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Abstract: A present summary is assigned to present the transport characteristics of the free randomly
moving (RM) electrons in silicon at any doping level by phosphorous donors. The application of the
Fermi-Dirac statistics and stochastic description of the free RM electrons lead to obtaining the general
expressions of conductivity, the effective density of the free RM electrons, their diffusion coefficient
and the drift mobility, which are valid for silicon with any doping level. It is shown that drift mobility
of the free RM electrons considerably exceeds the Hall mobility at heavy doping, and that the Einstein
relation is fundamental and is conserved at any level of degeneracy. It is estimated what part of
electrons in the conduction band of heavily doped silicon is not free and is coupled with phosphorous
ions. The main conclusions and formulations can be applicable for holes in acceptor-doped silicon,
and other homogeneous materials with one type of the free RM charge carriers as well.

Keywords: phosphorous doped silicon; free randomly moving electron density; electrical conductivity;
diffusion coefficient; drift mobility; Hall mobility

1. Introduction

Silicon has been the main material for electronics during the last sixty years. Transport
phenomena play a fundamental role in silicon and their devices and therefore research
has largely been devoted to the study of carrier transport properties. The refinement of
electronic technology has required a corresponding increase in our knowledge of transport
quantities, such as drift mobility, diffusion coefficient as function of impurity doping
content in very wide interval. Its basic characteristics have been intensively investigated
theoretically and experimentally [1–9]. Especially intensively it has been investigated the
Einstein relation, i.e., the ratio between diffusion coefficient and mobility of the free carrier
at highly doped silicon [10–15]. In spite of an importance of these quantities for device
applications, such as bipolar transistors and other electronic devices, the obtained results on
heavily doped are limited, though the accurate values of free electron mobility and diffusion
coefficient are essential for advanced engineering. In spite of the large made efforts, this
problem has not been completely solved. The application of the classical statistics leads to
large errors in estimation of the transport parameters of heavily doped silicon.

The general expressions based on the Fermi distribution of the free randomly moving
(RM) electrons [16–18] are applied for the estimation of the transport parameters in donor-
doped silicon at any degree of the degeneracy of electron gas under equilibrium conditions.
It will be shown that for free RM electrons the traditional Einstein relation between drift
mobility and diffusion coefficient is valid at any level of degeneracy. In particular, it will be
shown that the drift mobility of the free RM electrons in heavily doped silicon may many
times exceed the Hall mobility.

2. Results and Discussion
2.1. The Relation between the Effective Free RM and the Total Electron Densities in
Phosphorous-Doped Silicon at Any Doping Level

The estimation of the free RM electron density will be produced for silicon crystals
doped by phosphorous. Of course, this procedure can be applied to any dopants in various
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homogeneous semiconductors. According to works [16–18], the effective density of free
randomly moving electrons neff depends not only on the density-of-states (DOS) g(E) of
electrons in the conduction band and Fermi distribution function f (E), but also depends
on the probability f 1(E) = 1 − f (E) that any of such electron can leave the occupied energy
level at a given temperature T:

neff =
∫ ∞

0
g(E) f (E)[1− f (E)]dE = kT

∫ ∞

0
g(E)

(
−∂ f (E)

∂E

)
dE. (1)

This Equation is valid for all homogeneous materials both with degenerate and non-
degenerate electron gas. So, this definition is fulfilled for silicon single crystal at any doping
level. From this Equation also follows that

p(E) = f (E)[1− f (E)]/kT = −∂ f (E)/∂E (2)

is the probability density function distribution on energy E for free RM electrons, and it
meets all requirements of the probability theory.

For slightly doped silicon the probability [1 − f (E)] ≈ 1, and all electrons in the
conduction band take part in random motion and in conductivity; then their density is
described as

n =
∫ ∞

0
g(E) f (E)dE. (3)

It is the case when the classical statistics are valid. In the case of the heavy doped silicon
(highly degenerate electron gas), the Equation (1) can be expressed in the following form:

neff = g(EF)kT � n, (4)

where g(EF) = g(E) at E = EF. It can be pointed out that neff at a given temperature for
heavy doped silicon is only determined by DOS near the Fermi energy, and it does not
depend on the DOS distribution form in the conduction band. In the case of parabolic DOS
dependence on energy, the DOS at E = EF for highly doped n-type silicon can be described
as [19,20]:

g(EF) =
(

mdn/
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3π2
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(2mdnEF)

1/2 = mdn(3n)1/3/
(

π4/3
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with mdn = 1.08m0, and EF =
(
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Thus, there are two parameters that characterize the electrons in donor-doped silicon:
the density of the electrons n which energies are in the conduction band, and the effective
density of randomly moving electrons neff. In the case of non-degenerate electron gas these
two quantities coincide.

In Figure 1 there are presented the electron distribution on energy in the conduction
band of silicon with degenerate electron gas at various relative Fermi energies η = EF/kT.

It is clearly seen that for highly degenerate electron gas (η ≥ 5) the effective free RM
electron density is many times smaller than the total electron density in the conduction
band. In Figure 2 there is presented the effective free RM electron density dependence on
the total electron density in the conduction band of n-type silicon at room temperature.
The effective free RM electron density is equal to the total density of the electrons in the
conduction band when the latter is smaller than 1019 cm−3 (the classical statistics is valid),
but at very high electron density in the conduction band (n > 1020 cm−3, the effective free
RM electron density changes slower as neff ∼ n1/3.
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chemical valence four. When valence-five phosphorous atom is incorporated in the lattice 
at the site of a silicon atom, the fifth (excess) valence electron of the phosphorous atom is 
not required for bonding and thus is weakly bounded. The first Bohr radius of the “impu-
rity orbit” is about ten times as large as the lattice constant [21,22]. The phosphorous atom 
ionization energy in silicon is comparable with kT at room temperature, and this energy 
level is located 0.045 eV below the conduction band bottom. Considering that phospho-
rous atoms replace the silicon atoms in the lattice [23], they did not change the number of 
elementary cells in the silicon crystal, and at the same time, they did not create additional 
energy levels in the conduction band. The donor levels are formed as decoupled levels 
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changes weakly [20]. It is confirmed by electronic heat measurements of silicon with heavy 
doping silicon by phosphorous [24]. 

Figure 1. Illustration of DOS g(E) (green solid line) dependent functions: g(E)f (E) (blue dash lines),
and g(E)f (E)[1 − f (E)] (black solid lines) for various η values: 0; 5; 10; 15. The area under the curve
g(E)f (E) (shaded by light grey color) represents the total density of electrons in the conduction band
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the effective density of randomly moving electrons neff (Equation (1)). Here DOS is described by
Equation (5) by changing EF to E.
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2.2. The Free RM Electron Density Dependence on the Phosphorous Doping Level in Silicon

Now let’s see how the total density of electrons in the conduction band depends on
the phosphorous doped silicon. Silicon crystallizes in the diamond structure. Each atom
forms four covalent bonds, one with each of its nearest neighbors, corresponding to the
chemical valence four. When valence-five phosphorous atom is incorporated in the lattice
at the site of a silicon atom, the fifth (excess) valence electron of the phosphorous atom
is not required for bonding and thus is weakly bounded. The first Bohr radius of the
“impurity orbit” is about ten times as large as the lattice constant [21,22]. The phosphorous
atom ionization energy in silicon is comparable with kT at room temperature, and this
energy level is located 0.045 eV below the conduction band bottom. Considering that
phosphorous atoms replace the silicon atoms in the lattice [23], they did not change the
number of elementary cells in the silicon crystal, and at the same time, they did not create
additional energy levels in the conduction band. The donor levels are formed as decoupled
levels from the conduction band, so the total DOS due to doping yet at high doping levels
changes weakly [20]. It is confirmed by electronic heat measurements of silicon with heavy
doping silicon by phosphorous [24].

At higher donor densities they interact with each other causing an overlap in their
wave functions and donor ionization energy decrease and splitting.
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A decrease in the phosphorous ionization energy with increase in doping density can
be estimated as [20]

Ed = 0.045− 2.33× 10−8n1/3
d (6)

Due to thermal lattice vibration some electrons are excited from phosphorous donor
energy levels into the conduction band. In general case, the total excited electron density
into conduction band can be estimated by the following expression [20]:

n = nd − n0
d = nd

[
1− 1

1 + β exp(−εd − η)

]
=

nd

1 + β−1 exp(εd + η)
= NcF1/2(η), (7)

where εd = Ed/kT; η = EF/kT; n0
d is the neutral (non-ionized) donor density; for donors

β−1 = 2; Nc = 2(2πmdnkT/h2)
3/2; for silicon Nc = 2.746× 1019(T/295)3/2 cm−3;

F1/2(η) =
2√
π

∫ ∞

0

ε1/2dε

1 + exp(ε− η)
. (8)

The relative electron density n/nd in the conduction band and the Fermi level energy
dependences on temperature at three phosphorous donor densities in silicon are presented
in Figure 3. Usually, it is considered that all phosphorous donors are completely ionized at
temperatures above the liquid nitrogen temperature.
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1015; 1017 (the donor energy decrease with doping level increase is taken into account).

As it seen from Figure 3, the requirement that 95% of the phosphorous donors will
be ionized at temperatures above the liquid nitrogen temperature is fulfilled only at low
(≤1013 cm−3) phosphorous donor densities. This ionization level for phosphorous donor
density 1015 cm−3 is achieved at temperature above 110 K, and for 1017 cm−3 only at
temperature over 240 K. As it is seen from Figure 3, only 24% phosphorous donors are
ionized at liquid nitrogen temperature. So, a statement that all phosphorous donors are
ionized at temperatures over liquid nitrogen temperature should be used with extreme
caution. What determines that not all phosphorous donors are ionized at higher densities?

The higher the phosphorous donor density, the lower the relative electron density
in the conduction band. The dependence of the conduction band filling by electrons
is described by function f (E)g(E), which at T = 100 K is presented in Figure 4 for three
phosphorous doping densities. At low donor density the electrons fill the energy states near
the bottom of the conduction band. The area below the curve 1 for phosphorous doping
density 1013 cm−3 shows that phosphor donors are completely ionized; the area below the
curve 2 for donor density 1015 cm−3 shows that about 93% of the phosphor donors are
ionized (Figure 3), and the area below the curve 3 for donor density 1017 cm−3 shows that
only 47% of the phosphor donors are ionized. At higher phosphorous doping densities
some part of donor electrons must be excited to the higher energy levels of conduction band,
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and at a given temperature not all phosphorous donors are ionized, because the lattice
vibration energy is not enough. For complete ionization is needed the higher temperature.
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Considering that at room temperature all phosphorous donor excess (fifth) electron
energies are located in the conduction band, the density of electrons in the conduction
band is equal to the donor doping density: n = nd. The ratio between the effective free
RM electron density and the total density of electrons in the conduction band of silicon
dependence on the phosphorous doping density at room temperature is presented in
Figure 5. Here

neff
nd

=

∫ ∞
0 g(E) f (E)[1− f (E)]dE

nd
(9)
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In the case of high doping (nd > 1018 cm−3), only the electrons neff described by
Equation (1) are free and can randomly move in the silicon crystal, the other part (n-neff)
of electrons located by a few kT below the Fermi level energy is bounded with the native
phosphorous ion and move around in the central field of the native phosphorous ion.
These electrons are not affected by lattice vibrations, and their energy variance is equal to
zero. The lattice vibration energy is only sufficient to excite (decouple) the electrons which
have energies near the Fermi level energy, and they become free. Thus, not all electrons
having energies in the conduction band are free, and not all phosphorous atoms are ionized
at high doping level at room temperature. So, the free electron term can be used only
for the free RM electrons, the other part (n-neff) of electrons is localized near the native
phosphorous ions.
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The relative neutral (non-ionized) phosphorous donor density dependence on the
donor density is presented in Figure 5 by dash line. As it is seen, at a doping level of
about 1021 cm−3 about 90% of phosphorous atoms are not ionized. On the other hand, at
doping densities smaller than 1018 cm−3 all phosphorous atoms are completely ionized,
and produce the free RM electrons, which take part in conduction. The tunneling effect
confirms this conclusion: Electrons are tunneling only from energy levels near the Fermi
level energy.

2.3. The Free RM Electron Diffusion Coefficient and Drift Mobility Dependences on the
Phosphorous Doping Level in Silicon

Considering the Boltzmann kinetic equation, when an external electric strength E is
weak, the current density j in homogeneous material can be estimated as [25]

j = q2E
∫ ∞

0

(
v2/3

)
τ g(E)

(
−∂ f (E)

∂E

)
dE, (10)

where v is the free RM electron velocity, and τ is their relaxation time. Accounting the
Equation (2), the Equation (10) can be rewritten as

j =
q2E
kT

∫ ∞

0

(
v2/3

)
τ g(E) f (E)[1− f (E)]dE, (11)

The calculation and averaging of this Equation can be performed in the following way:

j = q2E
kT

∫ ∞
0 (v2/3)τ g(E) f (E)[1− f (E)]dE∫ ∞

0 τ g(E) f (E)[1− f (E)]dE
×
∫ ∞

0 τ g(E) f (E)[1− f (E)]dE∫ ∞
0 g(E) f (E)[1− f (E)]dE

×
∞∫
0

g(E) f (E)[1− f (E)]dE= q2E
3kT< v2 >< τ >neff = σ E,

(12)

where the Equation (1) for neff is used. Thus, it is the general expression for conductivity of
homogeneous material:

σ = q2Dneff/kT, (13)

where D = (1/3) <v2><τ> is the diffusion coefficient of the free RM electrons. On the other
hand, the conductivity can be described as

σ = qneffµdrift, (14)

where µdrift is the drift mobility of the RM electrons. The presented Equations (13) and (14)
are valid for all homogeneous materials with any doping level. Moreover, from these
Equations also follows that Einstein relation

D/µdrift = kT/q (15)

is valid at any degree of degeneracy of electron gas. There it can be pointed that in many of
the published works, it is considered that the Einstein relation is valid only for materials
with non-degenerate electron gas, and for degenerate semiconductors they use the so
named modified relation [8–15]:

D = nµ/[q(dn/dEF)], (16)

where n is the total density of electrons in the conduction band, and µ is their mobility. This
relation can be written as

q2D(dn/dEF) = qnµ, (17)

where both sides mean the conductivity, but the left side

q2D(dn/dEF) = q2Dneff/kT (18)
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is the general expression of conductivity (Equation (13)) which is valid at any degree of
degeneration of electron gas, while the right side of the Equation (17) is valid only for
non-degenerate semiconductors. Thus, the modified relation (16) is not right.

From Equation (15) the drift mobility can be described as:

µdrift =
qD
kT

=
q< v2 >< τ >

3kT
=

q< τ >

m∗
·m
∗ < v2 > /2
(3/2)kT

=
q< τ >

m∗
· < E >

(3/2)kT
. (19)

It is seen that drift mobility in general case depends on the average kinetic energy of
the free RM electrons. Here m∗ is the effective mass of the free RM electron. The average
kinetic energy of a free RM electron can be estimated as

< E > =

∫ ∞
0 g(E) f (E)[1− f (E)]dE

neff
. (20)

The dependences of the average kinetic energy and the Fermi level energy on the
electron density in conduction band are shown in Figure 6.
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dences on the donor density.

The Fermi level energy has been evaluated from Equation (7). For non-degenerate
electron gas (n < 1018 cm−3) the average kinetic energy of the free RM electron is equal to
(3/2) kT, and the drift mobility and conductivity take usual forms of the classical statistics:

µdrift =
q< τ >

m∗
; (21)

σ =
q2n< τ >

m∗
. (22)

So, the Drude electron conductivity model can be applicable only for semiconductors
with non-degenerate electron gas but is completely unsuitable for metals and other materi-
als with highly degenerate electron gas. At high doping levels the average kinetic energy
increases and approaches the Fermi level energy (Figure 6), and as a consequence, the drift
mobility (Equation (19)) also increases with high doping increasing.

The diffusion coefficient has been evaluated by using Equations (1) and (13), and
the data from Figure 7. The drift mobility of the free RM electrons has been evaluated
by Equation (15). The evaluation results are presented in Figure 8. From comparison the
diffusion and the drift mobility on the donor doping level, it is seen that the increase in
those parameters at high doping level is caused by the increase in the kinetic energy of the
free RM electrons (Figure 6).
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2.4. The Hall Effect in Phosphorous Doped Silicon at Any Doping Level

Let’s compare the obtained drift mobility results with that from the Hall effect mea-
surement. The Hall coefficient RH, when the direct current flows only along x direction,
and magnetic field is directed along z axis, is determined from the following relation:

RH= Ey/(jxBz) = EH/(σExBz), (23)

where jx is the direct current density in x direction, Bz is the magnetic flux density
in z direction, and Ey = EH = UH/w (here UH is the Hall voltage) is the originated
electric field strength in y direction in the material plate with dimensions d × w × l
(thickness × width × length), Ex = Ux/l (here Ux is the applied voltage in x direction), σ is
the conductivity of the sample material with one type of free charge carriers.

Instead of the Hall coefficient, the Hall effect is sometimes characterized by the Hall
angle ϕ. For small direct current density and weak magnetic field, the Hall angle is
described as

ϕ = Ey/Ex= EH/Ex. (24)

On the other hand, the Hall angle can be expressed by cyclotron angular frequency
ωc = qBz/m* [27]:

ϕ = ωc< τ >(< τ2 >/ < τ >2) = (qBz/m∗)< τ >rH. (25)
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where rH = < τ2 >/ < τ >2 is the Hall factor, which depends on the charge carrier
scattering mechanism, but for highly degenerated electron gas it is equal to 1. It is notable
that ωc does not depend on the radius and velocity, and therefore, is independent of the
particle kinetic energy. All particles with the same charge-to-mass ratio rotate in magnetic
field with the same cyclotron angular frequency, i.e., electrons with the same effective
mass moving with the thermal velocity in material with non-degenerate electron gas, and
electrons moving with Fermi velocity in metals have the same cyclotron angular frequency.
From Equations (23)–(25) follows that

RHσ = (q< τ >/m∗)rH = µH. (26)

Considering that quantity µH has a similar dimension expression as for mobility of
charge carriers in semiconductors with non-degenerate electron gas, this quantity is named
as Hall mobility. The Equation (26) is valid at any degeneration degree of electron gas with
one type of the free RM charge carriers. The Hall coefficient RH has a negative sign for
electrons and positive sign for holes. Note: If one compensates Ey by external bias source
to zero, as it is usually done in measurement of the Hall voltage, it has no influence on
both the cyclotron frequency and drift mobility of the free charge carriers of the material.
A comparison of the Hall and the drift mobilities are presented in Figure 9. It is seen that
drift mobility at high donor doping can many times exceed the Hall mobility. From this
comparison at n < 1018 cm−3 we can simply find the Hall factor rH.
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Figure 9. The Hall mobility [26] and drift mobility (Equation (14)) dependences on the donor density
in silicon at room temperature.

In general case, the conductivity of homogeneous material with one type of free charge
carriers by using Equations (14) and (19) can be described as

σ = qneffµdrift = qneff
q< τ >

m∗
· < E >

(3/2)kT
. (27)

Then from Equations (26) and (27) the Hall coefficient can be expressed by such general
relation:

RH =
rH

qneffαε
, (28)

which is valid at any degree of degeneration of electron gas with one type of free charge
carriers. Here the parameter αε = <E>/[(3/2) kT] shows how many times the free RM
electron kinetic energy is higher than the thermal energy. The effective free RM electron
density dependence on the total electron density in conduction band of donor-doped silicon
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at room temperature is presented in Figure 2. For silicon with non-degenerate electron gas
αε = 1, and drift mobility can be described as

µdrift = µH/rH, (29)

and the Hall coefficient as
RH =

rH

qneff
=

rH

qn
(30)

Therefore, the Hall coefficient is defined by the free electron density in conduction
band only for non-degenerate silicon (n < 1018 cm−3 at room temperature). At high donor
doping for estimation of the drift mobility and the Hall coefficient one must use the general
Equations (19) and (28), respectively.

It is worthwhile to introduce a new factor: the drift mobility factor rµ which reflects
the ratio between the drift and Hall mobilities rµ = µdrift/µH = αε/rH. The mobility factor
at n < 1018 cm−3 rµ = 1/rH, but at higher density n rµ = αε = <E>/[(3/2) kT]. The mobility
factor dependence on the phosphorous donor density in silicon at room temperature is
presented in Figure 10. It is seen that the drift mobility at very high donor densities can be
about six times larger than the Hall mobility.
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2.5. The Plasma Frequency of the Free RM Electrons in Silicon

Alternate current conductivity σ(ω) usually is described in the following form [19]:

σ(ω) =
σ

1− jωτ
. (31)

The relaxation time τ of the free RM electrons by using Hall mobility data dependence
on the donor doping density in silicon at room temperature can be estimated as

τ = 2.5× 10−14+1.5× 10−13/
(

1 + nd/1.5× 1017
)

, s (32)

where nd is in cm−3. The relative permittivity εr for ωτ � 1 can be approximated as

εr ≈ 1−ω2
p/ω2, (33)

where ωp is plasma oscillation frequency:

ω2
p = σ/(ε0τ), (34)
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Accounting the general Equation (27) for conductivity σ, the plasma frequency can be
expressed as

ω2
p =

q2

ε0m∗
neff

< E >

(3/2)kT
=

q2

ε0τ
neffαε. (35)

In the case of non-degenerate electron gas, neff = n, and αε = 1, the plasma frequency
can be described in the usual form [19]:

ω2
p =

q2n
ε0m∗

. (36)

For highly degenerate electron gas, the plasma frequency is estimated as

ω2
p = q2g(EF) v2

F /(3ε0). (37)

Though the Equation (37) can be expressed in the form of the Equation (36), but it does
not mean that all electrons from conduction band at high doping take part in collective
oscillations. It is not true because the applied alternate electric field can only change the
energy of the free RM electrons, which energy is located near the Fermi level energy, while
the other part of electrons (n-neff) which are coupled with the phosphorous ions does not
take part both in the conductivity and in the plasma oscillations.

3. Conclusions

This work tries to attract attention to the electron transport properties of degenerate
semiconductors on the base of phosphorous doped silicon. The general expressions of the
effective density of free randomly moving electrons, its diffusion coefficient, drift mobility,
and conductivity. It is shown that the Einstein relation is always fulfilled for one type of
free charge carriers in homogeneous materials. It is pointed out that the term all electrons
in the conduction band are free must be used with caution because at heavy doping level
a large part of electrons in the conduction band are not free, they are coupled with their
donor atoms because the lattice vibration energy is insufficient to release them from the
donor ion attraction.
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