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Abstract: A theory for crystal nucleation and growth with the recalescence front is developed. The
theory is based on the saddle-point technique for evaluating a Laplace-type integral as well as
the small parameter method for solving the moving boundary heat transfer problem. The theory
developed shows the U-shaped behavior of the growth velocity–melt undercooling curve. The
ordinary upward branch of this curve is caused by the growth dictated by heat transport and the
predominant crystal growth, while the unusual downward branch demonstrates the anomalous
behavior caused by the predominant nucleation and attachment kinetics of the growing crystals to
the phase interface. Such a U-shaped behavior of the growth velocity–melt undercooling curve is
consistent with experimental data carried out on the ground, under reduced gravity during parabolic
flights, and in the microgravity conditions onboard the International Space Station [M. Reinartz et al.,
JOM 74, 2420 (2022); P.K. Galenko et al., Acta Mater. 241, 118384 (2022)].

Keywords: recalescence front; anomalous dynamics; moving boundary problem; solidification;
nucleation; crystal growth; undercooling

1. Introduction

The solid–liquid interface dynamics in the phase transformation processes from an
undercooled liquid to a solid state completely determine the direction and velocity of
crystallization as well as the properties of the solidifying material. A mathematical model
of such a process was first formulated in Stefan’s pioneering works [1,2], and the thermod-
iffusion problem with a moving phase transformation interface is now called the Stefan
problem [3–5]. In general, a non-stationary Stefan-type problem with a moving curved
boundary of the phase transformation (crystallization front) has no exact analytical solu-
tion. As this takes place, one can find a single integro-differential equation for the interface
function that defines the time-dependent position of a curvilinear crystallization front. This
approach, or the boundary integral theory, is based on Green’s function technique [6–9].
However, a direct solution of a thermodiffusion differential model with a moving phase
transformation interface or the boundary integral equation can be solved analytically only
in cases of quasi-stationary interface growth having a known shape (i.e., planar, spherical,
or paraboloidal) [10–15]. In natural processes and technological conditions, the crystalliza-
tion phenomenon can be complicated by the fact that the liquid phase (solution or melt)
before the solid/liquid phase interface may contain microcrystals from the solid phase.
In this case, a simultaneous effect of growth and the nucleation of crystals exists during
crystallization [16–21]. This effect leads, for example, to the U-shape behavior of the recales-
cence front velocity–melt undercooling curve [20,21]. At a glance, such behavior seems to
be non-trivial. To explain why the front velocity decreases and increases with undercooling,
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we need to describe the process of crystal nucleation within a thin, undercooled two-phase
layer ahead of the phase interface. This theory is developed below.

This paper is organized as follows: A theoretical model describing the nucleation
and growth of crystals in an undercooled two-phase layer is given in Section 2 based on
classical nucleation theory [22–28]. A numerical example of the nucleation and growth of
crystals is considered in Section 3, where the interface motion is analyzed for the obtained
driving force (melt undercooling). Our conclusions are formulated in Section 4.

2. Theoretical Modeling

In this section, we formulate the integro-differential model describing the evolution
of a crystal assemblage in an undercooled liquid and obtain an analytical solution to this
model using the small parameter method.

2.1. The Model of Crystal Ensemble Nucleation

We consider a single-component melt that occupies a half-space ξ > 0. At the time
τ = 0, the melt’s initial temperature Tl is higher than the temperature of the phase transition
Tp. Then, the boundary temperature at ξ = 0 goes to a value of T0 < Tp. As a result of heat
transfer, the undercooling temperature ∆T = Tp − T goes into the liquid phase, occupying
the region 0 < ξ < Σ(τ). Here, τ is the time variable, and Σ(τ) is the moving phase
transition boundary, where T = Tl = Tp (T and Tl denote temperatures in the regions
0 < ξ < Σ(τ) and ξ > Σ(τ), respectively). Solid-phase nuclei occur at a rate of I(∆T) in
the undercooled layer 0 < ξ < Σ(τ). Note that the undercooling ∆T = 0 at the phase
transition boundary ξ = Σ(τ). In addition, the latent heat released during the phase
transition reduces the undercooling but does not entirely compensate for it (see Figure 1).

Figure 1. An illustration of the phase transition process where nucleation and growth of crystallites of
different sizes (filled circles) are taking place. The crystallization process moving with velocity Vnucl
is directed along the spatial axis ξ. The two-phase layer–liquid phase boundary Σ(τ) moves due to
the predominant nucleation of crystals. Symbols z and Z(t) designate dimensionless values of ξ and
Σ(τ), respectively. The dimensionless melt undercooling in the two-phase layer (χ = ∆T/∆T0) and
liquid phase (χl = ∆Tl/∆T0) becomes zero at the phase transition boundary ξ = Σ(τ) (or z = Z(t)).
Here, Tp and T0 are the phase transition and initial temperatures, respectively; T and Tl are the
current temperatures in the two-phase layer and liquid phase, respectively.

Further, we assume the quasi-stationary growth velocity of single spherical
crystals [29–32], i.e.,

dr
dτ

=
β∗∆T

1 + β∗qr
, (1)

where r is the crystal radius, β∗ is the kinetic parameter, and q = LV
λl

with LV representing
the latent heat of the crystallization and λl as the thermal conductivity of the liquid. Let
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us note that Expression (1) can be derived when considering the stationary temperature
conductivity equation in liquid. Note as well that a generalization of the growth law (1)
to the unsteady temperature field around the growing crystal can be constructed. Such a
generalization has been completed in Refs. [33–35] for undercooled single/binary melts
and supersaturated solutions.

There are two modes of crystal growth that depend on the particle radius r. When it is
small enough, r � 1

β∗q , the crystal growth rate does not depend on r, and the growth mode
can be called “kinetic”; however, when the rate of particle growth is controlled by the rate
of heat removal, r � 1

β∗q , the regime is called “diffusion-controlled growth”.
Let us consider the well-known nucleation rate that depends only on melt undercool-

ing [36]

I(∆T) =


I∗ exp

[
−p
(

∆T0
∆T

)2
]

, WVFZ kinetics

I∗(∆T)p, Meirs kinetics

, (2)

where the acronym WWFZ means the Weber–Volmer–Frenkel–Zeldovich nucleation ki-
netics, I∗ is the pre-exponential factor, and ∆T0 represents the initial undercooling of the

melt [36]. Parameter p =
16πγ3

i Tp

3L2
V ∆T2

0 kB
(where γi is the surface tension, and kB is the Boltz-

mann constant) is a dimensionless Gibbs number in the case of the WVFZ kinetics and an
empirical constant in the case of the Meirs kinetics.

The particle-radius distribution function φ(τ, ξ, r) in the moving two-phase layer filled
with nucleating and growing crystals satisfies the kinetic equation

∂φ

∂τ
+

∂

∂r

(
dr
dτ

φ

)
= 0, 0 < ξ < Σ(τ), r > 0, τ > 0. (3)

The temperature field in the moving layers 0 < ξ < Σ(τ) and ξ > Σ(τ) is defined by
the heat transfer equations

ρc
∂T
∂τ

= λ
∂2T
∂ξ2 +

4πLV
3

∂

∂τ

∞∫
0

r3φdr, 0 < ξ < Σ(τ), τ > 0, (4)

ρlcl
∂Tl
∂τ

= λl
∂2Tl
∂ξ2 , ξ > Σ(τ), τ > 0. (5)

Here, ρ and ρl represent the densities of the two-phase layer and liquid phase, c and cl
define their heat capacities, and λ and λl determine their heat conductivity coefficients,
respectively, where subscript l designates the liquid layer. Note that newly born crystals
within the layer 0 < ξ < Σ(τ) release latent crystallization heat, leading to the integral
source term in Equation (4).

These equations need to be completed by the boundary and initial conditions at r = 0,
τ = 0, ξ = 0, and ξ → ∞, as well as the phase transition boundary ξ = Σ(τ) of the form

dr
dτ

φ = I(∆T), r = 0, τ > 0; φ = 0, τ = 0, 0 < ξ < Σ(τ); (6)

T = T0, ξ = 0, τ > 0; Tl → T∞, ξ → ∞, τ > 0; (7)

T = Tl = Tp,
∂T
∂ξ

=
∂Tl
∂ξ

, ξ = Σ(τ), τ > 0; Tl = T∞, τ = 0. (8)
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2.2. Analytical Solution

For convenience, we use the following dimensionless values

D f = `4φ, σ = r
` , z = ξ

` , χ =
∆T
∆T0

, χl =
∆Tl
∆T0

,

γ = λτo
ρc`2 , Z =

Σ
`

, t =
τ

τo
, b =

4πLV
3ρc∆T0

,

α∗ = β∗q`, τo =
`

βk∆T0
, ` =

(
βk∆T0

I0

)1/4
,

(9)

where ∆T0 = Tp − T0 and ∆Tl = Tp − Tl are the initial and current undercoolings, respec-
tively. Let us specifically highlight that D f represents the dimensionless particle-radius
distribution function, σ stands for the dimensionless radius of the crystals, z represents the
dimensionless crystallization axis plotted in Figure 1, t is the dimensionless time variable,
and χ and χl mean the dimensionless undercoolings in the layer of nucleation 0 < z < Z(t)
and the liquid phase z > Z(t).

Rewriting now the model expressions and boundary conditions in dimensionless
variables, we arrive at the kinetic equation and the boundary and initial conditions for the
dimensionless distribution function D f in a two-phase layer 0 < z < Z(t), which reads as

∂D f

∂t
+ χ

∂

∂σ

( D f

1 + α∗σ

)
= 0, σ > 0, t > 0, (10)

D f =
1
χ

exp[pg(χ)], σ = 0; D f = 0, t = 0, (11)

where

g(χ) = g(t, z) =

{
1− χ−2, WVFZ nucleation kinetics

ln χ, Meirs nucleation kinetics
. (12)

Applying the Laplace integral transform to the model (10) and (11) regarding t, we
obtain the distribution function of particles along the radius in the form of

D f = (1 + α∗σ)ϕ(x(t, z)− y(σ))η(x(t, z)− y(σ)), (13)

where

ϕ(t, z) =
1
χ

exp(pg(t, z)), x(t, z) =
t∫

0

χ(t1, z)dt1, y(σ) = σ +
α∗σ2

2
, (14)

and η represents the Heaviside function.
Then, substituting the dimensionless parameters and variables (9) into Expressions (4)

and (5) and the boundary conditions (7) and (8), we obtain

∂χ

∂t
= γ

∂2χ

∂z2 − b
∂

∂t

t∫
0

h(ν, t, z) exp(pg(ν, z))dν, 0 < z < Z(t), t > 0, (15)

∂χl
∂t

= γ
∂2χl
∂z2 , z > Z(t), t > 0, (16)
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χ = 1, z = 0, t > 0; χl → χ∞ =
Tp − T∞

∆T0
, z→ ∞, t > 0; (17)

χ = χl = 0,
∂χ

∂z
=

∂χl
∂z

, z = Z(t), t > 0; χl = χ∞, t = 0, (18)

where we suppose that ρ = ρl , λ = λl , and c = cl . We notice that the integral included
in the right-hand side of Formula (15) is written according to the previously described
theory [36], in which the variable ν fulfills formulas x(ν, z) = x(t, z)− y(σ) and h(ν, t, z) =

α−3
∗

[√
1 + 2α∗(x(t, z)− x(ν, z))− 1

]3
.

The integral term in Expression (15) can be estimated given the fact that the dimen-
sionless variable p is significantly greater than unity for a large variety of undercooled
melts [36]. This integral can then be calculated using the saddle-point method for the
Laplace integral [37,38]. Equation (12) shows that ∂g/∂ν = (dg/dχ)∂χ/∂ν < 0 for the two
kinetic mechanisms under question: the WVFZ and Meirs (dg/dχ > 0 and dχ/dν < 0).
This is due to the fact that the function g reaches a maximum value at the boundary point
ν = 0. Estimating the derivatives χ on ν using Equation (15), we find that the first three
of them become zero at ν = 0, and the fourth derivative is −12b in the case of the WVFZ
and −6b in the case of the Meirs kinetics. Keeping just the main term of the asymptotic
expansion in (15), we obtain [37,38]

∂χ

∂t
= γ

∂2χ

∂z2 − A$(χ, t, z), t > 0, 0 < z < Z(t), (19)

where

$(t, z) =
χ(t, z)

[√
1 + 2α∗x(t, z)− 1

]2√
1 + 2α∗x(t, z)

, A =
3b3/4Γ(1/4)

b0α2∗p1/4 , (20)

and Γ represents the Euler gamma function, b0 = 27/4 (the WVFZ), and b0 = 43/4 (the
Meirs kinetics).

Let us further discuss two crystal growth modes: the kinetic (α∗ � 1, KG) and
diffusion-controlled (α∗ � 1, DCG) ones. For these cases, we obtain from (20)

$(t, z) ≈
{

α2
∗x2(t, z)χ(t, z), KG√
2α∗x(t, z)χ(t, z), DCG.

(21)

Now combining expressions (19)–(21), we have

∂χ

∂t
= γ

∂2χ

∂z2 − εΦ(χ, x), t > 0, 0 < z < Z(t), (22)

where

ε =

{
α2
∗A, KG
√

2α∗A, DCG
and Φ(χ, x) =

{
x2χ, KG
√

xχ, DCG
. (23)

Below, we search for the solution to (16)–(18), (22), and (23) as a power expansion with
a small parameter ε

χ = χ0 + εχ1 + ..., Z = Z0 + εZ1 + ... (24)

By substituting Formula (24) into Expressions (16) and (22), expanding the boundary
conditions at z = Z(t) in the Taylor series, and equating terms with the same power of ε,
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we come to the conclusion that the problem can be solved using the following self-similar
variables

χ0 = f0(ζ), ζ =
z√

t
, Z0(t) = α

√
t, (25)

χ1 =

{
f1(ζ)t3, KG

f1(ζ)t3/2, DCG
and Z1(t) =

{
βt7/2, KG

βt2, DCG
.

In this case, α and β are the constant coefficients determining the phase transition boundary
Z(t). Functions f0(ζ) and f1(ζ) will be introduced later. Consequently, the governing
equations and boundary conditions, (16)–(18), (22), and (23), can be written as

γ
d2 f0

dζ2 = − ζ

2
d f0

dζ
, γ

d2 f1

dζ2 = Ψ(ζ)− ζ

2
d f1

dζ
, γ

d2χl
dζ2 = − ζ

2
dχl
dζ

, (26)

f0 = 1, f1 = 0, ζ = 0; χl → χ∞, ζ → ∞; (27)

f0 = 0, f1 + β
d f0

dζ
= 0, χl = 0,

d f0

dζ
=

dχl
dζ

,
d f1

dζ
= 0, ζ = α, (28)

where

Ψ(ζ) =

{
4K2(ζ)ζ4 f0(ζ), KG√

2K(ζ)ζ f0(ζ), DCG
and K(ζ) =

∞∫
ζ

f0(ζ1)

ζ3
1

dζ1.

The analytical solution to the problem presented in (26)–(28) can be expressed as

f0(ζ) = 1−
erf
(

ζ

2
√

γ

)
erf
(

α

2
√

γ

) , f1(ζ) =

ζ∫
0

(Ω(ζ1)−Ω(α)) exp

(
−

ζ2
1

4γ

)
dζ1, (29)

χl(ζ) = χ∞

1−
erfc

(
ζ

2
√

γ

)
erfc

(
α

2
√

γ

)
, Ω(ζ) =

1
γ

ζ∫
0

Ψ(ζ1) exp

(
ζ2

1
4γ

)
dζ1. (30)

Constants α and β must be found from the following expressions

erfc
(

α

2
√

γ

)
+ χ∞erf

(
α

2
√

γ

)
= 0, (31)

β =
√

πγerf
(

α

2
√

γ

)
exp

(
α2

4γ

)
f1(α). (32)

3. Numerical Example

In this section, we obtain the melt undercooling that drives the crystallization process
and takes the phase interface motion into account; i.e., we consider a simultaneous process
of bulk nucleation and the growth of crystals. In this case, the melt undercooling as well
as the crystallization velocity contain two contributions associated with these two process
modes.

Since solidification kinetics are experimentally defined by the phenomena of crystal
nucleation and growth, the theoretical explanation should include both of these processes
as well. Therefore, the process mode contains the two-phase layer with the bulk nucleation
of crystals (see Figure 2a). Since, in solidification experiments of undercooled droplets, the
whole system shown in Figure 2a is in motion due to the crystal growth of the solid phase
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(motion of the recalescence front), we are switching to a moving frame of reference. In this
case, we have the combined bulk nucleation and growth of crystals shown in Figure 2b. In
other words, the whole growth rate contains two contributions appearing from the bulk
nucleation (Vnucl) and crystal growth (Vf ront). The recalescence front velocity is given by
Vrec = |Vnucl |+ Vf ront.

Figure 2. An illustration showing the moving two-phase zone along the spatial coordinate ξ at time τ.
Panel (a) demonstrates the bulk phase transition process described in Section 2. Panel (b) illustrates a
combined effect of the bulk and crystallization from an undercooled melt.

For the sake of convenience, we use dimensional variables to describe the main
parameters that characterize the motion of the recalescence front: its growth velocity Vrec,
time τ, and the melt undercooling ∆T. First, we define the undercooling balance ∆T as the
sum of nucleation and the front undercoolings

∆T = ∆Tnucl + ∆Tf ront, (33)

∆Tnucl = ∆T0

[
f0(ξ, τ) + εIk/4

0 β3k/4
∗ ∆T3k/4

0 τk f1(ξ, τ)
]
, (34)

∆Tf ront =

(
V
µk

)1/l
, (35)

where µk is the kinetic coefficient for undercooling, and l is a constant parameter. The
velocity of the recalescence front reads as

Vrec = |Vnucl |+ Vf ront, (36)

Vnucl =

(
β∗∆T0

I0

)1/4
[

αI1/8
0 β3/8

∗ ∆T3/8
0

2
√

τ
+

7
2

εβτ5/2 I7/8
0 β21/8

∗ ∆T21/8
0

]
, (37)

Vf ront = µk∆Tl . (38)

Here, Expressions (34) and (37) follow from Equation (24).
In previous studies [20,21,39,40], anomalous behavior of the “melt undercooling–

recalescence front velocity” curve was observed using electromagnetic levitation exper-
iments for the Al-rich Al-Ni alloys. Namely, a decreasing branch of the solidification
(recalescence front) velocity for the increasing melt undercooling was detected. Below, we
explain this behavior using an active nucleation process ahead of the growing solid phase.
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Our calculations, based on the model under question in kinetic growth mode, have
shown that the nucleation front velocity Vnucl gradually decreases with time and changes
its sign from positive to negative (Figure 3). In this pure nucleation growth mode, shown
in Figure 2a, the process has two stages. During the first of these, Stage (i), the crystals
actively nucleate and start to grow (Σ(τ) increases with time and Vnucl(τ) > 0). During
the second stage, which is Stage (ii), the crystals already release a sufficient amount of the
latent crystallization heat and thus partially compensate for the melt undercooling (Σ(τ)
decreases with time and Vnucl(τ) < 0). When dealing with the simultaneous operation of
bulk nucleation and crystal growth (Figure 2b), the solid-phase–two-phase zone boundary
is moving with the velocity Vf ront induced by the driving force similar to what occurs
during the solidification of undercooled droplets in an electromagnetic levitation facility.
From the physical point of view, we are shifting to the reference frame moving at the speed
Vf ront in Figure 2a and thus obtaining the combined process illustrated in Figure 2b. In this
case, as before, we have the two aforementioned stages of the combined process of bulk
nucleation and the growth of crystals. When dealing with Stage (i), the recalescence front
velocity Vrec is a sum of two additive contributions connected with the front propagation
due to bulk nucleation, Vnucl , and the crystal growth Vf ront. When dealing with Stage (ii),
the velocity Vnucl is directed towards the front, which is accelerated by the effect of the
crystals sticking to the interfacial boundary. As a result, the recalescence front velocity Vrec
is also the sum of Vf ront and |Vnucl |. Therefore, we have (36) in both cases.

Figure 3. The bulk crystallization velocity Vnucl (red line) and melt undercooling ∆Tnucl (blue line)
as functions of time τ for pure nucleation mode. Physical parameters used for calculations are:
∆T0 = 400 K, I0 = 1011 m−3 s−1, β∗ = 2 · 10−7 m s−1 K−1, τ0 = 2.1 s, ζ = 10−4 m, ε = 0.1, α = 52.46,
β = 0.1, k = 1, γ = 3 · 103, p = 8.

Eliminating the time variable τ from the blue and red curves, Vnucl(τ) and ∆Tnucl(τ),
plotted in Figure 3, we obtain Vnucl(∆T). By adding Vf ront(∆T) from Equation (38) to
this relationship, we come to the U-shaped curve Vrec(∆T) demonstrated in Figure 4. Its
minimum point (marked by the vertical dotted line in Figure 4) divides two different
regimes of the crystallization process: (i) frontal growth + nucleating crystals ahead of the
front and (ii) frontal growth accelerated by the attachment kinetics of particles sticking to
the phase interface. The second stage is connected to the narrowing of the nucleation region
due to a partial reduction in the melt undercooling as the crystals grow and release latent
solidification heat. The theory under consideration qualitatively describes the experimental
data for Al-rich Al-Ni alloys solidified in the electromagnetic levitation facility on the
ground, under reduced gravity during parabolic flights, and under microgravity conditions
onboard the International Space Station [20,21,39,40].
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Figure 4. The recalescence front velocity Vrec as a function of melt undercooling ∆T. Region (i)
describes predominant crystal growth in comparison to the nucleation of crystals ahead of the phase
interface while Region (ii) corresponds to propagation of the recalescence front due to predominant
contribution of nucleation of crystals over their growth (with the attachment of crystals to the
phase interface). Physical parameters used for calculations correspond to Figure 3 and l = 1,
µk = 5 · 10−6 m s−1 K−1.

4. Conclusions

In summary, a model of combined bulk nucleation and crystal growth is developed
to describe the evolution of the recalescence front. To do this, we first consider a pure
bulk crystallization scenario in which newly born crystals grow in the phase transition
layer extending/suppressing its thickness Σ with a time τ. This problem, described by
the aforementioned integro-differential model, has been solved by the small parameter
method. Then, we move the phase transition layer along a spatial direction and thus obtain
two contributions: the undercooling balance and the recalescence front velocity Vrec =
|Vnucl |+ Vf ront (Figure 2). As a result, the problem of combined bulk nucleation and crystal
growth [20] has been described analytically by Expressions (33) and (36). The combined
effect of these modes leads to the U-shaped dynamics of the recalescence front velocity. As
this takes place, the right (upward) branch in Figure 4 is connected with the predominant
crystal growth and intense nucleation mode, and the left (downward) branch describes the
predominant nucleation of the crystals with their attachment to the interface. These are due
to the fact that the crystals grow and release the latent solidification heat, which partially
compensates for the melt undercooling, suppresses the nucleation domain, and induces
crystals to stick to the moving front. These two modes of the crystallization process are
divided by the minimum point in Figure 4. The U-shaped behavior of the “recalescence
front–melt undercooling” curve is in qualitative agreement with the experimental data
from Refs. [20,21].

Let us especially note that this paper deals with the anomalous law of motion for the
phase transformation boundary resulting from crystallization with a planar front and also
nucleation and crystal growth ahead of this front. In many scientific papers devoted to
similar problems, the simultaneous operation of these two mechanisms of the crystallization
process is not considered (see, among others, [27,41–45]). For a more detailed description of
the simultaneous growth and nucleation modes, it is necessary to consider both processes
in a non-stationary mode. In other words, to the directional, unsteady crystallization from
a cooled wall, one must additionally consider the process of nucleation and bulk crystal
growth in front of the crystallization interface (solid phase–two-phase zone interface) [46–50].
To solve such a highly nonlinear problem with a moving boundary, the saddle-point
technique can be used to construct an approximate solution to the bulk crystallization
problem ahead of the moving interface [26–28], and then the differential series method can
be applied to construct an approximate solution to the crystallization problem [33–35]. The
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solution to such an urgent problem, which is a subject of future research, is necessary for a
more accurate explanation of the U-shaped behavior of the “crystallization velocity–melt
undercooling” relationship.
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