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Abstract: The mechanical properties, phase composition and luminescence of (ZrO2)1−x(Sm2O3)x

(x = 0.02–0.06) crystals synthesized using directional melt crystallization were studied. The regulari-
ties of changes in the phase composition of the crystals depending on samaria concentration were
analyzed. Optical spectroscopy showed that Sm ions were incorporated into the ZrO2 crystal lattice
in the form of Sm3+. The microhardness of the crystals was shown to increase with Sm2O3 concen-
tration and reached 12.45 GPa for (ZrO2)0.94(Sm2O3)0.06 crystals. The highest fracture toughness of
14.2 MPa·m1/2 was observed for the crystals containing 3.7 mol.% Sm2O3. The experimental results
were analyzed in order to understand the effect of phase composition on the mechanical properties
of the crystals. The effect of ionic radii of stabilizing oxide cations (i.e., Y3+, Gd3+ and Sm3+) on the
mechanical properties of the materials on the basis of partially stabilized zirconia was also discussed.

Keywords: partially stabilized zirconia; skull melting; solid solutions; mechanical properties

1. Introduction

Materials based on partially stabilized zirconia (PSZ) exhibit excellent mechanical
and friction properties and are resistant to high temperatures and corrosive media. These
materials find broad applications as construction materials, thermal barriers and protective
coatings, orthopedic and dental implants, solid state electrolytes and solid oxide fuel
cells [1–4].

PSZ is recognized as having good mechanical properties, for example, fracture tough-
ness that originates from transformation hardening. The mechanism of transformation
hardening is based on a tetragonal to monoclinic phase transition induced by mechanical
stress [5,6]. For this reason, the study of phase transformations in ZrO2-R2O3 binary sys-
tems (R being a rare-earth element) as well as factors affecting the phase composition of
zirconia-based solid solutions has attracted great interest from researchers [7–14]. Most of
the works published on the topic so far have dealt with yttria-stabilized zirconia. How-
ever, of interest are also materials partially stabilized by Nd, Sm, Gd, Dy and Yb oxides.
Studies of the phase diagrams of ZrO2-R2O3 systems (R being Y, Nd, Sm, Gd, Dy, Yb) have
shown that the ZrO2-rich side of the diagrams contains not only thermodynamically stable
monoclinic (m), tetragonal (t) and cubic (c) phases but also metastable t’ and t´´ tetragonal
ones [15–19]. Under specific conditions of material synthesis, these phases can be retained
at room temperature. However, the abovementioned phase diagrams have differences
because of the different ionic radii of trivalent stabilizing cations. For example, in binary
ZrO2–R2O3 systems (R being Y, Gd, Sm, Nd), an increase in the trivalent cation radius shifts
the t/t + c phase boundary towards lower stabilizing oxide concentrations, whereas the
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t + c/c phase boundary shifts towards higher stabilizing oxide concentrations [16,17]. This
causes broadening of the t + c two-phase region where most of the high fracture toughness
compositions are located.

We previously studied the structural and mechanical properties of zirconia crystals
partially stabilized by yttria or gadolinia [20–22]. Comparison of the structural and mechan-
ical properties of these crystals showed that an increase in the ionic radius of the trivalent
cation (RGd

3+ = 1.053Å, RY
3+ = 1.019Å) changes the ratio of the metastable tetragonal

phases and leads to an increase in the fracture toughness of the material at comparable
stabilizing oxide concentrations. Sm3+ ions (RSm

3+ = 1.079Å) are larger than Gd3+ ones, and
therefore one can expect that the use of Sm2O3 as a stabilizing oxide will further improve
the mechanical properties of the crystals.

The aim of this work is to carry out melt synthesis of zirconia crystals partially
stabilized by samaria and to study the phase composition and mechanical properties of
this new material.

2. Materials and Methods

A series of (ZrO2)1−x(Sm2O3)x (x = 0.02–0.06) crystals were grown using directional
melt crystallization from a 130-mm-diam. water-cooled copper crucible. The heater was a
high-frequency (5.28-MHz) 60-kW generator. Directional melt crystallization was achieved
by lowering the crucible relative to the induction heater at a 10-mm/h speed. Detailed
description of zirconia-based crystal growth using this method was published earlier [23].
The raw materials were at least 99.99% purity ZrO2 and Sm2O3 powders. The charge was
prepared for melting by mechanical mixing of the raw oxide powders in the required ratio.

The phase composition was studied using X-ray diffraction on a Bruker D8 instrument
in CuKα radiation and Raman spectroscopy on a Renishaw inVia microscope-spectrometer.
The luminescence spectra were recorded at 300 K using an FHR 1000 spectrometer (Horiba)
and a Hamamatsu R928 photomultiplier as a light detector. The luminescence spectra are
presented in relative units ignoring the instrumental spectral sensitivity. The microhardness
and fracture toughness of the crystals were measured by microindentation with a DM 8
B AUTO microhardness tester having Vickers indenters and a Wolpert Hardness Tester
930. The microhardness and fracture toughness measurements were carried out at loads
of 5 and up to 200 N, respectively. The specimens for the measurements were in the form
of polished wafers cut from the middle parts of the crystals oriented in the {100} plane.
The indenter diagonals were oriented in the <100> and <110> directions in the specimen
plane, the angle between these directions being 45 arc deg. The fracture toughness (K1c)
was calculated using the Niihara equation for the Palmqvist crack system [24].

K1c = 0.035(L/a)−1/2(CE/H)2/5Ha1/2C−1 (1)

where K1c is the stress intensity factor (MPa·m1/2); L is the radial crack length (m); a is the
indentation halfwidth (m); C is the constraint factor (=3); E is the Young modulus (Pa); and
H is the microhardness (Pa). K1c was calculated for the radial cracks around the indentation,
the length of which met the criterion 0.25 ≤ l/a ≤ 2.5 for Palmqvist cracks.

3. Results and Discussion

Figure 1 shows photographic images of crystals with different compositions. The
crystals had a yellow color with the color intensity increasing with the Sm2O3 concentration.
Furthermore, the crystals exhibited differences in their surface morphology. For example,
the crystals containing 2.0 mol.% Sm2O3 (Figure 1a) had a matted rough surface, whereas
the surfaces of the crystals containing 2.9 mol.% Sm2O3 (Figure 1c) were smooth and
semitransparent. The surface morphology of the crystals containing 2.0 mol.% Sm2O3
(Figure 1b) varied along the crystal, from the matted bottom part of the crystal to the
semitransparent top.
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Figure 1. Photographic images of (ZrO2)1−x(Sm2O3)x crystals: (a) (ZrO2)0.98(Sm2O3)0.02, (b) (ZrO2)0.097

(Sm2O3)0.03 and (c) (ZrO2)0.96(Sm2O3)0.04.

An earlier study of ZrO2 crystals partially stabilized with Y2O3 showed that the
observed evolution of the appearance and surface morphology of the crystals stems from
the difference in the concentration of the stabilizing oxide, which determines the crystalline
structure [25]. One can assume that the same is true for the (ZrO2)1−x(Sm2O3)x crystals.
To check this assumption, we carried out a local Raman study of the phase composition at
different points of the crystals containing 2, 3 and 4 mol.% Sm2O3 (Figure 2).

The spectra of the (ZrO2)0.98(Sm2O3)0.02 crystals exhibit monoclinic phase bands and
weak tetragonal phase bands along the whole crystal (Figure 2a). The spectra of the
(ZrO2)0.96(Sm2O3)0.04 crystals (Figure 2c) exhibit tetragonal phase bands only. For a Sm2O3
concentration of 3 mol.% (Figure 2b), the monoclinic phase dominates in the bottom part
of the crystal, whereas the spectra for the rest of the crystal have patterns similar to those
typical of the tetragonal phase [26].

These experimental results suggest a possible composition variation in the length
of the crystals, potentially causing errors in the results of further studies. To rule out
any composition indeterminacy, we conducted further studies for specimens cut from the
middle parts of the test crystals.

Sm cations are known to exist in crystals and glasses in the form of Sm3+ and Sm2+ [27–29].
To determine the charge state of Sm cations in partially stabilized ZrO2, we studied lumines-
cence spectra of the (ZrO2)0.96(Sm2O3)0.04 crystals using optical spectroscopy. Figure 3 shows
the luminescence spectra of these crystals.
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Figure 3. Luminescence spectra of (ZrO2)0.96(Sm2O3)0.04 crystals upon excitation to the 4G5/2 level
of Sm3+ ions, λex = 532 nm.

The luminescence spectra exhibited bands in the green, yellow and red regions, corre-
sponding to the 4G5/2→ 6H5/2, 4G5/2→ 6H7/2 and 4G5/2→ 6H9/2 transitions of Sm3+ ions,
respectively. However, the spectra did not contain 675–775 nm bands that are typical of
Sm2+ ions. Annealing of the crystals at 1200 ◦C in air for 2 h did not cause any visible
changes to the luminescence spectra. Thus, Sm cations are mainly present in the ZrO2
lattice in the trivalent charge state.

X-ray diffraction data for the crystals containing 2.0 mol.% Sm2O3 suggest that the
crystals contained the monoclinic ZrO2 modification (Figure 4a). At 2.8 ≤ Sm2O3 ≤ 3.2
mol.% concentrations the crystals contained a mixture of the monoclinic and tetragonal
ZrO2 modifications, the quantity of the monoclinic phase decreasing with an increase in
the Sm2O3 concentration. The crystals containing Sm2O3 ≥ 3.7 mol.% did not contain
the monoclinic phase. In the 3.7 ≤ Sm2O3 ≤ 6.0 mol.% concentration range, the X-ray
diffraction spectra of the crystals only exhibited reflections of two tetragonal phases dif-
fering in the tetragonality degree. Figure 4b shows the X-ray diffraction pattern of the
(ZrO2)0.96(Sm2O3)0.04 crystal, this pattern being typical of the two other crystals containing
only two tetragonal phases.

The crystal lattice parameters and the tetragonality degrees of the crystals containing
only two tetragonal ZrO2 modifications are summarized in Table 1. The t phase has a
tetragonality degree of 1.017–1.016, the tetragonality degree of the t‘ phase being slightly
greater than 1. The presence of the metastable tetragonal t phase with a large tetragonality
degree in the ZrO2-R2O3 systems is an indispensable condition determining the good
mechanical properties of the materials [5,6]. Due to the ability to undergo a tetragonal
to monoclinic phase transformation under mechanical loads, this phase is referred to as
transformable. It can be seen from Table 1 that an increase in the Sm2O3 concentration
leads to a decrease in the content of the transformable t phase and, hence, an increase in
the content of the non-transformable phase. It is worth mentioning that an increase in the
Sm2O3 concentration is also accompanied by a slight decrease in the tetragonality degree
of both phases.
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Figure 4. X-ray diffraction patterns of (a) (ZrO2)0.98(Sm2O3)0.02 and (b) (ZrO2)0.96(Sm2O3)0.04 crystals.

Table 1. Phase composition and lattice parameters in different tetragonal phases of (ZrO2)1−x

(Sm2O3)x crystals.

Specimen Phase Wt, % a, Å c, Å c/
√

2a

(ZrO2)0.963(Sm2O3)0.037
t
t‘

85 ± 5
15 ± 5

3.6062(1)
3.6426(2)

5.1866(2)
5.1695(5)

1.0170
1.0035

(ZrO2)0.96(Sm2O3)0.04
t
t‘

75 ± 5
25 ± 5

3.6063(1)
3.6429(2)

5.1854(2)
5.1692(5)

1.0167
1.0134

(ZrO2)0.95(Sm2O3)0.05
t
t‘

70 ± 5
30 ± 5

3.6068(1)
3.6434(2)

5.1815(2)
5.1683(5)

1.0158
1.0031

(ZrO2)0.94(Sm2O3)0.06
t
t‘

60 ± 5
40 ± 5

3.6073(1)
3.6438(2)

5.1767(2)
5.1672(5)

1.0147
1.0028

Table 2 shows the microhardness and fracture toughness of the (ZrO2)1−x(Sm2O3)x
crystals. The lowest microhardness and fracture toughness are observed in the crystals
containing 2.0 and 2.8 mol.% Sm2O3. With an increase in the Sm2O3 concentration from 3.0
to 6.0 mol.% the microhardness grows in a monotonic manner. The change in the fracture
toughness of the crystals in this concentration range has a more complex pattern. The
fracture toughness initially increases, reaching a peak at 3.7 mol.% Sm2O3, and then sees
a gradual decline. This behavior of the fracture toughness remains the same for different
indenter diagonal orientations, but the fracture toughness for the <100> indenter diagonal
orientation is higher than that for the <110> orientation.

Figure 5 shows indentations for the <100> and <110> indenter diagonal orientations. It
can be seen that the indentation produces a surface pile-up in the <110> direction regardless
of indenter diagonal orientation.
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Table 2. Microhardness and fracture toughness of (ZrO2)1−x(Sm2O3)x crystals.

Sm2O3 Content, mol.% Microhardness HV, GPa
Fracture Toughness, MPa·m1/2

<100> <110>

2.0 8.65 ± 0.30 5.0 ± 0.5 4.0 ± 0.5
2.8 8.75 ± 0.30 8.5 ± 0.5 7.5 ± 0.5
3.0 9.50 ± 0.30 10.0 ± 0.5 9.5 ± 0.5
3.2 10.75 ± 0.30 11.5 ± 0.5 11.0 ± 0.5
3.7 11.30 ± 0.30 14.2 ± 0.5 13.0 ± 0.5
4.0 12.15 ± 0.30 13.5 ± 0.5 10.0 ± 0.5
5.0 12.30 ± 0.30 11.5 ± 0.5 9.5 ± 0.5
6.0 12.45 ± 0.30 8.0 ± 0.5 7.5 ± 0.5
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Study of the specimen containing 4.0 mol.% Sm2O3 by local Raman spectroscopy
showed the presence of the monoclinic phase inside the indentation (Figure 6). This
suggests the occurrence of the tetragonal to monoclinic phase transformation initiated by
the mechanical loads during the indentation.

These experimental data are in agreement with X-ray phase analysis data for the
specimens of different compositions. The crystals containing 2.0 and 2.8 mol.% Sm2O3
consist of the monoclinic ZrO2 modification with a small quantity of the tetragonal phase.
The monoclinic phase does not exhibit good mechanical parameters [30], and therefore
these crystals have relatively low fracture toughness. The crystals containing 3.0 and
3.2 mol.% Sm2O3 retain a small quantity of the monoclinic phase, which is completely
eliminated at 3.7 mol.% Sm2O3. The absence of the monoclinic phase in combination with
the highest concentration of the transformable t phase seems to determine the highest
fracture toughness of the crystals of these compositions. The following decline in the
fracture toughness of the crystals with an increase in the Sm2O3 concentration within
a range of 3.7–6.0 mol.% originates from a decrease in the content of the transformable
t phase.
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It is of interest to compare these experimental results with earlier data for (ZrO2)1−x
(Y2O3)x [20] and (ZrO2)1−x(Gd2O3)x [21] crystals (Figure 7). This comparison seems to be
justified since all the crystals were grown by directional melt crystallization under similar
process conditions (crystallization and cooling rates and temperature regimes), and the
measurement methods used were also the same.
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(Gd2O3)x crystals as a function of stabilizing oxide concentration.

The concentration dependences of the fracture toughness of the (ZrO2)1−x(Y2O3)x
and (ZrO2)1−x(Gd2O3)x crystals have similar patterns. The highest fracture toughness is
observed at a Y2O3 or Gd2O3 content of 2.8 mol.%. At a comparable stabilizing oxide
concentration, the fracture toughness of the (ZrO2)1−x(Gd2O3)x crystal proves to be higher
than that of the (ZrO2)1−x(Y2O3)x one. The concentration dependence of the fracture tough-
ness of the (ZrO2)1−x(Sm2O3)x crystals also exhibits a peak, but it is shifted towards higher
stabilizing oxide concentrations. The highest fracture toughness of the (ZrO2)1−x(Sm2O3)x
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crystals is higher than that of the (ZrO2)1−x(Gd2O3)x crystals, which is in turn higher than
that of the (ZrO2)1−x(Y2O3)x ones. This dependence correlates well with the growth of the
ionic radius in the sequence RY

3+ < RGd
3+ < RSm

3+.

4. Conclusions

(ZrO2)1−x(Sm2O3)x crystals (x = 0.02–0.06) were grown using directional melt crys-
tallization in a cold skull. A local Raman spectroscopic study of the crystals showed that,
in some cases, the phase composition of the crystals changes along the crystal, probably
because of a variable quantity of cations with a larger ionic radius being incorporated into
the crystal lattice. Optical spectroscopy showed that Sm ions were incorporated into the
ZrO2 crystal lattice mainly in the form of Sm3+. The evolution of the phase composition of
the crystals depending on the Sm2O3 concentration was studied using X-ray phase analysis.
The phase composition proved to change with an increase in the Sm2O3 concentration
in the sequence m→m + t → m + t + t‘→ t + t‘. The monoclinic phase was completely
eliminated at a concentration of Sm2O3 ≥ 3.7 mol.%. The microhardness of the crystals
grew monotonically with an increase in the Sm2O3 concentration, reaching 12.45 GPa for
the (ZrO2)0.94(Sm2O3)0.06 crystals. The highest fracture toughness of 14.2 MPa·m1/2 was
observed in the crystals containing 3.7 mol.% Sm2O3. The high fracture toughness of the
crystals of this composition seems to originate from a combination of several factors: the
highest concentration of the transformable t phase, and the high transformability and the
absence of the monoclinic phase. A comparison of these experimental results with earlier
data for (ZrO2)1−x(Y2O3)x and (ZrO2)1−x(Gd2O3)x crystals showed that the maximum
fracture toughness increases with the ionic radius of the stabilizing oxide.
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