-

cooling ΔT = 286 K with the formation of a metastable hexagonal close-packed lattice (HCP-lattice) 

first and then a stable FCC-lattice of the γ-phase. Copyright 2008 Elsevier Publishing; used with 

permission. 

Figure 3. Visualization of the solidification front as it propagates through the nickel sample [11]:
solidification was triggered for initial undercooling (a) ∆T = 90 K and (b) ∆T = 140 K. Copyright 1998
The Minerals, Metals & Materials Society; used with permission.
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Figure 4. Evolution of recalescence fronts over the surface of droplets from the Ti45Al55 alloy
for different initial undercoolings [13]. The upper time sequence of droplet solidification shows
the structure of the recalescence front after reaching the initial supercooling ∆T = 120 K. In this
case, a stable face-centered cubic lattice (FCC-lattice) of the γ-phase is formed. The lower time
sequence of droplet solidification shows the structure of the recalescence front after reaching the
initial undercooling ∆T = 286 K with the formation of a metastable hexagonal close-packed lattice
(HCP-lattice) first and then a stable FCC-lattice of the γ-phase. Copyright 2008 Elsevier Publishing;
used with permission.
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Figure 5. Simulated evolution of the dendritic structure of a glass-fluxed sample of pure nickel at
different stages of solidification [14]. (a) Early stage of recalescence. (b) Late stage of recalescence.
(c) Coarsening process.
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The time resolution of the HSC technique is several orders lower than that of the
CPS technique, which is a drawback of the HSC method. In addition, high-speed cameras
operating in the visible light spectrum only allow for an observation temperature starting
from 798 K (Draper point) [15]. In contrast, IR and MWIR Bolometer cameras operate at
lower temperatures but lack the necessary frame rate to capture the solidification process.
For those reasons, the in-situ observation of low-melting alloys with EML was impossible
until the present [16]. Now, state-of-the-art MWIR photon-detector cameras that use
the photo effect instead of the change in resistivity, as with bolometer cameras, offer
significantly higher rates of data acquisition: 30,000 fps instead of the 60 fps for bolometer
cameras [17]. Although, they do not match the acquisition rate of VIS high-speed cameras,
they offer, for the first time, the possibility to investigate the melting and solidification
process in low-melting alloys [18,19].

In addition to optical high-speed cameras, X-ray diffractometry is also employed for
visualizing surface patterns. It is possible to indirectly reproduce primary or secondary
pattern formation during droplet solidification. As an example, using time-resolved two-
dimensional X-ray diffractometry, K. Nagashio et al. investigated the spontaneous dendrite
fragmentation during solidification from undercooled Si melt and found that the fragmen-
tation occurred after recalescence at the initial stage of the “temperature-time” plateau
period [20]. Such an analysis allows us to verify and correct the existing theories on crystal’s
growth and fragmentation models. Time-resolved in-situ high-energy X-ray diffraction
also provides the opportunity to study the liquid–liquid and liquid–solid transformation,
the phase selection, and phase fractions in real time in containerless rapid solidification
processes [21].

This article explored the possibility of implementing high-speed MWIR cameras in
EML facilities for studying the solidification process of low-melting alloys, such as Al-rich
binary alloys with melting points below 923 K. Details such as the phase selections at
various undercoolings and local conditions were analyzed in-situ by employing a state-of-
the-art photon detector camera in combination with post-mortem microstructure analysis.

2. Experiment

The alloys used in this study were Al–30.6 wt.% Cu, Al–6 wt.% Ni, Al–16 wt.% Si,
and Al–20 wt.% Si, which were prepared by melting 4 N purity aluminum, copper, nickel,
or silicon, respectively, in an inductive furnace with a cold wall crucible; for details, see
ref. [19]. After verifying the nominal composition with Energy Dispersive X-Ray Analysis
(EDX analysis), the samples were cut and ground to 500 mg cubes and then stored in
isopropyl to prevent pollution and oxidation.

A schematic view of the EML facility is sketched in Figure 6. In general, the design of
the levitation system consists of

- a gas pumping system to reach the vacuum within the levitation camera deep enough
to prevent the oxidation of the sample surface as much as possible;

- a conical or cylindrical coil, inside which the alternating electric current produces the
electromagnetic field directed in the side opposite to the direction of the gravitational field;

- a droplet which may levitate if the balance between electromagnetic and gravitational
fields is reached within the coil and strong enough to pick up the droplet from the
initial holder;

- a pump or gas ejector to let in cooling gas (hydrogen-helium mixture or argon) to
cool down the melted droplet (after its heating due to electric current flowing in the
droplet from the induced alternating electromagnetic field);

- a triggering needle to initiate the process of crystallization (the needle should be made
from the same material/alloy as the droplet itself).
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for recording the solidification process of low-melting alloys.

The levitation process is controlled by the power of the high-frequency generator,
which supplies current to the coil to create an electromagnetic field with the power necessary
to levitate a specific sample of a given mass and geometry. In the present work, the square
samples had a side length of 5 to 7 mm and were placed on a sample holder between
the upper and lower coil. An alternating current with a frequency of f ≈ 300 kHz and a
power of P = 0.3 to 10 kW was applied for generating an electromagnetic field. The coil
design was optimized in order to counteract gravity and heat the sample [22]. For each
sample, several heating and cooling cycles were applied, and the solidification process was
monitored by pyrometer and a high-speed MWIR camera. The infrared camera utilized in
this study was an IR-8300 manufactured by InfraTec GmbH, Germany, with an area detector
of 640 × 480 pixels (max. resolution 15 µm × 15 µm per pixel) and a temperature range
from −40 to 1500 ◦C. The camera was situated outside the vacuum chamber, and an MWIR
transparent calcium fluoride window was used for observation. The images were captured
at a frame rate of 670 fps with a size of 320 × 240 pixels2. For data acquisition (samples size,
temperature distribution), the software IRBIS®3 by InfraTec GmbH, Germany was used.
The temperature-time profiles were continuously measured by an infrared pyrometer on
the top of the sample. A high-purity He (6 N) gas flow was applied for additional cooling.
After the last cycle, the surfaces of all the samples were directly observed by scanning
electron microscopy (SEM). Then, the samples were cut from the middle, embedded, and
polished to 1 µm for detailed microstructural analysis.

3. Results
3.1. In-Situ Observation of Pattern Formation and Micrographs of Al–30.6 wt.% Cu Alloy

A sequence of thermograms recorded during the solidification process of Al–30.6 wt.%
Cu is shown in Figure 7. The thermograms at 0 s and 0.012 s show the growth of a
dendritic solid–liquid (S/L) front. The distinction between oxide and metallic phases
was made by emissivity. Measured front positions and estimated growth velocities are
frequently used for determining simulation parameters and serve as the model refinement
for dendritic growth at higher undercoolings [23]. In the thermograms from 1.407 s to
1.493 s, the subsequent formation of eutectic cells was visible. Several eutectic cells grew
simultaneously and formed eutectic grains. The resulting fine structures are shown in the
micrograph of the cross-section in Figure 8. There existed features of the primary phase,
which can be described as fragmented dendrites. The fragmentation is caused by local
remelting initiated by the release of latent heat during the solidification of eutectic or due to
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convection. The lamellar spacing of eutectic was not uniform. When following the enlarged
eutectic pattern, a “honeycomb” structure became visible with fine eutectic in the grain
interior. The “honeycomb” structure has been reported in the literature before [24,25], but
the formation has thus far been subject to speculation.
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Figure 8. Honeycomb structure in Al–30.6 wt.% Cu with coarse cell walls and fine-grain interior after
the EML experiment. Red hexagon shows the typical honeycomb structure.

3.2. In-Situ Observation of Pattern Formation and Micrographs of Al–6 wt.% Ni Alloy

The solidification process of Al–6 wt.% Ni is given in Figure 9. The primary α-Al
phase formed and grew, and the motion of the S/L interface was traceable from the upper
right to the lower left (0–0.151 s). From t = 0.172, a spiral cluster developed ahead of the
solidification front, interacting with the primary phase coming from different directions.
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Figure 9. Image sequence of the solidification process of Al–6 wt.% Ni alloy showing the formation
of a spiral cluster ahead of the solidification front. The droplet was solidified from the initial
undercooling ∆T = 47 K.

The spiral cluster is marked with a white square in the micrograph (contrast given by
Back-Scatter Electron (BSE) diffraction) in Figure 10a. The micrograph complements the
observations; the spiral in the thermogram is composed of eutectic (light grey in BSE, green
in thermogram) and an α-Al phase (dark grey in BSE, blue in thermogram). The formation
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of the spiral is related to convection that transports hot melt and solute to the dendritic
solidification front, leading to a partial remelting of α-Al primary dendrites. The release
of latent heat during the formation of eutectic is another heat source that may cause the
remelting of the primary dendrites, see Figure 10b,c. The eutectic was rod-like (or fibrous)
and was found between the partially melted α-Al phases dendrites, as shown in Figure 10d.
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Figure 10. Micrograph of spiral cluster shown in thermogram t = 1.134 s (Figure 9) in BSE con-
trast, details of partially melted α-Al phase dendrites and rod-like eutectic revealing the distur-
bance of the solidification front and the local remelting of primary dendrites given at different
magnifications (a–d).

3.3. In-Situ Observation of Pattern Formation and Micrographs of Al-16 wt.% Si Alloy

The thermograms in Figure 11 show the solidification sequence of Al–16 wt.% Si. Si
nucleated first and acted as a nucleation site for eutectic growth (0 s), then eutectic cells
grew in a circular pattern. At 0.727 s, a red layer formed around each individual cell.
The comparison with the micrograph revealed it to be Si, which as a semiconductor has a
significantly different emissivity. When the Si layer ceased to grow, the eutectic resumed
forming until the solidification process was completed.
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with Al–16 wt.% Si (compare Figures 11 and 14). Primary Si nucleated at the helium-

Figure 11. Solidification sequence of Al–16 wt.% Si alloy: primary Si, eutectic, Si layer, and followed
by eutectic once more. The droplet was solidified from the initial undercooling ∆T = 134 K.

The primary Si at the surface of the Al–16 wt.% Si was also found by electron mi-
croscopy (see Figure 12). The eutectic cell that grew from the primary Si was also visible and
validified by EDX. The micrograph of a cross-section in Figure 13 confirms the nucleation
sequence observed by thermography: a fine eutectic surrounded the primary Si, then the
solidification sequence changed to Si again and ended with the formation of a significantly
coarser eutectic region.
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Figure 13. Optical microscope image of the cross-section of Al–16 wt.% Si confirming the solidification
sequence observed by thermography: primary Si, subsequently grown fine eutectic, followed by Si
once again, and coarse eutectic.

3.4. In-Situ Observation of Pattern Formation and Micrographs of Al–20 wt.% Si Alloy

Al–20 wt.% Si alloy showed a completely different growth pattern in comparison
with Al–16 wt.% Si (compare Figures 11 and 14). Primary Si nucleated at the helium-
cooled side and grew upwards in the form of dendrites (see Figure 14). At 5.072 s, eutectic
undercooling was reached and eutectic formed between the primary Si dendrites. The
micrograph in Figure 15 shows an example for a well-developed primary Si dendrite on
the sample surface.
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Figure 15. Micrograph (SEM image, BSE contrast) of Al–20 wt.% Si with well-developed primary Si
dendrite surrounded by fine eutectic. The concentration of primary dendrite stem is obtained using
an EDX point scan.

4. Discussion

The combination of thermograms recorded in-situ with a high-speed MWIR camera
during EML experiments and micrographs provides the possibility to study solidification
in low-melting alloys at high undercoolings. The maximum frequency of 670 fps for
320 × 240 pixel2, each pixel 15 × 15 µm2 allows the analysis of solid–liquid interface
velocities up to 10 m/s.

In principle, it is also possible to measure local temperatures, but this requires calibra-
tion, taking the different emissivity of the melt and solid (incl. phase-specific emissions)
and the curvature of the sample surface into account. This is so complex and subject to
errors that the measurement of the sample temperature with a two-color pyrometer and
the assignment of slope changes in the T-t diagrams to reactions is much more reliable.

For investigating the solidification process in-situ, however, the phase-specific emis-
sivity provides the necessary contrast for the distinction of phases. By that, details of the
solidification process, such as the formation of the honeycomb structure in Al–30.6 wt.%
Cu, become comprehensible. Eutectic growth started at different positions simultaneously,
and with increasing time the eutectic clusters grew closer to each other, the growth velocity
decreased, and the eutectic became coarser.

For Al–6 wt.% Ni, the effects caused by strong convection became directly visible.
During EML, convection is hard to avoid; it is induced by the strong alternating electric
field [26] and by forced cooling with helium, the latter also causing temperature gradients
from top to bottom. The remelting of the primary dendrites in Figure 10b may be caused
by either latent heat released during the eutectic reaction in the interdendritic spacing or by
convection that transports hot melt and solute. Since the remelting is more pronounced on
the left side of the dendrites, convection is the most plausible explanation.

An alternating phase sequence was observed in Al–16 wt.% Si. A Si particle, as
shown in Figure 11, was present in each center of the eutectic cells. The particle was
either undissolved Si or formed at high undercoolings. The idea of undissolved Si is
less likely since the samples were levitated in the liquid state for 3 min, 200 K above
liquidus temperature before quenching. More likely, Si formed during cooling in the
metastable temperature range. For the Au–Si system, another fcc–Si system, the formation
of metastable phases was reported by Kurtuldu and Löffler [27]. Stable or metastable, when
a Si-rich or pure Si particle forms from the melt at high undercoolings, its direct vicinity
becomes depleted in Si and is heated by latent heat. In the present case, that seems to
initiate coupled growth. The coupled zone in the Al–Si phase diagram in Figure 16 is highly
asymmetric [28]. It is situated on the Si-rich side, i.e., the liquid in front of the eutectic will
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be enriched in Si during the solidification of eutectic. When the supersaturation is high
enough, Si nucleates a second time in front of the eutectic front as observed experimentally.

Crystals 2022, 12, x FOR PEER REVIEW 10 of 12 
 

 

by either latent heat released during the eutectic reaction in the interdendritic spacing or 

by convection that transports hot melt and solute. Since the remelting is more pronounced 

on the left side of the dendrites, convection is the most plausible explanation. 

An alternating phase sequence was observed in Al–16 wt.% Si. A Si particle, as shown 

in Figure 11, was present in each center of the eutectic cells. The particle was either undis-

solved Si or formed at high undercoolings. The idea of undissolved Si is less likely since 

the samples were levitated in the liquid state for 3 min, 200 K above liquidus temperature 

before quenching. More likely, Si formed during cooling in the metastable temperature 

range. For the Au–Si system, another fcc–Si system, the formation of metastable phases 

was reported by Kurtuldu and Löffler [27]. Stable or metastable, when a Si-rich or pure Si 

particle forms from the melt at high undercoolings, its direct vicinity becomes depleted in 

Si and is heated by latent heat. In the present case, that seems to initiate coupled growth. 

The coupled zone in the Al–Si phase diagram in Figure 16 is highly asymmetric [28]. It is 

situated on the Si-rich side, i.e., the liquid in front of the eutectic will be enriched in Si 

during the solidification of eutectic. When the supersaturation is high enough, Si nucleates 

a second time in front of the eutectic front as observed experimentally. 

 

Figure 16. Al–Si phase diagram with unsymmetric coupled zone (blue dashed area). 

In Al–20 wt.% Si, Si is the primary phase. The thermograms show the growth of Si 

dendrites from the bottom to the top of the sample, following the temperature gradient 

dictated by the He flow. At the top of the sample, Si dendrites grew without the influence 

of the temperature gradient. They showed a five-fold symmetry, typically observed in 

hypereutectic Al–Si alloys experiencing slow solidification rates [29]. The eutectic growth 

in between the Si dendrites started later, i.e., at higher undercoolings. In comparison with 

Al–16 wt.% Si, the macroscopic temperature gradient impeded the observation of alter-

nating phases due to locally changing undercooling. 

Even though high-speed VIS cameras have advantages that cannot be replaced by 

high-speed IR cameras in terms of resolution and shooting frame rate yet, high-speed IR 

cameras that operate in the middle wavelengths range fill the gap in low-melting alloys 

and allow the observation of solid–liquid phase transition in unprecedented detail. 

5. Conclusions 

This article demonstrated the possibility of studying the solidification processes of 

low-melting alloys during electromagnetic levitation experiments in unprecedented detail 

by employing a high-speed MWIR camera and high-precision optics. Contrast was 

reached via differences in the emissivity of the conductor and semiconductor, liquid and 

solid, as well as composition. Phase identification still requires a comparative analysis of 

the thermograms with micrographs or diffractograms. 

Figure 16. Al–Si phase diagram with unsymmetric coupled zone (blue dashed area).

In Al–20 wt.% Si, Si is the primary phase. The thermograms show the growth of Si
dendrites from the bottom to the top of the sample, following the temperature gradient
dictated by the He flow. At the top of the sample, Si dendrites grew without the influence
of the temperature gradient. They showed a five-fold symmetry, typically observed in
hypereutectic Al–Si alloys experiencing slow solidification rates [29]. The eutectic growth
in between the Si dendrites started later, i.e., at higher undercoolings. In comparison
with Al–16 wt.% Si, the macroscopic temperature gradient impeded the observation of
alternating phases due to locally changing undercooling.

Even though high-speed VIS cameras have advantages that cannot be replaced by
high-speed IR cameras in terms of resolution and shooting frame rate yet, high-speed IR
cameras that operate in the middle wavelengths range fill the gap in low-melting alloys
and allow the observation of solid–liquid phase transition in unprecedented detail.

5. Conclusions

This article demonstrated the possibility of studying the solidification processes of
low-melting alloys during electromagnetic levitation experiments in unprecedented detail
by employing a high-speed MWIR camera and high-precision optics. Contrast was reached
via differences in the emissivity of the conductor and semiconductor, liquid and solid,
as well as composition. Phase identification still requires a comparative analysis of the
thermograms with micrographs or diffractograms.
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