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Abstract: Proteins that use cysteine residues for catalysis or regulation are widely distributed and
intensively studied, with many biomedically important examples. Enzymes where cysteine is a
catalytic nucleophile typically generate covalent catalytic intermediates whose structures are impor-
tant for understanding mechanism and for designing targeted inhibitors. The formation of catalytic
intermediates can change enzyme conformational dynamics, sometimes activating protein motions
that are important for catalytic turnover. However, these transiently populated intermediate species
have been challenging to structurally characterize using traditional crystallographic approaches.
This review describes the use and promise of new time-resolved serial crystallographic methods to
study cysteine-dependent enzymes, with a focus on the main (Mpro) and papain-like (PLpro) cysteine
proteases of SARS-CoV-2, as well as on other examples. We review features of cysteine chemistry
that are relevant for the design and execution of time-resolved serial crystallography experiments. In
addition, we discuss emerging X-ray techniques, such as time-resolved sulfur X-ray spectroscopy,
that may be able to detect changes in sulfur charge states and covalency during catalysis or regulatory
modification. In summary, cysteine-dependent enzymes have features that make them especially
attractive targets for new time-resolved serial crystallography approaches, which can reveal both
changes to enzyme structures and dynamics during catalysis in crystalline samples.
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1. Why Are Cysteine Residues Interesting?

Of the 20 canonical proteinogenic amino acids, cysteine (Cys) is one of the most reactive
at physiological conditions. As a consequence of its reactivity, Cys can play multiple
important roles in proteins: as catalytic residue in enzyme active sites, as the favored site
for post-translational modifications, as ligands in metal binding sites, and in disulfide
formation (Table 1). The solution pKa of the Cys thiol is approximately 8.5, meaning that
only about 3% of unperturbed Cys residues are ionized to the more reactive thiolate anion at
pH 7. However, the microenvironment of Cys residues in proteins can lead to depression of
the thiol pKa to as low as ~3.3 [1], leading to a greatly increased fraction of thiolate anion for
those residues at physiological pH. Cys thiolates are more nucleophilic than thiols and are
thus typically the reactive species in Cys chemistry. However, the rate of thiolate reaction
with electrophiles is maximal when the thiol pKa matches the solution pH, owing to the
high transition-state barrier to covalently modifying a highly stabilized thiolate anion [2].
Because the protein microenvironment exerts a large influence on Cys ionization and
reactivity [3–6], the details of the protein structure around Cys residues direct the chemistry
that can occur at the Cys. In addition to standard X-ray and neutron crystallographic
techniques for characterizing protein structure, new serial crystallography experiments
offer time-resolved views of enzyme active sites during catalysis [7–13]. These new classes
of experiments are particularly well-suited to following the kinds of covalent catalysis
that occur in Cys-dependent enzymes, which typically generate defined intermediates
amenable to experimental and computational characterization.
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Table 1. Examples of cysteine states in proteins.

Cys State Description

R-SH Thiol/thiolate (unmodified; pKa~8.5)

R-SNO S-nitrosation

R-S-OH Sulfenic acid/sulfenate (pKa~6)

R-S-OOH Sulfinic acid/sulfinate (pKa~2)

R-S-OOOH Sulfonic acid/sulfonate (pKa~−2)

R-S-S-G Glutathionylation

R-S-S-R′ Disulfide

R-S-Ub Ubiquitination

R-S-M Metal binding/coordination

R-S-C-R′ Alkylation

R-S-CO-CH3 Acetylation

2. Cysteine Residues in Enzyme Catalysis: SARS-CoV-2 Proteases

Many enzymes feature Cys residues in their active sites, typically serving as a cat-
alytic nucleophile. Cys-dependent enzymes perform a wide variety of essential functions
within the cell, and they include proteases, antioxidant enzymes, kinases, phosphatases,
transferases, hydrolases, lyases, isomerases, and ligases. A comprehensive review of Cys-
dependent enzymes would exceed the scope of this topical minireview; however, a general
theme is that they feature a bipartite reaction mechanism. The reaction is initiated by
nucleophilic Cys attack to form a covalent intermediate, followed by resolution of the
catalytic intermediate and the release of product via hydrolysis or transfer to another
nucleophile. Importantly, there are conflicting chemical demands on catalytic Cys residues
throughout the reaction cycle. In the early steps, the Cys should be a good nucleophile, and
thus ionized, but not highly stabilized as a thiolate. Once the catalytic intermediate has
formed, the Cys must now be a leaving group with a lower propensity for covalent bond
formation (Figure 1). Therefore, efficient Cys-dependent enzymes must change features
of the active-site microenvironment during catalysis to favor the sequentially better and
poorer nucleophilic character at the Cys residue as the reaction proceeds. Importantly,
nucleophilicity is not an absolute quantity, and thus, both the detailed active-site envi-
ronment and the electronic configuration of the substrate, intermediate(s), and product
influence the behavior of the Cys sulfur atom throughout catalysis. Because the relevant
catalytic intermediates are transient, new time-resolved X-ray crystallographic approaches
are particularly well-suited to determining how Cys-dependent enzymes accomplish this
complex chemical feat and will be discussed in this review.
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reaction indicated by straight arrows. In the initial steps of the reaction, the Cys thiolate (red) needs
to be nucleophilic enough to form a bond (and the first intermediate) with the substrate. In later steps,
the Cys needs to be electrophilic enough to serve as a leaving group (green) and release product.
The relative change in degree of Cys nucleophilicity is a combination of the chemical properties
of the substrate/intermediate/product as well as structural and electrostatic changes in the Cys
microenvironment during catalysis that facilitate enzyme turnover.

2.1. Chymotrypsin-Like Main Protease (3CLpro or Mpro)

Cys chemistry plays a critical role in the lifecycle of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 and the focus of this spe-
cial issue. Table 2 presents the total Cys counts and percentages for each protein in the
SARS-CoV-2 proteome, with annotations for functionally important Cys where known.
Several proteins from SARS-CoV-2 have markedly higher Cys abundance compared to the
overall frequency of 2.2% Cys in all mammalian proteins [14,15]. One of these Cys-rich
proteins is the main, or chymotrypsin-like, protease (Mpro or 3CLpro), which has been the
subject of a large amount of structural study [16–25]. Mpro cleaves several polyPro-proteins
into their mature form, including 11 cleavage sites in 2 large polyproteins: replicase 1a and
1ab, which are required for viral replication [16,19]. Mpro is essential for viral maturation
and is thus an attractive pharmacological target. Mpro is targeted by nirmatrelvir, which, in
combination with ritonavir, is marketed under the tradename Paxlovid, which has received
FDA emergency use approval for the treatment of COVID-19. However, many other drug
candidates targeting Mpro are being developed [26–28], reflecting the consensus that this
Cys protease is one of the most promising targets for the treatment of COVID-19.

Table 2. Cys content of the SARS-CoV-2 genome.

Protein Number of Cys
Residues; %

Cys of Known Functional
Importance 1 Role of Functional Cys

nsp1 1; 0.6 NA NA

nsp2 27; 4.2 NA NA

nsp3
(PLPro) 10; 3.2 C111 *, C189+, C192+,

C224+, C226+
Nucleophile *,
Zn2+ binding+

nsp4 16; 3.2 NA NA

nsp5
(MPro) 12; 3.9 C145 Nucleophile

nsp6 10; 3.4 NA NA

nsp7 3; 3.6 NA NA

nsp8 2; 1.0 NA NA

nsp9 3; 2.7 NA NA

nsp10 13; 9.4 C74, C77, C90,
C117, C120, C128, C130 Zn2+ binding

nsp11 1; 7.7 NA NA

nsp12 29; 3.1 C301, C306, C310, C487,
C645, C646 Zn2+ binding

nsp13 26; 4.3 NA NA

nsp14 23; 4.4 NA NA

nsp15 5; 1.4 NA NA

nsp16 5; 1.7 C115 adenosine stabilization

E Protein 3; 4.0 NA NA

M protein 4; 1.8 NA NA



Crystals 2022, 12, 1671 4 of 16

Table 2. Cont.

Protein Number of Cys
Residues; %

Cys of Known Functional
Importance 1 Role of Functional Cys

S protein 40; 3.1 NA NA

N protein 0; 0.0 NA NA

orf3a 7; 2.5 NA NA

orf3b 0; 0.0 NA NA

orf6 0; 0.0 NA NA

orf7a 6; 5.0 NA NA

orf7b 2; 4.7 NA NA

orf8b 7; 5.8 NA NA

orf9b 0; 0.0 NA NA

orf9c 5; 7.4 NA NA

orf10 1; 2.6 NA NA
1 Numbering is provided for the mature (i.e., processed) peptide. “NA” means “not applicable” or “not yet
known”. “*” refer to the functions in the next column.

The Mpro literature has been the subject of many reviews [28–31], and thus we focus on
only a few key issues with respect to its Cys active site. The X-ray crystal structure of Mpro

has been determined at resolutions ranging from 1.2–3.0 Å, and those revealed that its active
site is centered on Cys145, which forms a catalytic dyad with His41 [21,22] (Figure 2A,B).
Catalytic dyads are found in many other Cys proteases [32] and reflect the relative ease
with which Cys can be deprotonated compared to higher pKa hydroxylated active-site
nucleophiles, such as serine, where a Ser-His-Asp/Glu catalytic triad is typically used.
However, the ionization state of the Mpro active site has been debated, with some studies
of the related main protease from SARS-CoV-1 (the causative agent of SARS) suggesting
that the catalytic dyad may be neutral in the resting enzyme and that Cys145 ionizes to
the more nucleophilic thiolate only upon substrate binding [33]. Other studies of SARS-
CoV-1 Mpro proposed that the dyad is ionized to an imidazolium-thiolate pair (His+-Cys−)
in resting Mpro [34]. Neutron crystallography of SARS-CoV-2 Mpro settled this issue by
directly observing hydrogens (deuterons) on the doubly protonated cationic His41 with
no corresponding nuclear density near Cys145 in 2.4 Å resolution nuclear density maps,
supporting the existence of an imidazolium-thiolate pair that is poised for nucleophilic
attack in the resting enzyme [20]. This is an example of the subtle interplay of hydrogen
bonding and electrostatic effects frequently found in Cys-containing active sites, which can
profoundly influence Cys chemistry in these enzymes [6,18].

The structural biology of Mpro illustrates another common theme in X-ray crystallo-
graphic studies of catalytic Cys residues in proteins: their tendency towards oxidation.
Functionally important Cys residues often have depressed pKa values and thus exist as
more reactive thiolates at a physiological pH. While this enhances their reactivity towards
substrates and regulatory molecules, it also increases the probability of off-pathway chem-
istry. In Mpro, a 1.80 Å resolution, room-temperature X-ray crystal structure showed that the
catalytic Cys145 nucleophile can be oxidized to an unusual peroxysulfenate (Cys-S-O-O−)
at pH 7.0 [19]. No such modification is observed at pH 6.0, where a larger proportion of
Cys145 is in the less-reactive thiol form [19]. While the physiological significance of this
modification is uncertain, Cys oxidation can mimic several active-site microenvironment
changes that occur during catalysis in these enzymes [35]. Cys modifications are often
facilitated by X-ray-induced radiation damage and are typically more pronounced when
higher doses are absorbed at synchrotron sources. X-ray crystallographers studying Cys-
dependent enzymes should be aware of the enhanced tendency of low pKa Cys residues
to be directly modified by oxygen-containing species in the presence of X-rays. This type
of modification has been studied less than other types of site-specific radiation damage,
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such as the breaking of disulfide bonds, the decarboxylation of aspartate and glutamate
residues, the loss of the -OH group of tyrosine, the oxidation of methionine, [36] and the
reduction of metal centers [37–40].

2.2. Papain-Like Protease (PLpro)

PLpro is another essential SARS-CoV-2 Cys protease because it cleaves three pro-
proteins into their mature forms: Nsp1, Nsp2, and Nsp3 [41]. The related PLpro from
SARS-CoV-1 (the causative agent of SARS) has additional roles related to its canonical
proteolytic activity, including deubiquitination and deISGylation [42,43], some of which
appear to be shared by PLpro from SARS-CoV-2 [44–46], which is 83% identical. Similar
to its namesake, papain, PLpro contains a catalytic triad: Cys111, His272, and Asp286 [47]
(Figure 2B,C) although the acidic residue in the triad is thought to be a minor contributor to
catalytic activity in papain-like Cys proteases [48,49]. However, Cys plays another impor-
tant role in PLpro as a metal ligand, with Cys189, Cys192, Cys224, and Cys226 coordinating
a Zn2+ ion that is essential for activity in both SARS-CoV-1 and SARS-CoV-2 [42,50,51]
although it is distant (~40 Å) from the active site. As with Mpro, PLpro has been the subject
of intensive structural study using primarily X-ray crystallography, and structures have
been determined at resolutions ranging from 1.4 to 3 Å [47,52–57]. Unlike Mpro, PLpro has
not been studied using neutron crystallography, so the ionization state of its catalytic triad
is presumed to be the resting thiolate (Cys−)-imidazolium (His+)-carboxylate (Asp−) state
found in other papain-like proteases [58,59]. Notably, this model has been challenged in
prior computational studies of related enzymes that suggest a thiol (Cys)-imidazloium
(His+) pair in papain [60], and the related Cys protease cruzain appears to possess a neutral
thiol (Cys)-imidazole (His) pair in the resting enzyme that is ionized prior to catalysis in a
substrate-assisted mechanism that may be facilitated by a conformational change in the
active site [61]. The continued salience of these debates about fundamental aspects of active
sites in a thoroughly studied class of Cys proteases highlights the sensitivity of Cys ioniza-
tion to its structural microenvironment, its central importance for enzyme function, and the
dangers of generalizing from one example to an entire class of Cys-dependent enzymes.
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of the Mpro active site, with key catalytic dyad residues in grey and other residues identified as
important in gold. Key hydrogen bonds are shown as dotted lines, with distances given in angstroms.
(C) PLpro (PDB code 6WZU [47]) shown as a ribbon diagram with active-site residues in blue and
a structural Zn2+ site labeled. (D) A close-up view of the PLpro active site, with the catalytic triad
residues in grey. Key hydrogen bonds are shown as dotted lines, with distances given in angstroms.

3. New X-ray Crystallographic Approaches to Studying Cys Chemistry

X-ray crystallography has been the dominant method of macromolecular structure
determination for over half a century although advances in cryo-electron microscopy
(cryo-EM) now provide a powerful new suite of experimental tools for imaging macro-
molecules [62]. Throughout nearly all its history, X-ray data collection from macromolecular
crystals has been performed by measuring multiple diffraction images from a single crystal
that is being oscillated or precessed in the X-ray beam. This results in the deposition of
a considerable X-ray radiation dose in the sample and the consequent damage can alter
the molecule (see discussion of Mpro above). In addition, it can be difficult to alter single
crystals during X-ray diffraction experiments in ways that are physiologically relevant, for
example by introducing substrate into an enzyme crystal. The advent of serial crystallogra-
phy, whereby a single diffraction image is recorded per crystal and the complete dataset is
created by combining images collected from a large number of crystals, has opened up new
areas of investigation by allowing enzyme catalysis to be observed in crystalline samples
under conditions that were previously infeasible [8,10–12,63,64].

3.1. Serial Crystallography Is an Emerging Technology for Mechanistic Enzymology

X-ray free-electron lasers (XFELs) produce pulses of coherent X-rays with a peak
brightness that is nine orders of magnitude greater than synchrotron storage ring radia-
tion and which last only 10–100 femtoseconds [7,65]. The field of XFEL macromolecular
crystallography has been extensively reviewed [38,65,66], and thus we only touch on a
few pertinent points here. Because each pulse of XFEL radiation contains ~1012 photons,
diffraction data can be collected serially from a large number of microcrystals, each of which
is typically destroyed by these high-intensity X-ray pulses [67–69]. The resulting composite
serial crystallographic dataset has minimal radiation damage, as each crystal is illuminated
with X-rays and diffracts before the sample is destroyed [70]. Therefore, XFEL serial crystal-
lography dramatically reduces radiation damage compared to traditional crystallographic
approaches, which is important for certain Cys-dependent enzymes [10,71], as well as
for many metalloproteins and other radiation-sensitive samples [36,37,39,66]. Challenges
that remain include optimizing the processing of serial crystallography datasets, reducing
sample consumption, and the limited amount of XFEL beamtime worldwide. Global XFEL
beamtime is constrained by the small number of these facilities (five at present) and their
linear geometry, which limits the number of endstations compared to the circular geometry
of synchrotron storage rings, which can accommodate many more. However, serial X-ray
crystallography has been adapted for synchrotron use and sample consumption has been
reduced [13,72–74], positioning the technique to become more widely used for structural
study in the years ahead.

3.2. Time-Resolved Serial Crystallography of Cys-Dependent Enzymes

Microcrystals’ small size and greater tolerance for perturbation [9,10,67,75] means that
reactions can be initiated in them more easily and homogeneously than in larger crystals,
allowing macromolecular structural changes to be monitored as a function of time by
serial crystallography. For enzymes, the most functionally important perturbation is the
introduction of a substrate that initiates catalysis. There are currently three ways this can
be accomplished in serial crystallography: by native photoinitiation, by liberation of a pho-
tocaged substrate, or by direct mixing with a substrate. Each can be used to initiate catalysis
at a defined time across the many molecules in the crystal lattice, followed by monitoring
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the structures of the protein at defined timepoints after catalysis begins. Systems that are
sensitive to light are ideal candidates for photoinitiation followed by time-resolved crystal-
lography, and they include photosystem II [12,67,76], fatty acid photodecarboxylase [11],
and photolyase [77], as well as a number of photoproteins that are not enzymes [78]. How-
ever, enzymes whose reactions are initiated by light are rare. An alternative is to use a
photosensitive compound that will be cleaved by light (i.e. a “photocage”) and liberate the
substrate or inhibitor [79,80]. This has been used for fluoroacetate dehalogenase [13] and
P450nor [81]. For Cys-dependent enzymes, a photoremovable ruthenium 2,2′-bipyridine
(RuII(bpy)2) moiety has been designed to release a nitrile-based Cys protease inhibitor upon
illumination [82]. Although this compound was not deployed in a serial crystallography
experiment and may be too large to be accommodated in certain crystal lattices, it provides
a useful conceptual starting point for developing similar photoremovable groups for study-
ing time-dependent structural responses to catalysis or inhibition of other Cys proteases,
including Mpro and PLpro. In addition, the converse approach to the photoinitiation of
catalysis may be taken, whereby the protein is modified with a photoremovable group
on a key amino acid (Figure 3). Genetically encoded photoremovable Cys residues have
been developed [83,84], and sophisticated systems for introducing other photoremovable
or photoactivatable amino acid residues have been reported [85]. In this approach, light
removes a caging group from a noncanonical amino acid, thereby generating the active
enzyme in the crystal, which is already suffused with the substrate, and thereby initiates
catalysis. Although the small size of microcrystals facilitates the illumination of all the
molecules in the lattice, a high quantum yield for the photoreaction is often needed to gen-
erate the desired species at sufficient concentrations for the interpretation of time-resolved
crystallography data. Proteases present challenges for time-resolved crystallographic stud-
ies of catalysis, as their substrates (peptides and proteins) are typically too large to fit into a
crystal lattice. However, it may be possible to accommodate the small peptides of a few
amino acid residues into some protease crystal lattices and then initiate catalysis with either
a photoactivatable substrate or an enzyme.
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Mixing substrate directly with microcrystals and then injecting this mixture into the
X-ray beam is the approach with the broadest application for initiating enzyme cataly-
sis in serial crystallography [86]. Despite the wide applicability of mix-and-inject serial
crystallography (MISC) experiments, they are still subject to the fundamental constraints
that accompany all time-resolved crystallography experiments: the reaction must occur
in the crystal, not damage the crystal, and proceed at rates that can be measured using
current technology. Because a substrate or ligand is being soaked into the crystal, there
is an upper limit on substrate size imposed by the crystal lattice. This limit is dependent
on the solvent content of the crystal being studied and the dimensions of its lattice voids,
but it should be in the approximate range of 500–1000 Da. As reviewed by Schmidt [86], it
takes approximately 1 ms for a ~200 Da substrate to uniformly permeate a 3 × 4 × 5 µm3

crystal, and this time changes by the square of the change in crystal linear dimension,
providing a useful, approximate guide for estimating the diffusion-limited timescales for
MISC. Since microcrystals are frequently in the ~10 µm range, diffusion homogenizes the
substrate concentration in the crystal in about 15 ms, well within the kinetic regime of
many reactions in crystallo [86]. However, enzymes with turnover numbers that exceed
~50 s−1 in crystallo are challenging to characterize with standard MISC approaches because
of these diffusion-limited rates and thus make good candidates for photoinitiation with
caged substrates or enzymes.

Injectors that permit MISC in liquids, or related approaches that use mixing on solid
crystal supports, have been deployed at both XFEL and synchrotron X-ray sources [8,73,87–91].
At the time of writing, no MISC experiments on SARS-CoV-2 targets have been published
although there are lessons that can be learned from considering MISC on another Cys-
dependent enzyme, isocyanide hydratase (ICH) [10]. ICH possesses several features that
are shared among most Cys-dependent enzymes and which make them an attractive class
of targets for time-resolved serial crystallography. First, many Cys-dependent enzymes use
covalent catalytic strategies, and therefore, it is likely that intermediates can be observed
using time-resolved serial crystallography. For ICH, the proposed covalent intermediate
was a Cys thioimidate [71,92]. In the case of Cys proteases, such as Mpro and PLpro, the
acyl-enzyme intermediate formed after a nucleophilic attack of the active-site Cys residue
at the substrate scissile bond would be the most likely species to be observed. Second, ICH
exhibits burst kinetics, whereby the initial nucleophilic attack by the active-site thiolate
is faster than are the later steps, which are rate-limiting (Figure 4A,B). The burst is only
observed if a signal is generated from the species (intermediate or product) that is formed
by the faster catalytic steps. Not all Cys-dependent enzymes will exhibit burst kinetics
under all conditions, but their common formation of covalent intermediates means that
most of these enzymes could have kinetic bursts under appropriate reaction conditions
and measurement protocols. Enzymes operating under burst kinetics regimes are expected
to accumulate intermediates at higher occupancies than those that do not operate in
the burst regime, facilitating interpretation of the time-dependent electron density maps
generated by these experiments [10,93]. In ICH, this burst led to the formation of a highly
occupied thioimidate catalytic intermediate in well-defined electron density at 1.55 Å
resolution, 15 s after mixing with a substrate (Figure 4C). Third, the requirement for Cys
thiolate formation for catalytic activity in most Cys-dependent enzymes means that reaction
rates can often be altered by modest adjustments of solution pH. However, while pH is
a useful control parameter that can adjust crystalline enzyme reaction rates to suit an
experiment [94–96], crystals are often sensitive to pH and thus the limits of a crystal’s
tolerance for pH perturbation must be established for each system. Fourth, reactive Cys
residues are frequently subject to off-pathway modifications, especially oxidation, and
these events can be caused by X-ray radiation. While sometimes informative [19,35], such
modifications can often interfere with the interpretation of electron density features around
the catalytically important Cys residue. Serial crystallography dramatically reduces the
effective absorbed radiation dose in a dataset [70,97] and thus can circumvent site-specific
X-ray damage to sensitive Cys residues. In summary, many Cys-dependent enzymes
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possess mechanistic and kinetic features that make them good candidates for successful
time-resolved crystallography experiments, and there are sound a priori technical reasons
to prioritize their study using these techniques.
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Figure 4. Burst kinetics facilitates intermediate observation in time-resolved crystallography.
(A) An example of burst kinetics observed in pre-steady state enzyme kinetics of Pseudomonas
fluorescens isocyanide hydratase (ICH), with the kinetically distinct portions labeled and colored.
(B) An illustration of the dominant reaction step being monitored in the burst phase (1, blue) and
at steady state (2, red). Note that both the thioimidate intermediate and the N-formamide product
absorb light at 320 nm, so both species are contributing to the absorbance. In 2, it is not known
with certainty if thioimidiate hydrolysis or product release is rate-limiting although time-resolved
crystallography suggests that it is thioimidiate hydrolysis. (C) The thioimidate intermediate is
clearly resolved in 1.55 Å resolution 2mFo-DFc electron density contoured at 0.9σ observed 15 s
after introduction of para-nitrophenyl isocyanide substrate in a mix-and-inject serial crystallography
experiment [10]. The accumulation of the thioimidate during the burst phase makes observation by
time-resolved X-ray crystallography more likely.

3.3. Sulfur X-ray Spectroscopy to Monitor Electronic State of Cys

The development of time-resolved X-ray spectroscopy at synchrotrons and XFELs has
provided the ability to monitor sulfur electronic states in real time. Sulfur covalently bonds
with many atoms in diverse ways, as reflected in the range of oxidation states that it can
adopt. Consequently, X-ray spectroscopy can monitor changes to the electronic state of a
sulfur atom as its charge or degree of covalency change during enzyme catalysis. In some
cases, the changes in sulfur’s electronic state can be reliably inferred from inspection of
electron density maps that show the formation of new bonds in covalent intermediates.
However, other changes to sulfur’s valence shell electronic configuration are difficult or im-
possible to determine via X-ray crystallography, such as the ionization of a thiol to a thiolate,
the formation of a thiyl radical, or changes in formal charge on sulfur in metal complexes
such as iron–sulfur clusters. While UV–visible spectroscopy can report on certain sulfur
transitions [98–100], following changes in sulfur charge/valency states in macromolecules
using UV–visible spectroscopy in the 240 nm region is complicated by protein and nucleic
acid absorption interference. For these reasons, using X-ray absorption spectroscopy (XAS)
and X-ray emission spectroscopy (XES) to monitor changes in Cys valency and charge is
appealing and can be coupled to other structural experiments [101,102]. Demonstrating
its potential for broad biological application, sulfur X-ray spectroscopy has been used to
characterize samples ranging from small molecules to tissue sections [102,103]. Because
K-edge X-ray excitations of sulfur raise its core electrons to near the valence shell, XAS/XES
can report on subtle differences in the valence shell electron configuration of sulfur in
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different compounds. Femtosecond XFEL sources and energy-dispersive von Hamos spec-
trometers could, in principle, measure enough tender X-ray photons per pulse to make
“single-shot” sulfur XAS/XES possible [104], as has been accomplished for metals [102].
Time-resolved X-ray sulfur spectrometry has been used to study molecular dynamics fol-
lowing photoexcitation of 2-thiopyridone [105], which lays the groundwork for potential
time-resolved application to larger molecules. A major challenge in applying this technique
to proteins will be obtaining the necessary signal-to-noise ratio in the XAS/XES spectra
to discern changes in a single active-site sulfur atom that is involved in the reaction amid
a background of multiple “bystander” sulfur atoms in Cys and Met residues that are not
involved in catalysis. Although there are significant experimental hurdles to be overcome
to apply single-shot sulfur XAS/XES to proteins such as Mpro and PLpro, the value of being
able to monitor the electronic states of Cys sulfur residues in real time throughout enzyme
catalysis will undoubtedly motivate additional work in this direction. Sulfur XAS/XES
could be especially powerful if performed on microcrystals that could be used in parallel
time-resolved serial X-ray crystallography experiments.

4. Targeting Cys Residues for Covalent Modification

A central motivation for studying Cys-dependent enzymes is understanding how to
inhibit them. As discussed above (in Section 2.1), covalent targeting of the active-site Cys in
Mpro is a current front-line strategy for COVID-19 treatment and the development of these
inhibitors was guided by structural considerations [28,31]. Covalent inhibitors offer several
advantages over their noncovalent kin, including extremely high apparent affinity for their
targets and long-lasting inhibition [27,106,107]. Cys is an attractive target for covalent
inhibitors because it is nucleophilic and comparatively rare, diminishing the probability of
off-target effects that might arise if more inherently reactive compounds were used to target
less-nucleophilic, more common residues [108,109]. The irreversible modification of target
Cys residues has been used to modulate the activity of several enzymes, such as kinases,
ubiquitin conjugation enzymes, phosphatases, ATPases, proteases, and others [109–115].
Given the prominence of Cys proteases in the SARS-CoV-2 lifecycle and the abundance
of Cys residues in the viral proteome, the promise of Cys-directed covalent inhibitors
for SARS-CoV-2 treatment is clear. Time-resolved crystallography can be used to directly
observe the modification of target Cys residues and map the resulting changes in the
protein structure. Observing the response of a protein’s conformational ensemble to
inhibitor binding is conceptually similar to applications of time-resolved crystallography
to studying enzyme catalysis and may help to address questions about the applicability of
conformational selection and induced fit models to ligand binding in various proteins.

Not all functionally important Cys residues are found in enzyme active sites. Noncat-
alytic Cys residues can be targeted by compounds that result in conformational changes
that inhibit the target protein. These inhibitors are often highly specific to their tar-
gets because the modified Cys is typically more poorly conserved than active-site Cys
residues [116–120]. Allosteric Cys-directed inhibitors can sometimes recapitulate the action
of natural allosteric modifiers, including glutathione, nitric oxide, reactive oxygen species,
and others [109]. A potential application of time-resolved crystallography is using the con-
formational changes that occur during catalysis to identify transiently exposed allosteric
sites that might be targeted. The highly Cys-rich SARS-CoV-2 proteome suggests that there
may be a large number of candidate noncatalytic Cys residues that could be so targeted.

5. Summary

This brief, targeted review has aimed to draw the reader’s attention to areas of Cys-
dependent enzymology where new crystallographic approaches might be fruitfully em-
ployed. This review is neither comprehensive of the technology nor of the potential systems,
and it has (loosely) followed the theme of this special issue with a focus on proteins impor-
tant for SARS-CoV-2. Our central messages are: (1) catalysis in Cys-dependent enzymes
involves a delicate interplay of microenvironmental interactions that stabilize thiolates and
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reaction intermediates, which sometimes require active-site residues to sample different
conformations during catalysis; (2) Cys-dependent enzymes make especially attractive
targets for time-resolved serial crystallography because their catalytic mechanisms and
modes of inhibition often involve the formation of covalent intermediates that are easily
observed in electron density maps; and (3) serial crystallography is a powerful technique
to study structural and dynamic events in enzyme catalysis, and it will likely find broader
application in the near future as these experiments become easier to conduct and interpret.
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