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Abstract: Computer image recognition (CIR) on the diffraction patterns of X-ray single crystal
diffractometer was used to assist the analysis of the unit cell parameters in terms of lattice volume.
This method can improve the prediction accuracy of unit cell parameters in the pre-experiment step
since erroneous prediction by the software may occur for 5% tested crystal samples, which may
critically affect the complete crystal data quality and cause unnecessary testing time. In the imaging
processing, the diffraction pattern images saved as .img format files were firstly batch transferred into
.jpg format with high quality for further treatment. Specific features of the crystal diffraction points
or zones in the images were extracted for the recognition processing by color mode. The Findcontour
algorithm and the Canny algorithm based on Gaussian filtering were used for the diffraction peak
points and area detection. The relationship between the distribution of crystal diffraction points
(DCDP) and the lattice volumes based on reciprocal lattice theory was established for the users to
judge the reasonable location range of the lattice volumes. A Density model was proposed to correlate
the dependence of the DCDP and the experimental data. Special crystal samples were chosen to
test the CIR performance, and its accuracy for the lattice volume prediction was evaluated. The CIR
method can be used for the assistance in the analysis of the lattice volume location range and for
crystal structure solving.

Keywords: single crystal; X-ray diffraction pattern; computer image recognition; lattice volume; unit
cell parameters

1. Introduction
1.1. Reciprocal Lattice and Cell Parameters

Single crystal structures are key proofs for the characterization of crystalline materials.
X-ray diffraction is widely used for analysis of crystal structures [1]. In order to easily
understand the relationship between the diffraction information and the crystal structure
by mathematic treatment, reciprocal lattice is introduced which is transferred from the
real lattice by Fourier transformation. The X-ray diffraction pattern of a real lattice is
illustrated by its reciprocal lattice for easily handling by mathematic tool, as shown in
Figure 1. The product of the real lattice volume and the reciprocal lattice equals to 1
(V·V * = 1, V: real lattice, V = a × b × c Å3; V *: reciprocal lattice, V * = a * × b * × c *
Å3). An experienced user can evaluate the location range of the real lattice volume from
the diffraction pattern composed of many diffraction peaks by eyes. In this study, the
computer image recognition (CIR) is employed to evaluate the real lattice volume base on
the reciprocal theory of crystals.
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Figure 1. (a) A typical sample for real lattice and reciprocal lattice from c axis review, where a and b 

(blue dotted line) are the two lengths of real lattice while a * and b * (red line) are the two lengths of 

reciprocal lattice. The distance of two diffraction peaks (1/d, where d is the distance between two 

lattice planes) represents one length in the reciprocal space. (b) Schematic illustration of the rela-

tionship between real lattice and its reciprocal lattice of single crystals. 

1.2. X-ray Diffraction 

X-ray diffraction is a powerful tool to determine the crystalline structures of single 

crystal samples. The complete procedure of the crystalline data collection on the single 

crystal X-ray diffractometer (SCXRD) in our lab includes six sequential steps: (1) sample 

mounting, (2) pre-experiment, (3) strategy choice, (4) complete data collection, (5) data 

reduction, and (6) re-finalization. The data collected in the pre-experiment step play an 

important role to determine the consumed time and quality of the completely collected 

data, as shown in Figure 2. The pre-experiment window in the GUI provides direct feed-

back of the unit cell parameters, which normally costs 10 min of operation for each crystal 

sample. The collection strategy is based on the unit cell parameters and lattice asymmetry 

with a limited number of images recording diffraction peaks in the pre-experiment stage. 

The pre-experiment window provides direct feedback of the unit cell, intensity statistics, 

and the set-up for the automatic data collection as reference. However, the software some-

times gives incorrect unit cell parameters if the crystal sample has a low quality, or large 

lattice volume, or a twin lattice, which will mislead the users to choose an uncorrected 

strategy to collect the complete data costing much more unnecessary time. In this case, we 

cannot solve the correct crystalline structures, or will obtain data with incomplete degree 

in the (4) step (Figure 2). This SCXRD works with a four-circle sample holder, which 

named as θ, χ, ω, φ circle, respectively. On the diffraction image, each diffraction peak 

has a unique [θ, χ, ω, φ] value to identify its position in the reciprocal space [2]. 

Figure 1. (a) A typical sample for real lattice and reciprocal lattice from c axis review, where a and b
(blue dotted line) are the two lengths of real lattice while a * and b * (red line) are the two lengths
of reciprocal lattice. The distance of two diffraction peaks (1/d, where d is the distance between
two lattice planes) represents one length in the reciprocal space. (b) Schematic illustration of the
relationship between real lattice and its reciprocal lattice of single crystals.

1.2. X-ray Diffraction

X-ray diffraction is a powerful tool to determine the crystalline structures of single
crystal samples. The complete procedure of the crystalline data collection on the single
crystal X-ray diffractometer (SCXRD) in our lab includes six sequential steps: (1) sample
mounting, (2) pre-experiment, (3) strategy choice, (4) complete data collection, (5) data
reduction, and (6) re-finalization. The data collected in the pre-experiment step play an
important role to determine the consumed time and quality of the completely collected data,
as shown in Figure 2. The pre-experiment window in the GUI provides direct feedback of
the unit cell parameters, which normally costs 10 min of operation for each crystal sample.
The collection strategy is based on the unit cell parameters and lattice asymmetry with a
limited number of images recording diffraction peaks in the pre-experiment stage. The
pre-experiment window provides direct feedback of the unit cell, intensity statistics, and
the set-up for the automatic data collection as reference. However, the software sometimes
gives incorrect unit cell parameters if the crystal sample has a low quality, or large lattice
volume, or a twin lattice, which will mislead the users to choose an uncorrected strategy
to collect the complete data costing much more unnecessary time. In this case, we cannot
solve the correct crystalline structures, or will obtain data with incomplete degree in the
(4) step (Figure 2). This SCXRD works with a four-circle sample holder, which named as θ,
χ, ω, ϕ circle, respectively. On the diffraction image, each diffraction peak has a unique
[θ, χ, ω, ϕ] value to identify its position in the reciprocal space [2].
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cially the lattice volumes of the sample, are crucial to determine the strategy selection. 
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calculate the cell parameters such as a, b, c, and V. Among them, the lattice volume V is 
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the samples to be measured are of low quality, the software may give varieties of lattice 

volume values (Figure 3c) that mislead the users to choose correct strategies for the further 

Figure 2. Schematic illustration of the crystal data collection process including 6 steps on the
spectrometer device. About 20 frames of the diffraction peaks are recorded in the pre-experiment
step, which strictly affects the strategy design of the complete data collection. The cell parameters,
especially the lattice volumes of the sample, are crucial to determine the strategy selection.

1.3. Computer Image Recognition on the Diffraction Pattern

The indexation of the diffraction pattern will be performed in the pre-experiment to
calculate the cell parameters such as a, b, c, and V. Among them, the lattice volume V is
suitable for predication by computer image recognition (CIR) method since it has close
relationship with the dispersion of the diffraction pattern [3–5]. According to the empirical
prediction of the users for thousands of crystal samples, the workstation program will
output confused information even wrong unit cell parameters for about 5% crystal samples
from the data. Especially for a low-quality crystal sample (or large-cell-volume, or twin
sample), a default unit cell as the output may be incorrect. To address this problem, we
propose the CIR method in order to assist the users for the judgement on the diffraction
pattern, which can help increasing the prediction precision of the unit cell parameters [6]. It
is known that the cell parameters, especially the cell volume, are in close correlation to the
distribution concentration of the diffraction pattern, which are shown as circle dots on the
diffraction window in the program GUI (Figure 3). The diffraction pattern profile allows
the user to establish a correlation between the distribution concentration (or density) and
the unit cell volume. It can be seen that a smaller lattice volume has a widely scattered
dispersion of the diffraction peaks (Figure 3a), while a larger lattice volume has a dense
pattern of the centralized diffraction peaks (Figure 3b). This difference of the diffraction



Crystals 2022, 12, 1676 4 of 14

peak dispersion can be used as the predication experience of the CIR method. If the samples
to be measured are of low quality, the software may give varieties of lattice volume values
(Figure 3c) that mislead the users to choose correct strategies for the further data collection.
Under this circumstance, CIR may play as an important tool for the users to locate the right
range of the lattice volume (Insert table of Figure 3c).

Crystals 2022, 12, x FOR PEER REVIEW 4 of 14 
 

 

data collection. Under this circumstance, CIR may play as an important tool for the users 

to locate the right range of the lattice volume (Insert table of Figure 3c). 

 

Figure 3. The correlation between the diffraction pattern and the real lattice volume (V) according 

to (a) a smaller and (b) a larger lattice volume, (c) varieties of lattice volume values will be provided 

(insert table) on a low-quality sample with blurred diffraction pattern. CIR method may be em-

ployed to assist the users for the predication of the lattice volume range. 

2. Materials and Methods 

2.1. Diffraction Data Collection 

Single crystals of 30 samples were selected and detected on the X-ray diffractometer 

(Excalibur EOS, Rigaku). These samples, including organic molecules and metal-organic 

frameworks, had a mean index rate of 95% and about 330 diffraction images for each. The 

crystals were kept at 293.15 K during the data collection by the workstation program.  

The program GUI is comprised of a few different areas, which include the tool area, 

diffraction/image display window, and button area, as shown in Figure 2. As soon as the 

one frame has been collected the automatic software will attempt to find the unit cell. Once 

a unit cell has been successfully found it will be displayed in the pre-experiment window, 

along with the information relating to the quality of the cell that shown in a percentage of 

the indexed reflections. As additional frames are recorded, the unit cell is re-determined 

and the pre-experiment is updated with the new (or improved) unit cell. The proposed 

data collection strategy is also displayed on the right section. Meanwhile, intensity statis-

tics and a proposed exposure time for the data collection, which are dependent on the 

initially specified resolution and I/sig values, will be provided for the users. These can be 

Figure 3. The correlation between the diffraction pattern and the real lattice volume (V) according to
(a) a smaller and (b) a larger lattice volume, (c) varieties of lattice volume values will be provided
(insert table) on a low-quality sample with blurred diffraction pattern. CIR method may be employed
to assist the users for the predication of the lattice volume range.

2. Materials and Methods
2.1. Diffraction Data Collection

Single crystals of 30 samples were selected and detected on the X-ray diffractometer
(Excalibur EOS, Rigaku). These samples, including organic molecules and metal-organic
frameworks, had a mean index rate of 95% and about 330 diffraction images for each. The
crystals were kept at 293.15 K during the data collection by the workstation program.

The program GUI is comprised of a few different areas, which include the tool area,
diffraction/image display window, and button area, as shown in Figure 2. As soon as the
one frame has been collected the automatic software will attempt to find the unit cell. Once
a unit cell has been successfully found it will be displayed in the pre-experiment window,
along with the information relating to the quality of the cell that shown in a percentage of
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the indexed reflections. As additional frames are recorded, the unit cell is re-determined
and the pre-experiment is updated with the new (or improved) unit cell. The proposed data
collection strategy is also displayed on the right section. Meanwhile, intensity statistics
and a proposed exposure time for the data collection, which are dependent on the initially
specified resolution and I/sig values, will be provided for the users. These can be altered
during the pre-experiment, thereby updating the proposed strategy. The pre-experiment
itself can be re-opened at any time by locating it in the load experiment dialogue window
or locating the pre-experiment name.par file in the experiment folder.

The image list allows the users to open and save diffraction images. Ideal diffraction
peaks should have a narrow sharp profile with no obvious humps on the side. In order
to obtain the relationship between the crystal diffraction density and its volume, the
crystal diffraction image for computer recognition must be batch obtained. The raw
crystal diffraction data obtained from the diffractometer are in IMG format, and we cannot
batch handle and obtain the data in this format. Therefore, we firstly converted them
into a computer-recognizable JPG format implemented through python code. Next, we
performed a series of image preprocessing, including grayscale conversion, filtering, edge
processing, and dilation processing. Following this, a region of interest (ROI) is extracted,
and the image of the region is segmented to extract the contour of the diffraction spot, and
the area of each diffraction spot is calculated; finally, the diffraction density is calculated
according to a certain algorithm. The image processing algorithm is based on OpenCV
software [7].

2.2. The Distribution of Diffraction Points in Different Mode

CIR is a powerful tool to process and analyze images. In this work, traditional CIR
technology was proposed to study the relationship between the distribution of crystal
diffraction points (DCDP) and their lattice volumes. It should be noted that, since each
crystal sample has different diffraction ability, the intensity of the diffraction peaks of one
sample may be greatly different from other ones. Hence, we cannot treat all the samples’
patterns by one standard. In this processing, we used the ratio of the peak contribution in
lightness and area at different zones in each diffraction image, which reflected the Density
(relative DCDP ratio) of each sample. Typical diffraction images of a crystal sample are
shown in Figure 4. The white circles in each image represent the 2θ contour lines, which are
regarded as the indication of the diffraction resolution in the experiment. In the software
different displaying mode with 3, 5, 7 concentric circles, respectively, can be selected to
indicate the 2θ contour lines (Figure 4a–c). The CIR processing will be performed on
different zones such as these concentric circles since they clearly mark the diffraction
resolution as a fixed calibration. In fact, in the CIR processing the contour-line-like circles
were used as the boundary lines to divide the diffraction zones of the DCDP for comparison.
The diffraction peaks are illustrated as the bright spots on the blue background, and the
DCDP circled in the ring area is different from the circle center, which is in accordance
with the principle of diffraction spots distributed in the reciprocal space. The higher the
diffraction intensity, the brighter the diffraction spots. In this paper, the term ‘Density’ is
used herein to refer to the ratio of the total sum of the areas of the diffraction points in the
ring to the total area of the diffraction spots of the whole image, which is equivalent to the
ratio of the sum of the respective pixel points of these two parts in the CIR processing.
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Figure 4. Three typical crystal diffraction images taken from the data collection software, which can
be shown in different mode with (a) 3, (b) 5, (c) 7 concentric circles for convenient CIR processing.
The white circle lines are the indicators of 2θ contour lines.

2.3. Image Preprocessing

The crystal diffraction image collected in this work is a colorful image in blue and
white [8]. In the image, each pixel is composed of three basic components, namely R, G,
and B, respectively. They are the three primary color components at the gray level, and
each primary color component has 255 gray values forming the color combination. A
grayscale image has the same gray values of the three primary color components. All the
key information of a diffraction image can be expressed based on the color mode in gray
values for the data extraction.

Based on this, we converted the colored images into grayscale image for the recognition
processing. A typical colorful diffraction image converted to a grayscale image is shown
in Figure 5a. Filtering processing is necessary to remove the noise from the background
and to smooth the image. The simple average denoising principle is simple, but easy
to fuzzy border after the noise reduction, and so it cannot be widely applied in image
pre-processing [9]. In this work, Gaussian filtering was used for image pre-processing.
The value of each pixel in the image was obtained by comparison between their weighted
averaging value and the neighborhood pixel values. After the Gaussian filtering, the
diffraction area was successfully extracted from the background, as shown in Figure 5b.
The Canny algorithm is one of the most commonly-used methods for edge detection based
on Gaussian filtering [10]. The Canny algorithm traverses the pixel points in the image,
removes all non-edge points according to the gradient, and applies double thresholds to
determine the edge points [11]. Canny algorithm was employed for the diffraction area
edge detection, and the result is shown in Figure 5c. Next, the edge features of the pixels
were dilated to highlight them for the subsequent extraction of diffraction area profiles [12].
The convolution kernel used in the dilation processing was based on a 3 × 3 matrix with
the iteration number of 1. The diffraction image after the edge dilated treatment is shown
in Figure 5d.
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Figure 5. Preprocessing a colorful image consequentially by (a) conversion to grayscale image,
(b) Gaussian filtering treatment, (c) canny edge detection, and (d) edge dilated treatment.

2.4. ROI of Image

After the preprocessing step, the annular region in the figure, namely the ROI [13], is
identified by detecting the contour, as shown in Figure 6. The coordinate of the circle center
was calculated and recorded as (X0, Y0). The detection method is to only detect the outer
contour, which can exclude the contour detection of the diffraction area in the ring, and set
the contour area threshold at the same time, which can exclude the interference of other
contours. In this case, the detection rate is greatly improved.
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Figure 6. ROI of the diffraction image to digitalize the diffraction area border lined by the primary circle.

2.5. Image Segmentation

Currently, various methods are used for image segmentation, such as threshold seg-
mentation, region segmentation, and color segmentation. In this work, color segmentation
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was used for the image process in [14]. An advantage of this method is that the parameters
can be adjusted in real-time to find the optimal parameter values. In order to achieve
this effect, the images are required to be converted from RGB space to HSV space in color
mode [15]. The effect of the proposed color space is mainly to increase difference among the
three tunnels; thus, the color information of images can be fully used [16]. Compared with
RGB space, HSV space has saturated hue with independent values, which can accurately
express the brightness, saturation, and chroma of pixels. The image in HSV space is shown
in Figure 7.
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Figure 7. Diffraction image segmentation in HSV space to illustrate the brightness, saturation and
chroma of pixels.

Color segmentation decomposes an image according to the three parameters of hue,
saturation, and lightness. Different segmentation effects can be achieved by setting the
maximum and minimum thresholds by adjusting the three parameters [17]. In the GUI
panel, six parameters to regulate the hue, saturation and lightness (each with min and
max options) can be adjusted to display the segmentation effects. After comparison, the
optimal thresholds of these parameters were found; thus, providing the best segmentation.
A typical color segmentation image to prominently indicate the diffraction area is shown in
Figure 8.

Crystals 2022, 12, x FOR PEER REVIEW 8 of 14 
 

 

was used for the image process in [14]. An advantage of this method is that the parameters 

can be adjusted in real-time to find the optimal parameter values. In order to achieve this 

effect, the images are required to be converted from RGB space to HSV space in color 

mode [15]. The effect of the proposed color space is mainly to increase difference among 

the three tunnels; thus, the color information of images can be fully used [16]. Compared 

with RGB space, HSV space has saturated hue with independent values, which can accu-

rately express the brightness, saturation, and chroma of pixels. The image in HSV space 

is shown in Figure 7. 

 

Figure 7. Diffraction image segmentation in HSV space to illustrate the brightness, saturation and 

chroma of pixels. 

Color segmentation decomposes an image according to the three parameters of hue, 

saturation, and lightness. Different segmentation effects can be achieved by setting the 

maximum and minimum thresholds by adjusting the three parameters [17]. In the GUI 

panel, six parameters to regulate the hue, saturation and lightness (each with min and 

max options) can be adjusted to display the segmentation effects. After comparison, the 

optimal thresholds of these parameters were found; thus, providing the best segmenta-

tion. A typical color segmentation image to prominently indicate the diffraction area is 

shown in Figure 8. 

 

 

Figure 8. Color segmentation on diffraction image to achieve the best segmentation effect. 

2.6. Contours Segmentation 

After the image was segmented by the color segmentation method, only the infor-

mation of the diffraction points was left in the image, as shown in Figure 8. In addition, 

Figure 8. Color segmentation on diffraction image to achieve the best segmentation effect.



Crystals 2022, 12, 1676 9 of 14

2.6. Contours Segmentation

After the image was segmented by the color segmentation method, only the informa-
tion of the diffraction points was left in the image, as shown in Figure 8. In addition, the
image preprocessing operations such as filtering, edge processing, and expansion process-
ing were performed on the image. After that, the diffraction part of the image was extracted
by the Findcontours function. After the contour was found, the Drawcontours function was
used to draw the contour and to fill the interior. The green color was selected to be drawn
and displayed in the source image. All the image processing related functions are referred
to the OpenCV library (https://opencv.org/) (accessed on 1 January 2022). The contoured
result of a diffraction image is shown in Figure 9. In the Findcontours method, the input
image is usually a binary image processed by an edge detection algorithm, and the detected
contour is represented as a point vector [18]. A contour is composed of a set of continuous
point vectors. There are four retrieval modes to find the contours. The mode adopted in
this work was to detect only the outermost contours, ignoring the inner contours contained
in the outer contours. Based on this vision effect, the center coordinates of each diffraction
zone were calculated and recorded as (Xi, Yi) (i = 1, 2, 3, . . . ). Meanwhile, the area of each
diffraction point was calculated, and the results were recorded as Sj (j = 1, 2, 3, . . . ). After
that, all the diffraction zones on the image were precisely located by coordination.
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2.7. Density Calculation

In crystal diffraction experiments, hundreds of diffraction images are obtained for
each crystal sample with different lattice volumes. The seven densities of these hundreds
of diffraction images are averaged to obtain the seven final densities in this volume. In
order to obtain the DCDP, the number of all pixels in the detected contour is calculated as
the area of the contour.

Based on the series of ROI treatment, the Density model was required to divide the
diffraction image into different circle zones to compare the Density difference and to
calculate the DCDP. Firstly, the coordinate of the center of the ROI image was determined
as the center of the model. Next, seven concentric circles with the center were drawn to find
the best Density result, as shown in Figure 10. The size of the diffraction image selected
in this work was fixed at 1024 pixels × 1024 pixels, which was desired to handle and was
convenient to observe and store. Each circle line was tested to find the optional result
for Density calculation, since the discrimination effect could not be well shown using the
circled area if too large or too small. If the area of the ring is too small, the diffraction image
of the crystal in some volumes will have no diffraction spots within the ring, while the area
of the ring is too large, the ring will exceed the image range. After the many-time test, the
smallest circle with 130 pixels in radius, while the largest circle with 250 pixels in radius

https://opencv.org/
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was chosen with the ring spacing was 20 pixels because this was the best reasonable choice
for the zone dividing. The distance between each diffraction point and the diffraction
center was calculated by Equation (1):

di =

√
(xi − x0)

2 + (yi − y0)
2 (1)
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Figure 10. Density model illustrated by dividing concentric circles for the ratio of diffraction zone
calculation (7-circle mode, as shown in Figure 4c).

The difference of the DCDP in each circle (Ri) was compared by the relationship
between Ri and di. On this basis, the total sum of the diffraction areas in the seven circles
could be calculated. The total sum of all the diffraction areas in the diffraction image was
represented by S, which were manually divided into concentric-circles such as the division
effect in Figure 4c. Accordingly, the sum of the diffraction areas in the first ring in the
Density model was S1, the sum of the diffraction areas in the second ring is S2, and so on
S3, S4, S5, S6, S7. Furthermore, the Di value for the DCDP ratio by the seven intensities was
introduced and given by Equation (2).

Di =
Si
S

, i = 1, 2, 3, . . . 7. (2)

3. Results

In this work, CIR on about 10,000 diffraction images from 30 crystal samples was
performed. Based on the CIR results, there is a functional correlation between the seven
densities and the lattice volumes. The Origin software was used to perform the linear
fitting on their relationships, and the R-squared was compared to judge the fitting effect. In
the fitting results, D5 had the best correlation for fitting the selected lattice volumes since
its R-squared value is the closest to 1, and its Density model is shown in Figure 11a. In
order to optimize the fitting effect, various function models in the Origin software were
used to fit D5, and the R-squared value were compared to evaluate the fitting effect. The
results show that the R-squared value obtained by exponential fitting using the ExpDec2
function is the largest, which means the fitting effect is the best. Therefore, this function
was selected as the final fitting function. The relationship between the lattice volume and
the DCDP by D5 correlation was drawn in Figure 11b. As can be seen, the experimental
lattice data and the Density values for the crystal samples showed a nonlinear relationship
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from 174 to 5256 Å3. After careful calculation and simulation, the relationship between the
Density and lattice volume was established by exponential fitting treatment as follows:

D = −0.4969× exp(− V
373.16

)− 6061.13× exp(− V
2.07569E8

) + 6061.54 (3)

where D is the diffraction density of the crystal and V is the volume of the crystal. In the
practical experiment, crystal samples are dominated with little lattice volumes (less than
5000 Å3), hence there were plenty samples for CIR treatment in this lattice volume range.
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Figure 11. (a) Selection of correlation model D5 for DCDP ratio calculation, and (b) relationship
between lattice volume and Density by exponential fitting treatment.

This is because the D5 value is corresponding to the 8.33◦ of the θ angle (2θ = 16.66◦)
as the resolution indicator line (also contour lines) on the diffraction pattern. Enough
data could be collected below the θ angle at 10◦ on a Mo diffractometer for many kinds of
crystal samples. When the θ angle is larger than 10◦, the diffraction data play little roles
to determine the data quality. The ROI result from the D5 agreed well with the crystal
diffraction mechanism.

4. Discussion
4.1. Assistance for Strategy Design in the Pre-Experiments

We took out 15 crystal samples with unknown volumes for evaluation the CIR perfor-
mance. Their diffraction images were firstly transformed to obtain the DCDP ratio. Based
on the exponential relationship between the lattice volume and the DCDP ratio, the unit
cell volume value can be predicted in a reasonable range. The CIR predicted volumes
for the 15 selected crystal samples were compared with the real cell parameters obtained
by the data collection software and the result is listed in Table 1. The purpose of this
paper is to predict reasonable lattice volumes of crystal samples through the CIR method,
which provides a proper range of the lattice volumes in the pre-experiment step. This CIR
assistance can effectively reduce the unnecessary experimental time in the data collection
step for crystal samples with low quality, large lattice volumes, or twin crystals; herein,
10 crystal samples (before diffraction experiment) with unknown lattice volumes were
selected to test the prediction accuracy of the CIR method (Figure 12). The experimental
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data of these crystal samples were then obtained for comparison. It was found that the pre-
diction deviation is within about 20% from the true values for 87% samples. The predicted
value deviation (0.8~1.2 Vp, Vp is predicted volume) indicated the feasibility of the CIR
method in the application of lattice volume prediction.

Table 1. Selected crystal samples for CIR testing.

Sample Number Density Predicted Volume Real Volume Prediction Bias (%)

1 0.351564 699.35 842.48 16.9
2 0.405231 1022.88 852.38 20.0
3 0.402627 1000.75 1006.71 0.59
4 0.459351 1887.04 2047.8 7.85
5 0.441348 1482.47 1349.47 9.86
6 0.409692 1063.21 1013.7 4.88
7 0.503331 3287.41 2116.7 55.3
8 0.497459 3088.11 2450.6 26.0
9 0.487212 2743.76 2930.3 6.37
10 0.568281 5525.61 5259.1 5.07
11 0.481121 2542.93 2434.6 4.45
12 0.490568 2855.86 2772.7 2.99
13 0.521694 3914.21 3365.6 16.3
14 0.547753 4806.22 4872 1.35
15 0.451295 1687.65 1682.4 0.31
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4.2. Assistance for Solving Crystal Structures

As mentioned in the introduction section, the CIR method can help the users for
solving the crystal structures. Herein, we introduced a typical example of a crystal sample
W1 (C33H42N8O6S1) with a higher quality. The software provided a lattice volume of 6831
Å3 with an orthorhombic system (a 6= b 6= c, a = 48.672, b = 8.3123, c = 16.9801, α = β = γ

=90◦) after the complete data collection. All the measurement parameters seemed good,
as they were located in reasonable ranges with an indexation value of 76%. An axis of
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the lattice was 48.64 Å3 that was a longer axis for a smaller molecular. The whole data
collection time was 2 h. After the experiment, the original data were manually reduced
with Laue group as Ammm, completeness of 99.7%, Signal/noise of 21.53, Rint of 0.038,
and Rsigma of 0.034. All the key parameters were ideal. However, the crystal structure of
this sample was solved by ShelXT but could not be completely refined by ShelXL using
Least Squares minimization to convergence since several key parameters such as R1 and
wR2 were too high in this default lattice (Figure 13a). It was worthwhile to reconsider
the original data of the lattice parameters were correct or not. After multiple attempts for
solving this problem, it was still difficult to be addressed. The users then introduced the
CIR method to rejudge the lattice parameters based on the linear relationship mentioned
above. A new lattice volume location range (3000~4000 Å3) was provided by the CIR
suggestion. The platon software confirmed the presence of a lattice volume of V = 3435 Å3.
Next, the users recollected the diffraction data and, in this time, we manually set new
lattice parameters with a = 8.3, b = 48.6, c = 9.4, α = γ =90◦, β = 116◦, since the program
could not provide the option for this lattice parameter. In this case, a new crystal system of
monoclinic (space group of P21) and a new cell volume of 3422 Å3 were obtained. After
7 h of collection time, a new set of diffraction data was collected. This time, the crystal
structure was successfully solved and refined based on the new data with excellent key
parameters thanks to the CIR assistance (Figure 13b).
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assistance for a hard-solving crystal example.

5. Conclusions

Computer image recognition (CIR) method was used in order to assist the users for
predication of lattice volumes from X-ray diffraction experiments. This study aimed to
solve the recognition problem caused by the confused information on the lattice volumes
obtained from about 5% single crystal samples. We took 30 single crystal samples for the
CIR processing based on their total 10,000 diffraction images. The distribution of crystal
diffraction points (DCDP), in terms of Density model in this work, was proposed for the
CIR processing for evaluation location range of the lattice volumes based on reciprocal
theory. The batch transformation of format, specific features extraction, pre-made region
of interest mask, image segmentation, contours finding were sequentially performed on
the diffraction images to establish the relationship between the Density and the lattice
volumes. The prediction error range for lattice volumes was about 20% for 87% for 15 se-
lected crystal samples by the CIR method. Its applications as a method of assistance in
the pre-experiments and for crystal structure solving were discussed. The CIR method
shows high feasibility and may play an important role in the X-ray diffraction analysis for
crystal structures.

Author Contributions: Methodology, software and writing, D.M. (Dong Ma); data collection, method-
ology and software, Y.L.; supervision and review, Q.F.; project administration and formal analysis,
X.L.; resources and funding acquisition, D.M. (Daichuan Ma); conceptualization, investigation and
review, D.L. All authors have read and agreed to the published version of the manuscript.
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