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Abstract: The electronic, sensing, and transport properties of doped square hexagonal boron nitride
(shBN) quantum dots were investigated using density functional theory calculations. The electronic
and magnetic properties were controlled by substitutional doping. For instance, heterodoping with
Si and C atoms decreased the energy gap to half its value and converted the insulator shBN quantum
dot to a semiconductor. Doping with a single O atom transformed the dot to spin half metal with
a tiny spin-up energy gap and a wide spin-down gap. Moreover, doping and vacancies formed
low-energy interactive molecular orbitals which were important for boosting sensing properties.
The unmodified shBN quantum dot showed moderate physical adsorption of NO2, acetone, CH4,
and ethanol. This adsorption was elevated by doping due to interactions between electrons in the
low-energy orbitals from the doped-shBN dot and π-bond electrons from the gas. The transport
properties also showed a significant change in the current by doping. For instance, the spin-up
current was very high compared to the spin-down current in the shBN dots doped with an O atom,
confirming the formation of spin half metal. The spin-up/down currents were strongly affected by
gas adsorption, which can be used as an indicator of the sensing process.

Keywords: hexagonal boron nitride quantum dots; doping; density functional theory; electronic; sensing;
transport properties; gas sensor

1. Introduction

A monolayer of hexagonal boron nitride (hBN) is a 2D material that is often referred to
as ‘white graphene’. A free-standing monolayer of hBN was successfully fabricated by a local
electron beam thinning of a few-layer flake in 2009 [1,2], but it contained many lattice defects
such as vacancies. Latter higher-quality single- and few-layer samples were produced by
chemical vapor deposition on a Cu substrate [3,4]. A single layer of hBN has the same lattice
structure as graphene and a commensurate lattice constant (1.45 Å vs. 1.42 Å in graphene).
However, its band gap is significantly larger owing to polar covalent B-N bonds and exceeds
5 eV [3,5]. It has a high elastic constant (200–500 N/m) [3] and high thermal conductivity
(227–280 W·m−1·K−1) [6]. Similar to graphene, a free-standing hBN membrane is thermally
stable and chemically inert unless the temperature is increased above 1000 ◦C [7] or defects
and metallic surfaces are introduced to increase its catalytic activity [8]. Monolayer hBN
is a perfect material for a variety of applications. In addition to the applications naturally
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inherited from bulk hBN, such as ultraviolet emitter [9,10], transparent membrane, dielectric,
and protective coating applications [11,12] owing to its ultraflat and charge-impurity-free
surface, monolayer hBN is a perfect atomically smooth substrate that allows preserving the
intrinsic electrical and optical properties of other 2D materials [13]. This also makes it an
important component of Van der Waals heterostructures in 2D materials [14]. The low-loss
dielectric properties in the microwave and optical regimes make monolayer hBN a promising
material for superconducting circuits and qubits [15], single-photon quantum emitters [16–19],
and low-loss polaritonics [20], especially when isotopically purified [21]. Modifying the
structure of an hBN sheet or producing hybrid BNC structures opens the possibility to tailor
the pure hBN sheet electronic properties and reduce the band gap [22–27]. Similar to graphene,
monolayer hBN can form lower dimensional structures such as 1D tubes, ribbons, or 0D
quantum dots (QDs) [5]. The structures with edges are of particular interest since they may
possess peculiar magnetic and electrical properties that are useful in spintronics and sensing
devices [28,29]. While high-quality samples of both hBN tubes and ribbons have been around
for more than a decade (tubes were synthesized in 1995 [30,31], and ribbons were synthesized
in 2010 [23]), the similar-quality samples of small flakes have become available only quite
recently. The past few years have seen dramatic developments in a variety of techniques for
the synthesis of few-layer [32–39] and monolayer [40–42] hBN QDs. The first experimental
studies of hBN QDs demonstrated their good biocompatibility, low cytotoxicity, and great
potential for metal ion detection [43]. This naturally ignited curiosity about hBN QDs’ intrinsic
properties and potential applications. Similar to graphene or silicene QDs [44,45], the
properties of hBN QDs depend on the shape, size, and edge morphology [46]. However,
an additional binary degree of freedom arises owing to their heteroatom nature. hBN QD
edges can be terminated with B or N atoms, and this can drastically affect their stability,
edge chemistry [47–49], and electronic properties [50–56]. A range of topics were covered
in theoretical studies, even before the synthesis of hBN QDs; for instance, it has been shown
that hBN nanoribbon-based QDs possess higher thermopower and lower phonon thermal
conductance than graphene quantum dots with the same geometry parameters [57]. This
has allowed researchers to deploy them for improving heat dissipation in white QDs-
LEDs, avoiding the degradation of optical properties [58,59]. Moreover, there have been
substantial theoretical data gathered on hBN QD’s physical and chemical adsorption and
sensing properties. For instance, the electronic and optical properties of hBN QDs are
sensitive to the physisorption of tetracyanoquinodimethane and tetrathiafulvalene [60].
Such dots also exhibit good adsorption properties for several gases (H2, CO, NO, O3, H2O,
and O2), especially when functionalized with metal–oxide complexes (CuO, AgO, and
AuO) [61]. This, in particular, shows their great potential for reversible H2 storage. It has
also been shown that functionalization with more complex metal clusters (OLi4, NLi5, CLi6,
BLI7, and Al12Be) is energetically favorable, and it significantly affects the optical transition
energies, so substantial nonlinear optical activity can be expected from hBN QDs [55].
A strain-tunable ammonia nanosensor was theoretically proposed as early as 2013 [62].
Recently, the ammonia sensitivity has been corroborated by chemical sensing studies [63].
As we have shown in our previous work, hBN QDs are capable of adsorbing or bonding
with a range of hydrated transition and heavy metals (Cd, Co, Cr, Cu, Fe, and Zn) [64]. Such
adsorption processes can be further enhanced by chemical functionalization, for instance,
with COOH groups that give additional stability to the hBN QD structure. Hence, similar
to boron nitride foam-like porous monoliths [65], hBN QDs carry great potential for water
purification. The first experimental indication of this was recently obtained [66].

Substitutional doping is an efficient route to modify the properties of QDs [67,68].
However, while some research on hBN QDs’ substitutional doping with C atoms is avail-
able [52–54,69], the contemporary literature lacks information on the effects of other ele-
mental doping. At the same time, it has recently been shown that the substitution doping of
an hBN monolayer with sulfur increases its conductivity up to 1.5 times and enhances the
optoelectronic properties compared to pristine hBN [70]. This has allowed the authors of
Ref. [70] to fabricate a photodetector with a broadband response (260–280 nm wavelength)
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and a 50 times increased photocurrent. It was identified that the main improvement comes
from enhanced light absorption and reduced resistivity mainly due to N atoms being
replaced with sulfur. Motivated by these recent achievements and the current white spots
in the literature on hBN QDs, we have performed a systematic study of single atom (O,
P, and Si) and heteroatom (P-C and Si-C) doping of square hBN (shBN) QDs and their
transport properties. This investigation is also supplemented by an important case study
of the vacancy defect that seems to play a key role in recently reported quantum light
sources and may be useful for solid-state qubits and quantum sensors [71,72]. Our results
show that the electronic, sensing, and transport properties of shBN QDs can be smoothly
controlled and improved by doping, making them potential active elements of gas sensors.

2. Computational Model

The current density functional theory calculations were performed using Gaussian
16 software [73] using the B3LYP functional [74,75] and the 6–31 g basis set [76,77]. This
moderate level of theory was tested and was found to be good with respect to higher levels
of theory when considering both computational power and result accuracy [64]. The Van
der Waals interactions between the shBN QDs and the adsorbed gases were accounted for
through the inclusion of Grimmes’s dispersion correction (gd3) to the B3LYP functional [78].
The considered model was a square nanoflake from hBN with a total number of atoms equal
to 74 and a net spin equal to zero. Thus, closed-shell calculations were used. After doping
or vacancy creation, the net spin may increase. In this case, we performed spin-polarized
open-shell calculations.

3. Results and Discussion
3.1. Electronic Properties

The effects of substitutional doping and defects on the electronic, sensing, and trans-
port properties of shBN QDs were considered. The shBN QD was chemically modified
by three means: (a) by doping with a single atom of O, P, or Si, as seen in Figure 1a–c;
(b) by vacancy formation (Figure 1d); or (c) by doping with two atoms such as P and
C or Si and C, as shown in Figure 1e,f. In what follows, we investigated the effects of
doping and defects on the electronic properties by considering the partial density of states
of the selected structures. In addition, the distributions of the highest occupied/lowest
unoccupied molecular orbitals (HOMOs/LUMOs) were considered.
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The partial density of states (PDOS) of doped and defected shBN QDs are shown in
Figure 2. It is observed from Figure 2a that doping with P atoms did not change the energy
gap or the density of states significantly from those of the unmodified shBN QDs. Our
recent work [79] showed that shBN QDs of similar size had an energy gap of ~5.82 eV,
which was comparable to the 5.70 eV in shBN-P QD in Figure 2a. The density of states
was also similar due to the small contribution of the doped P atom. A considerable effect
of doping started to appear when doping with O and Si atoms. The doping atoms lifted
the degeneracy between the spin-up (α) and spin-down (β) molecular orbitals, leading
to a very small spin-up energy gap of 0.77 eV (Figure 2b) in shBN-O QDs or a moderate
energy gap of 2.62 eV in shBN-Si QDs (Figure 2c). Thus, the insulating shBN QDs could be
converted to half metallic in shBN-O QDs, which were conductors for spin-up electrons
and insulators for spin-down electrons.
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Figure 2. The partial density of states doped and defected shBN. (a–c) Doping with single atoms,
(d) shBN with a single vacancy, and (e,f) doping with two atoms.

The two unpaired electrons from the doping O atoms formed two covalent bonds
with those from neighboring B atoms, leaving an unpaired electron on one of the three
neighboring B atoms, as shown in Figure 1b. This free radical electron formed a half-filled
spin-up orbital that is represented by the black peak decreasing the energy gap in Figure 2b.
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The case of shBN-Si QD was different, where the half-filed molecular orbital came from
the fourth unpaired electron in the sp3-hybridized Si atom. The partial density of states
for a single vacancy and doping with two atoms presented in Figure 2d–f also shows that
the energy gap decreased as a result of the evolution of low-energy states from atoms
around the vacancy or the doping atoms. Similar to the effect of doping on the energy
discussed above, vacancy creation also decreased the energy gap. Removing one N atom at
the surface led to the breaking of three B-N bonds, which in turn led to the formation of
unpaired interactive electrons in the neighboring B atoms. The interactive electrons formed
low-energy molecular orbitals, represented by the low-energy black peak in Figure 2d, that
eventually decreased the energy gap.

The HOMO/LUMO distributions in Figure 3 show a schematic presentation of the
effect of doping on the low-energy molecular orbitals. Starting from the unmodified shBN
QD in Figure 3a, the HOMOs were localized and distributed on N atoms, which means that
it originated from the lone pairs of N atoms [79]. The LUMOs were distributed on B atoms,
meaning that an electronic transition would be to the unoccupied molecular orbitals of B
atoms. Similar to the PDOS distribution, doping with P atoms had a negligible effect on the
distribution of the HOMOs compared to its distribution on undoped shBN QDs. The only
difference was that the LUMOs were distributed not only on B atoms but also on the doping
P atom. Doping with O atoms significantly changed the distribution of the spin-up HOMOs,
as shown in Figure 3c. It was distributed on the B atoms, confirming its origin from the
unpaired electron on B atoms. The spin-up LUMO and the spin-down HOMO/LUMO
distributions were similar to those of undoped shBN QDs, which confirmed the results
obtained from the PDOS. The special case of shBN-Si QDs in Figure 3d shows that the spin-
up and spin-down HOMOs were mostly distributed on the Si atom and neighboring atoms.
This means that not only did the unpaired electrons from the Si atom form the spin-down
HOMOs that decreased the spin-down energy gap but the Si-B bond was weaker than the
in-plane B-N bond and formed the spin-up HOMOs. The unpaired electrons on B atoms
formed by removing one N atom were responsible for the spin-up HOMO distribution
around the vacancy in the shBN-vac QD in Figure 3e. The other low-energy molecular
orbitals were similar to that of unmodified shBN QDs, except for the spin-down LUMOs
that were formed by B atoms around the vacancy and were distributed on them. The shBN-
P-C QD in Figure 3 shows that adding a C atom to an shBN-P QD (Figure 3b) significantly
changed the spin-up distribution on and around the C atom due to its unpaired pi-electron.

3.2. Sensing Properties

The energy gap decreasing and the low-energy molecular orbitals with interactive
electrons formed by doping or vacancy were expected to significantly enhance the sensing
and catalytic properties of shBN QDs. Here, we studied the adsorption properties of
different gases, including NO2, CH4, acetone, and ethanol, to clarify the effects of doping
and vacancy on the sensing properties. Figure 4 shows the optimized structures of shBN
QDs adsorbing different gases before and after chemical modification. For the adsorption,
we choose two initial positions around the N atom. That atom was replaced in the case
of doping or removed in the case of vacancy formation (Figure 4a). These positions gave
the best representation of the effect of modification on the adsorption properties. For
large gas molecules such as acetone and ethanol, we chose only the intermediate position.
The adsorbed gases were categorized into two groups: (a) gases with sp2 hybridization,
including NO2 and acetone (acet.), and (b) gases with sp3 hybridization, such as CH4 and
ethanol (eth). Some examples of the adsorption of the first group by the modified shBN
QDs are shown in Figure 4b–i, while examples of the adsorption of the second group are
shown in Figure 4j–m.
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Starting with the adsorption of the first group, it was observed that NO2 and acetone
were physically adsorbed on the surface of the shBN QDs (Figure 4b,c). The adsorption
distances (d) in these cases were equal to ~2.9 and 3.1 Å, respectively. Doping with O atoms,
see Figure 4d–f, converted the weak physical adsorption to strong chemical adsorption,
with strong chemical bonds between the gas and the unpaired electron from the B atom
around the dopant. In this case, the adsorption distance decreased to 1.5 Å. We chose
two different adsorptions, as shown in Figure 4a, to account for different possibilities of
interactions between the gas and the surface of the shBN QD. For instance, the adsorption
of NO2 can be through bonding with one O atom, as shown in Figure 4d for an shBN-
NO2-a QD, or through bonding with N and O atoms, as in adsorption site b shown in
Figure 4b. All the dopants considered in this work increased the interactions between the
shBN surface and the gases. Only doping with P atoms showed a slight increase in the
adsorption due to the slight change in the density of states. The adsorption energy per
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atom (Ea), the charge transfer (Q), and the adsorption distance (d) given in Table 1 are
good descriptors of adsorption strength. The Ea was calculated from Ea = ((Egas + EshBN)
− Egas + shBN), where Egas and EshBN are the ground state energy of the gas and the shBN
QD, respectively. Egas + shBN are the ground state energies of the gas and the shBN QD after
adsorption. Accordingly, a negative value of Ea implies successful gas adsorption, and a
higher absolute value of Ea means higher adsorption strength. The adsorption energy of
NO2 started at 0.32 eV in the unmodified shBN QDs and increased by doping, reaching its
highest value of Ea~4.95 eV in the case of doping with O atoms.
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The adsorption of acetone was also improved by doping, reaching its highest values
in the shBN-O QDs and the shBN-vac QDs, with adsorption energy values equal to 2.94 eV
and 2.30 eV, respectively. The corresponding adsorption distance decreased from 2.9 Å in
the shBN-acet QD to 1.46/1.39 in shBN-O-acet/shBN-vac-acet QDs due to the formation of
strong bonds between the O atom from acetone and the B atoms around the dopant or the
vacancy. Q in Table 1 is the total Mulliken charge on the gas, representing the amount of
charge transferred to the gas (if negative) or from it (if positive) to the shBN QD. As given
in Table 1, a moderate charge transferred from the unmodified shBN QDs to NO2 with Q~
−0.40 (e), and a small charge transferred to acetone (Q = −0.02 (e)). Doping and vacancy
creation significantly enhanced the charge transfer. For instance, the small charge transfer
from the shBN QD to acetone increased to −0.19 (e) in the shBN-Si-acet QD. Moreover,
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charge transfer to NO2 could be duplicated by doping with O atoms or double doping with
P and C atoms, as given in Table 1.

Table 1. NO2 and acetone adsorption on shBN. The adsorption energy (Ea), the gas distance above
the surface of the shBN QD, the charge transferred to or from the gas (Q), the energy gap (Eg), and
the total electric dipole moment (TEDM).

Struct. Ea (eV) d (Å) Q (e) Eg (eV)

shBN (reference) – – –
shBN-NO2-a 0.32 2.88 −0.34 3.07 α, 1.95 β

shBN-NO2-b 0.32 3.07 −0.39 2.98 α, 1.85 β

shBN-acet 0.68 2.91 −0.02 5.61
shBN-P-NO2-a 0.38 2.91 −0.25 3.35 α, 2.16 β

shBN-P-NO2-b 0.28 2.93 −0.17 3.55 α, 2.37 β

shBN-P-acet 0.61 2.93 0.002 5.49
shBN-vac-NO2-a 2.07 1.57 −0.54 4.29
shBN-vac-NO2-b 4.07 1.43 −0.40 3.17
shBN-vac-acet. 2.30 1.39 −0.14 3.51
shBN-O-NO2-a 4.95 1.57 −0.53 4.62
shBN-O-NO2-b 1.53 1.53 −0.61 4.22
shBN-O-acet 2.94 1.46 −0.38 3.75 α, 5.67 β

shBN-Si-NO2-a 2.42 1.90 −0.52 4.34
shBN-Si-NO2-b 2.72 1.80 −0.53 3.77
shBN-Si-acet 0.64 1.81 −0.19 2.45 α, 3.93 β

shBN-P-C-NO2-a 2.99 1.55 −0.73 4.19
shBN-P-C-NO2-b 2.17 1.67 −0.66 2.97
shBN-P-C-acet 0.67 2.71 0.02 2.44 α, 5.58 β

shBN-Si-C-NO2-a 1.59 1.54 −0.51 3.41 α, 3.16 β

shBN-Si-C-NO2-b 0.99 1.98 −0.55 1.41 α, 4.18 β

shBN-Si-C-acet 0.84 2.83 0.003 3.08

The values of Q in Table 1 indicate that charge transfer occurred from the shBN
nanoflakes to the adsorbed gases in all cases except for acetone. The direction of charge
transfer from or to shBN nanoflakes to or from the gases can be understood from the
position of the HOMO and LUMO of the gases in the spectrum of the electronic density of
states. If the HOMO of the adsorbate was higher than the Fermi level of the pure adsorbent
(shBN QD), there was a charge transfer to the adsorbent. If the LUMO was below the Fermi
level, charges were transferred to the adsorbate [80].

The Fermi level (Ef) of the shBN QD was calculated from Ef = (EHOMO + ELUMO)/2,
where EHOMO and ELUMO are the HOMO and LUMO energies, respectively. For instance,
the Fermi level of the shBN-P QD was ~ −3.44 eV, as seen in Figure 2a. The energy of the
LUMO of NO2 equals −4.40 eV, which was lower than the Fermi level of the shBN-P QD.
Hence, charges transferred from the shBN-P QD to NO2. Since the Fermi energy of the
shBN-P QD was the lowest for all considered structures, charges were transferred from
the considered structures to NO2. Charge transfer was also determined by the degree of
mixing between the HOMO and LUMO of the gases and the shBN QD orbitals. This could
be the reason for the opposite charge transfer in some cases, such as the charge transfer
from acetone to the shBN-P-C QD. The position of the adsorbate HOMO and LUMO and
their mixing with the shBN QD orbitals can be determined from the PDOS plots and the
HOMO distributions shown in Figure 5 for selected structures. Starting with the adsorption
on the unmodified shBN QD, the contribution of NO2 to the occupied molecular orbitals in
the shBN-NO2 QD was found to be deep in the conduction band and started at an energy
of ~ −8 eV, as seen in Figure 5a. This was confirmed by the distribution of HOMOs only on
the shBN QD in Figure 5g. On the other hand, the unoccupied orbitals of NO2 appeared
as the LUMOs for both the spin-up and spin-down states, such as the spin-up LUMO
shown in Figure 5g. The same case is observed in Figure 5b for the shBN-acet QD with
the occupied molecular orbitals of acetone below the HOMO, and its unoccupied orbitals
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start as the LUMO of the shBN-acet QD. The strong chemical adsorption of NO2 in the
shBN-O-NO2 complex showed different behavior, where the HOMO was contributed by
the shBN-O QD and NO2, as shown in Figure 5c,i. Due to the strong chemical adsorption,
the contribution from acetone orbitals dominated the HOMO of the shBN-O-acet QD as
seen in Figure 5d,j,l. In all the discussed cases, the occupied/unoccupied orbitals of the
gas were below the HOMO/LUMO of the net system or contributed to it. The only case
in Figure 5 where the unoccupied orbitals of the gas was higher than the LUMO of the
net system was the shBN-P-C-acet QD in Figure 5f. This alignment was the reason for the
opposite charge transfer from acetone to the shBN nanoflake. Regarding the adsorption
of the second group, the unmodified shBN QD also showed moderate adsorption of CH4
and ethanol, which were physically adsorbed at a relatively high adsorption distance, as
seen in Table 2. Doping slightly affected the adsorption energy and charge transfer of this
group because of the strong sigma bonds between the gas atoms that preferred to interact
physically with the shBN QD, even after doping. Due to the moderate interaction, the
energy gap experienced almost no change in some cases, such as shBN-CH4 and shBN-
P-CH4 QDs. In the other adsorption cases that involved symmetry breaking between
spin-up and spin-down electrons due to unpaired electrons from the gas or the dopant, the
spin-up/-down energy gaps significantly changed, as given in Table 2.
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Table 2. CH4 and ethanol adsorption on the shBN QD. The adsorption energy (Ea), the charge
transferred to the gas (Q), the distance between the gas and the surface of the shBN QD (d), the
energy gap (Eg), and the total electric dipole moment (TEDM).

Struct. Ea (eV) Q (e) d (Å) Eg (eV)

shBN-CH4-a 0.19 −0.007 2.90 5.82
shBN-CH4-b 0.20 −0.005 3.01 5.82

shBN-eth 0.57 0.012 2.69 5.87
shBN-P-CH4-a 0.19 −0.008 3.01 5.74
shBN-P-CH4-b 0.19 −0.007 2.99 5.75

shBN-P-eth 0.63 0.018 2.78 5.68
shBN-vac-CH4-a 0.28 −0.008 3.03 3.72 α, 4.17 β

shBN-vac-CH4-b 0.19 −0.009 2.97 3.78 α, 4.27 β

shBN-vac-eth 0.71 0.015 3.01 3.80 α, 4.16 β

shBN-O-CH4-a 0.59 −0.037 2.76 2.20 α, 5.93 β

shBN-O-CH4-b 0.34 0.008 3.11 5.59 α, 4.54 β

shBN-O-eth 1.09 0.012 2.49 2.21 α, 6.04 β

shBN-Si-CH4-a 0.19 −0.006 2.89 5.27 α, 2.59 β

shBN-Si-CH4-b 0.18 −0.003 3.00 5.28 α, 2.59 β

shBN-Si-eth 0.59 −0.019 2.14 5.20 α, 2.66 β

shBN-P-C-CH4-a 0.22 −0.012 2.79 2.47 α, 5.78 β

shBN-P-C-CH4-b 0.19 −0.006 3.04 2.46 α, 5.78 β

shBN-P-C-eth 0.69 0.030 2.51 2.51 α, 5.78 β

shBN-Si-C-CH4-a 0.22 −0.007 2.96 2.85
shBN-Si-C-CH4-b 0.19 −0.01 3.01 2.82

shBN-Si-C-eth 0.61 0.005 2.87 2.89

3.3. I-V Characteristics

Studying transport properties is very important to show the possible changes in the
conductance due to gas adsorption, which can be used as an indicator of the adsorption
process. Moreover, enhancing the efficiency of a gas sensor is related to boosting its conduc-
tivity, which can also be known from the transport properties. Here, we consider molecular
conduction using the model proposed by P. Szarek et al. in which the charge transport
through a molecule results from electrostatic induction [81]. In this case, the tunneling cur-
rent (I) passing through the molecule can be calculated based on the uncertainty principle
using the following equation:

I ≤ 2e∆N∆E
} (1)

where e is the electronic charge, h̄ is Planck’s constant, ∆N is the valance electrons involved
in the conduction, and ∆E is the energy change. ∆N is given by:

∆N =
1
2

µE − µ0

ηE + η0
(2)

The difference µe − µ0 represents the difference in the electrochemical potential on
the molecule due to the applied potential. η is the chemical hardness, and the term
1
2

(
1

ηE+η0

)
represents the equivalent capacitance built-up in a molecule subjected to an

external field. Both the chemical potential and hardness can be calculated from the energies
of the HOMO and LUMO [82]. ∆E is the variation in the electrostatic energy due to the

variation in the dipole moment (∆
→
De) in the direction of the applied electric field (

→
Ee),

namely ∆E = −∆
→
De.
→
Ee. The change in the voltage (∆V) was obtained directly from the

applied field using ∆V = −Eed, where d is the length of the shBN QD in the direction of
the applied electric field. We used this simple definition, which fixes the value of V in the
I-V curves for all structures to make it easy to compare the current before and after doping
and gas adsorption.
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The current–voltage (I-V) characteristics were investigated before and after doping, as
shown in Figure 6a, to show the effect of doping on the conductance. The changes in the
current due to the adsorption of different gases, which can be used as an indicator of the
occurrence of the absorption process, are shown in Figure 6b–d. Starting with Figure 6a, it
was observed that there was a significant change in the current after doping. For instance,
the spin-up current of the shBN-O QD was significantly higher than the current of the pure
shBN QD, as shown in the insets of Figure 6a. Thus, doping the shBN QD with an odd
number of O atoms converted it to a spin half metal, where the material was a conductor for
electrons with spin up and a semiconductor for electrons with spin down. The noticeable
change in the spin-up/spin-down current after doping with an O atom resulted from the
considerable change in the energy gap, as discussed before. Similarly, single-atom doping
with a Si atom and heteroatom doping with Si and C atoms increased the current due to
the decrease in the electronic energy gap.
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The effect of gas adsorption on the I-V curves shows that the high spin-up current
of the shBN-O QD significantly decreased with the adsorption of NO2 (Figure 6b). This
was because of the passivation of the unpaired electron in the shBN-O QD by the unpaired
electron from NO2, which eventually restores the nonmagnetic ordering of the spin and
increased the energy gap to Eg = 4.62 eV, as given in Table 1. In contrast, the current of the
shBN QD was significantly enhanced after the adsorption of NO2 due to the transformation
to the ferromagnetic ordering of the spin with spin-up/-down energy gaps lower than that
of the shBN QD. Since the shBN-P-C-NO2 QD had an energy gap similar to that of the shBN-
O-NO QD, their currents in Figure 6b were almost the same. The current representing
the adsorption of acetone and ethanol was significantly affected by doping, as seen in
Figure 6c,d. For instance, the spin-up current of the shBN-O-eth QD was considerably
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higher than that of the shBN-eth QD, while the spin-down current was slightly lower than
that of the shBN-eth QD. This was mainly due to the changes in the spin-up/-down energy
gaps, as shown in Table 2. Thus, the I-V curves show that gas adsorption can be tracked by
the significant change in the current. In addition, the enhanced conductivity implies that
the considered systems are promising candidates for building efficient gas sensors [83].

4. Conclusions

In this work, we investigated the electronic, sensing, and transport properties of square
hBN quantum dots (shBN QDs) doped with single atoms (O, P, and Si) and heteroatoms
(P-C and Si-C). The effect of a single vacancy was also considered. The electronic properties
were strongly affected by doping, where the energy gap decreased from ~5.7 eV in the
unmodified shBN QD to 2.8 eV after doping with Si-C atoms. Additionally, the insulator
shBN QDs could be converted to half metal by substitutional doping with a single O
atom with a spin-up energy gap of 0.77 eV and a spin-down gap of 6.36 eV. Dopants
or vacancies increased the number of low-energy peaks around the Fermi level, which
not only decreased the energy gap but also enhanced the adsorption capability of shBN
QDs. The sensing properties of the shBN QDs toward NO2, acetone, CH4, and ethanol
gases were studied. The unmodified shBN QD showed moderate adsorption energy and
charge transfer due to the physical adsorption on its surface. Substitutional doping and
vacancy defects slightly enhanced the adsorption of CH4 and ethanol due to the strong sp3
bonding in these gases, which made the gases interact physically with the adsorbent. On
the other hand, the adsorption of NO2 and acetone strongly improved by doping due to
the interactions between the low-energy molecular orbitals from the doped shBN QD and
the interactive pi-bond electrons from NO2 and acetone. The I-V characteristics showed
that the current moderately increased by doping with Si-C or greatly increased (spin-up
current) by doping with an O atom. This means that the conductivity of the shBN QDs can
be boosted by doping, which is crucial for efficient sensor applications. After adsorption,
the current showed a noticeable increase/decrease, which can be used as an indicator for
the adsorption process. Thus, substitutional doping or vacancy defects are reliable tools to
tune the electronic and sensing properties of shBN QDs to build efficient gas sensors.
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et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron
microscopy. Nat. Mater. 2020, 19, 534–539. [CrossRef]

72. Mendelson, N.; Chugh, D.; Reimers, J.R.; Cheng, T.S.; Gottscholl, A.; Long, H.; Mellor, C.J.; Zettl, A.; Dyakonov, V.; Beton, P.H.;
et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nat. Mater. 2021, 20,
321–328. [CrossRef] [PubMed]

73. Frisch, M.E.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.P.G.A.; Petersson,
G.A.; Nakatsuji, H.J.R.A.; et al. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016.

74. Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [CrossRef]
75. Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.

Phys. Rev. B 1998, 37, 785–789. [CrossRef] [PubMed]
76. Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for

Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724–728. [CrossRef]
77. Rassolov, V.A.; Ratner, M.A.; Pople, J.A.; Redfern, P.C.; Curtiss, L.A. 6-31G* basis set for third-row atoms. J. Comput. Chem. 2001,

22, 976–984. [CrossRef]
78. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion

correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104–154119. [CrossRef]
79. Abdelsalam, H.; Osman, W.; Elkader, O.H.A.; Zhang, Q. Vibrationally-resolved absorption and fluorescence spectra of chemically

modified 2D hexagonal boron nitride quantum dots. Chem. Phys. Lett. 2022, 806, 140025. [CrossRef]
80. Leenaerts, O.; Partoens, B.; Peeters, F.M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys.

Rev. B 2008, 77, 125416. [CrossRef]
81. Szarek, P.; Suwannawong, S.; Doi, K.; Kawano, S. Theoretical Study on Physicochemical Aspects of a Single Molecular Junction:

Application to the Bases of ssDNA. J. Phys. Chem. C 2013, 117, 10809–10817. [CrossRef]
82. El-Mansy, M.A.M.; Osman, W.; Abdelsalam, H. The electronic and optical absorption properties of pristine, homo and hetero

Bi-nanoclusters. Chem. Phys. 2021, 544, 111113. [CrossRef]
83. Donarelli, M.; Ottaviano, L. 2D Materials for Gas Sensing Applications: A Review on Graphene Oxide, MoS2, WS2 and

Phosphorene. Sensors 2018, 18, 3638. [CrossRef] [PubMed]

http://doi.org/10.1021/acsanm.9b02321
http://doi.org/10.1039/c3cp51510a
http://doi.org/10.1021/acs.jpcc.6b08404
http://doi.org/10.1021/jp402122c
http://doi.org/10.1088/2515-7639/ac09d4
http://doi.org/10.1039/C9CP06823F
http://www.ncbi.nlm.nih.gov/pubmed/31942882
http://doi.org/10.1039/C5TA08134C
http://doi.org/10.1007/s13204-020-01439-2
http://doi.org/10.1016/j.jmrt.2021.01.119
http://doi.org/10.1080/23746149.2022.2048966
http://doi.org/10.1063/1.4730392
http://doi.org/10.1021/acsami.2c01834
http://doi.org/10.1038/s41563-020-0616-9
http://doi.org/10.1038/s41563-020-00850-y
http://www.ncbi.nlm.nih.gov/pubmed/33139892
http://doi.org/10.1063/1.464913
http://doi.org/10.1103/PhysRevB.37.785
http://www.ncbi.nlm.nih.gov/pubmed/9944570
http://doi.org/10.1063/1.1674902
http://doi.org/10.1002/jcc.1058
http://doi.org/10.1063/1.3382344
http://doi.org/10.1016/j.cplett.2022.140025
http://doi.org/10.1103/PhysRevB.77.125416
http://doi.org/10.1021/jp402414n
http://doi.org/10.1016/j.chemphys.2021.111113
http://doi.org/10.3390/s18113638
http://www.ncbi.nlm.nih.gov/pubmed/30373161

	Introduction 
	Computational Model 
	Results and Discussion 
	Electronic Properties 
	Sensing Properties 
	I-V Characteristics 

	Conclusions 
	References

