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Abstract: The effect of calcining in either air (VSTO-A) or 5% H2/N2 (VSTO-H) on the thermoelectric
performance of La and Sm co-doped A-site-deficient Sr1-3x/2Lax/2Smx/2TiO3-δ ceramics is reported.
All calcined powders were sintered 6 h in 5% H2/N2 at 1773 K to ≥96% relative density. All peaks in
X-ray diffraction patterns indexed as a cubic perovskite phase. Scanning electron microscopy revealed
grain sizes ~14 and ~10 µm for VSTO-A and VSTO-H ceramics, respectively. x = 0.30 showed the
lowest k (2.99 W/m.K at 973 K) for VSTO-A, whereas x = 0.20 had the lowest (2.67 W/m.K at 973 K) for
the VSTO-H ceramics. x = 0.30 VSTO-A showed a thermoelectric figure of merit, ZT = 0.25 (at 973 K),
whereas the maximum ZT = 0.30 (at 973 K) was achieved for x = 0.20 VSTO-H ceramics, demonstrating
that thermoelectric properties are optimized when all processing is carried out in 5% H2/N2.

Keywords: thermoelectrics; solid-state reaction; particle size; grain structure; thermal conductivity

1. Introduction

Many thermoelectric materials are being explored for power generation applications,
such as GeTe [1], PbTe [2], half Heuslers [3], Bi2Te3 [4], and silicides [5]. These non-
oxide materials are the most researched thermoelectric materials because they possess im-
proved thermoelectric, intrinsic small phonon group velocity and low thermal conductivity
k required to optimize the figure of merit, ZT [6]. However, most non-oxide materials, e.g.,
Bi2Te3, Sb2Te3, SiGe, and PbTe are toxic, scarce, and costly, and many have low operational
temperature range; hence, they exhibit restricted applications [7]. Studies have shown
that oxides are viable alternatives in surmounting some of the challenges associated with
non-oxides [8,9]. Promising among these oxide materials are p-type layered cobaltates
such as NaCo2O4, (Sr,Ca)3Co4O9, Bi2-xPbxCo2O8 (0 ≤ x ≤ 0.4), Tl0.4[Sr0.9O]1.12CoO2, and
[Pb0.7Hg0.4Sr1.9Co0.2][CoO2]1.8, whose ZT values range between 0.8 and 1.0 from 800 to
1000 K [10]. In contrast, n-type have low ZT values compared to p-type oxides, with some
of the best properties demonstrated by Al-Ga co-doped ZnO (0.47 at 1000 K and 0.65
at 1247 K, respectively) [11,12] and 10 mol% La and 10 mol% Nb co-doped SrTiO3 and
(ZT ≥ 0.60 at 1000–1100 K) [13].

Reduced rare earth (RE)-doped SrTiO3-δ ceramics have also shown promising thermo-
electric properties and have been extensively studied with different dopants and doping
mechanisms, various processing conditions, the integration of graphene or graphene oxide
or metals [14–19] and the intentional creation of secondary phases [20] to improve the ther-
moelectric properties. Incorporation of graphene in oxide thermoelectrics is also a novel
approach in achieving high ZT. Lin et al. [14] used this strategy by incorporating graphene
in La-doped SrTiO3. They achieved a maximum ZT value of 0.42 at room temperature for
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the composite with 0.6 wt.% graphene. Recently, an optimum ZT~1.42 (at 1050 K) was
reported for Nb-doped SrTiO3 with an incorporation of 0.5 wt.% natural graphite [19]. No
doubt, this approach has opened up a new window for the fabrication of high-temperature
thermoelectric generators.

The A-site vacancy effect has been studied in depth in our previous work [21] in which
La-doped A-site-deficient Sr1-3x/2LaxTiO3 ceramics were processed in 5% H2/N2 reduced
atmosphere, and a ZT = 0.41 (at 973 K) for x = 0.15 was achieved. Generally, introduction
of cation vacancies in A- and/or B-site and doping with rare earth or transition metal
cations followed by processing in a reduced atmosphere is a promising route to optimise
thermoelectric properties [22]. In this study, the synergistic effects of the presence of
Sr-(A-site) vacancies and processing conditions on the thermoelectric performance of
Sr1-3x/2Lax/2Smx/2TiO3-δ (0.05 ≤ x ≤ 0.30) ceramics calcined in air (VSTO-A) and 5%
H2/N2 (VSTO-H), with both sintered in reducing atmosphere, are examined.

2. Materials and Methods

A solid-state reaction (SSR) method was applied to synthesize A-site-deficient
Sr1-3x/2Lax/2Smx/2TiO3 (x = 0.05, 0.10 0.15, 0.20, 0.30) powders. SrCO3 (99.9% purity)
was dried at 180 ◦C overnight, and La2O3, Sm2O3, and TiO2 (99.9% purity) were heated
at 900 ◦C for 6 h to remove OH- ions before weighing to ensure the correct stoichiometry.
After drying, they were batched and mixed via ball milling (driver roller speed = 300 rpm)
in isopropanol with yttria-stabilized zirconia (YSZ) milling media for 24 h. The obtained
slurry was then dried at 80 ◦C and sieved using a 250 µm mesh. The dry mixture was
calcined at 1573 K in air (VSTO-A) or in 5% H2/N2 mixed gas (VSTO-H) for 6 h and later
re-milled using a ball mill at driver roller speed of 300 rpm. Particle size analysis (PSA) of
the milled powders was performed using a Mastersizer 3000 Laser Particle Size Analyzer
(Malvern Instruments Limited, UK). Finally, the calcined powders were pressed into pellets
(20 mm in diameter and 2 mm thick) using a uniaxial press at 32 MPa for ~60 s. They were
then sintering in flowing 5% H2/N2 gas at 1773 K for 6 h.

The experimental density of the ceramics was determined by the Archimedes’ method
using an electronic digital density balance (Mettler-Toledo AG Balance, Columbus, OH,
USA). Thermogravimetric analysis (TGA) was performed using a Perkin Elmer Pyris 1 TGA
Analyzer in air with a 5 ◦C/min heating rate up to 1000 ◦C followed by a 5 ◦C/min cooling
rate to room temperature. The phase purity and lattice parameters of the ceramics were
characterised by powder X-ray diffraction (XRD) with Cu Kα radiation (λ = 1.5406 Å)
using a D2 phase diffractometer. Samples for scanning electron microscopy (Philips XL
30 S-FEG, Amsterdam, The Netherlands) were polished to a mirror finish, thermally etched,
and carbon coated using an Edwards vacuum carbon coater (Edwards High Vacuum Ltd,
England). After carbon coating of the samples, microstructural examination was performed
using XL 30 S-FEG (Philips/FEI) at an accelerating voltage of 5–20 kV. The grain size in the
microstructures was calculated using the line-intercept method [23,24].

The electrical conductivity (σ) and Seebeck coefficient (S) were simultaneously mea-
sured on ~15 mm × 2.5 mm × 3.5 mm bar samples as a function of temperature from
573–973 K in an Ar atmosphere using the four-probe method on a Netzsch SBA 458 Neme-
sis system. Thermal conductivity (k) of the ceramics was determined from experimental
density, with specific heat and thermal diffusivity measured in a nitrogen atmosphere by
the laser flash method (Anter Flashline TM 3000 Thermal Properties Analyzer)

3. Results and Discussion
3.1. Particle Size

The particle size distribution analysis of the calcined, doped SrTiO3 powders after ball
milling (before sintering) is presented in Table 1. All milled powders showed d50 (median)
particle sizes of 5.2 and 3.6 µm for VSTO-A and VSTO-H ceramics, respectively. Due to the
same ball-milling parameters, calcination at the same temperature in 5% H2/N2 gas may
be advantageous for achieving a lower average particle size for sintering.
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Table 1. Particle size analysis of calcined La + Sm co-doped SrTiO3 powders after 24 h ball milling.

Composition x
Particle Diameter (µm)

d10 d50 d90

Sr1-3x/2Lax/2TiO3
(VSTO-A)

0.05 2.2 4.9 12.4
0.10 2.4 5.0 9.8
0.15 2.7 5.6 10.7
0.20 2.9 6.0 11.5
0.30 2.0 4.3 10.4

Sr1-3x/2Lax/2TiO3
(VSTO-H)

0.05 1.6 3.6 7.8
0.10 1.0 2.4 11.9
0.15 1.6 3.3 7.6
0.20 2.1 4.7 10.8
0.30 1.8 3.9 9.8

3.2. Crystal and Grain Structure

XRD patterns for the crushed VSTO-A and VSTO-H ceramics are shown in Figure 1.
All samples were single phase and indexed to the SrTiO3 cubic perovskite structure with
space group Pm-3m (PDF# 04-002-6890). The calculated lattice parameters and relative
densities are shown in Table 2. The dopant (La + Sm) concentration dependence of the
lattice parameters of VSTO-A and VSTO-H ceramics is presented in Figure 2. The density
of all ceramics was measured by the Archimedes’ method, and all samples have a relative
density of ≥96% (Table 2).

The lattice parameters of VSTO-A ceramics decrease with increasing La + Sm concen-
trations. The lattice parameters of VSTO-A ceramics contract from 3.910 Å for x = 0.05 to a
minimum value of 3.902 Å for x = 0.30, as shown in Figure 2. The shrinkage in lattice param-
eter is attributed to the smaller ionic radii of La3+ and Sm3+ (La3+ = 1. 36 Å; Sm3+ = 1.24 Å
in Coordination Number, CN 12) compared to that of Sr2+ (1.44 Å in CN 12) [21,25,26].
In contrast, the lattice parameters of VSTO-H ceramics for x = 0.05 to 0.20 increase with
increasing La + Sm doping concentration, from 3.899 to 3.910 Å, before decreasing to 3.902 Å
for x = 0.30. The lattice parameter increase may be due to a decrease in Coulombic Force in
the lattice by the formation of oxygen vacancies accompanied by partial reduction of Ti4+

ions (0.605 Å for CN = 6) to the larger ionic radius Ti3+ ion (0.67 Å for CN = 6) [27]. The
decrease in lattice parameter at high doping level (x = 0.30) may relate to exceeding the
solid solution limit. However, due to the low volume fraction of secondary phase, which is
difficult to detect by XRD, the results are inconclusive.

Table 2. Lattice parameters, cell volumes, and relative densities for (a) VSTO-A and (b) VSTO-H ceramics.

Composition Lattice Parameter (Å) Cell Volume (Å3) Relative Density (%)

(a)
0.05 3.91 59.776 98.4
0.10 3.909 59.736 98.9
0.15 3.907 59.639 98.2
0.20 3.903 59.456 98.4
0.30 3.902 59.41 98.9

(b)
0.05 3.899 59.273 98.1
0.10 3.906 59.593 96.1
0.15 3.907 59.639 99.1
0.20 3.91 59.776 98.7
0.30 3.902 59.41 98.2
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Scanning electron microscopy (SEM) micrographs of thermal etched surfaces for VSTO-
A and VSTO-H ceramics are shown in Figure 3. All images revealed homogenous and dense
microstructures, which agree with the high relative density of ≥96% for the ceramics, as
shown in Table 1. The average grain size of VSTO-A ceramics increased with increasing
the dopant concentration from 5.1 µm for x = 0.05 to a maximum value of 15.3 µm for
x = 0.30 ceramics. VSTO-H ceramics showed a similar trend to VSTO-A ceramics, but the
grain sizes were smaller, especially at high x values, with x = 0.30 ceramics exhibiting a
maximum size of 11.2 µm. The small average grain size exhibited by VSTO-H ceramics
compared to that of VSTO-A agrees with the particle size distribution (PSD) results reported
in Table 2 for powders used for VSTO-A and VSTO-H ceramics. Thus, processing in a
strongly reducing atmosphere (both for calcination and sintering) of vacancy co-doped
Sr1-3x/2Lax/2Smx/2TiO3-δ ceramics contributes to smaller powder particle and ceramic grain
sizes. This is in agreement with a study by Srivastava et al. [28] in which La-Nb co-doped
SrTiO3 ceramics sintered in air showed a grain size of ~13 µm and 7–10 µm when sintered in
a reducing atmosphere. Hence, the application of highly reducing conditions (5% H2/N2) in
both calcination and sintering is suggested to cause removal of a greater amount of oxygen,
thereby generating a higher concentration of oxygen vacancies in the perovskite lattice.
Although reduced grain size may contribute to a slight decrease in electrical conductivity,
it shortens the mean free path (MFP) of the phonons, and more grain boundaries act as
effective scattering centres, reducing k [29] with a consequent increase in ZT [30,31].
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Figure 3. SEM micrographs for (a) VSTO-A and (b) VSTO-H ceramics.

VSTO-A microstructures featured noticeable secondary phases (labelled with white
circles), Figure 3a. The source of these features could not be ascertained but are assumed to
be secondary phase(s) undetected by XRD due to their low volume fraction. The secondary
phases are more noticeable in x = 0.30 and may contribute to the low k observed in x = 0.30
ceramics (VSTO-A, see later).

3.3. Thermogravimetric Analysis

With increasing La + Sm concentration, the onset temperature for oxidation of the
ceramics decreased with x, but oxygen uptake increased (Figure 4). x = 0.05 showed little
oxidation in air up to 1000 ◦C. The colour of VSTO-A ceramics after TGA remained black
for x = 0.05 and 0.10, whereas ceramics of x = 0.15 and 0.20 and x = 0.30 were brown and
white, respectively. For VSTO-H ceramics, x = 0.05 remained black; however, x = 0.10,
0.15, 0.20, and 0.30 turned white after TGA. A black appearance signifies stability of the
ceramics at high temperature, whereas white indicates significant oxidation has occurred.
Variation in weight (and therefore oxidation) was larger for VSTO-H ceramics than VSTO-A
ceramics (Figure 4) and is consistent with a higher level of reduction in VSTO-H due to
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the processing conditions. All ceramics (VSTO-A and VSTO-H) sintered in a reducing
atmosphere were stable in air and resistant to oxidation until ~400 ◦C.
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Figure 4. Thermogravimetric analysis showing the oxidation in air up to 1000 ◦C for (a) VSTO-A and
(b) VSTO-H ceramics.

3.4. Thermoelectric Properties
3.4.1. VSTO-A Ceramics

The temperature dependence of the electrical conductivity, σ, for VSTO-A ceramics
is shown in Figure 5a. σ of all VSTO-A ceramics decreases with increasing temperature
over the measured temperature range, which confirms metallic behaviour. σ for x = 0.05,
0.10, 0.15, and 0.20 ceramics increases with increasing La + Sm concentration, showing
the dependence of σ on carrier concentration and mobility [32]. At x = 0.30, the electrical
conductivity decreased. This drop maybe related to secondary features observed in the
SEM images and associated with the solid solution limit being exceeded or possibly a
structural phase transition as a result of rotation of O-octahedra observed in RE-doped
SrTiO3 [21,33]. The highest σ obtained was 1184 S/cm at 573 K for x = 0.20. VSTO-A
ceramics of higher concentrations (x ≥ 0.15) showed enhanced σ when compared to that of
Sr0.9Nd0.1TiO3 with B2O3 and ZrO2 additions [34] and La-Nb co-doped SrTiO3 ceramics [13]
in the same temperature range (573–973 K). The σ results show that A-site vacancies have a
greater effect on conductivity than electronic compensation in La and Sm co-doped SrTiO3
(σmax = 942 S/cm at 573 K for x = 0.15) [35]. This may relate to greater oxide ion diffusion
rates through the vacated A-site, which permits a greater volume of reduced material (and
therefore higher Ti3+ content) throughout the ceramic.

Seebeck coefficients of all VSTO-A ceramics are negative, indicating n-type behaviour,
and confirm the electrons associated with mixed Ti3+(d1)-Ti4+(d0) are the dominant charge
carriers. The absolute coefficient, |S|, for all compositions (Figure 5b) increases linearly
with increasing temperature, showing metallic-type behaviour [25,26]. |S| values decrease
with increasing La + Sm concentration, which is consistent with an increase in σ, as
shown in Figure 5a.|S| of all samples at high temperature (973 K) fall within the range
of 158–255 µV/K, and these values exceed the minimum values of Seebeck coefficients
(150–250 µV/K) suggested for a good TE material [36].
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(c) power factor, PF, for VSTO-A ceramics.

The temperature dependence of the power factor, PF, for the VSTO-A ceramics is
presented in Figure 5c. x ≥ 0.15 ceramics displayed a peak in behaviour between 573 and
673 K (Figure 5c), suggesting a semiconductor-like mechanism. Above 673 K, the power
factors decreased with increasing temperature. For x ≤ 0.10, the PF decreases over the
measured temperature range, and a maximum PF value of ~1185 µW/K2 was obtained for
x = 0.10 at 573 K. This high PF could be attributed to an optimised |S| (125–193 µV/K),
which is higher than the |S| values of all other compositions except x = 0.05. However, at
high temperatures, PF of x = 0.10 decreased, possibly due to the lower σ (Figure 5a). The
PF results obtained in this study are in agreement with most results in the literature for
electron La-Yb [26] and La-Dy [37] co-doped SrTiO3 ceramics but higher than the reported
values for Nb-doped Sr0.95La0.05TiO3 ceramics at high temperatures (≥973 K) [38].

The temperature dependence of the total thermal conductivity (k) of VSTO-A ceramics
is shown in Figure 6a. x = 0.30 ceramics exhibited the lowest k range (3.46–2.99 W/m.K
with increasing temperature) over the measured temperature range, which suggests typical
thermal conduction behaviour for a semiconductor [25] and control of lattice thermal
conductivity kL [26]. The low k values obtained for x = 0.30 could be attributed to the
high concentration of secondary phases in the microstructure, which affected the thermal
transport. Usually, a reduction of k in doped SrTiO3-δ ceramics is ascribed to formation
of oxygen vacancies in perovskites, preceded by sintering in a reducing atmosphere [33].
An increase in La + Sm concentration results in decreasing kL, which indicates increasing
lattice defects and shortening of the mean free path (MFP) of the phonons [21]. At the
maximum temperature (973 K), the electronic contribution to the total thermal conductivity
was estimated at an average of 0.0024 W/m using a Lorentz number (10−8 WΩK−2) for a
non-degenerated semiconductor. This result shows the reduction in k mainly originates
from the lattice vibrations (phonons); hence, kL plays a dominant role in k. Thus, there is
insignificant difference between the values of k and that of kL.
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The thermoelectric figure of merit, ZT, of all compositions generally increases with
increasing temperature over the entire measured temperature range, as shown in Figure 6b.
ZT for x = 0.20–0.30 increases over the measured temperature range, whereas ZT for
x ≤ 0.15 ceramics drops at 873 K. x = 0.30 ceramics recorded the highest ZT value of 0.25 at
973 K. The low k values observed for x = 0.30 ceramics result in higher ZT values, especially
at high temperatures (773–973 K) despite its lower PF value.

3.4.2. VSTO-H Ceramics

The temperature dependence of σ for VSTO-H ceramics is shown in Figure 7a. The
decrease of σ for all samples with increasing temperature is consistent with metallic con-
duction. σ increases with increasing La + Sm concentration, and a maximum value of
1023 S/cm at 573 K was obtained for x = 0.30. It is noteworthy that the processing atmo-
sphere, either in air or 5% H2/N2, has no significant effect on σ of VSTO-A and VSTO-H
ceramics at higher temperatures but modifies the behaviour at lower temperatures. For
example, in x = 0.15 ceramics, VSTO-A and VSTO-H showed σ values of 1029 and 758 S/cm,
respectively at the lowest measured temperature (573 K). At the highest measured tempera-
ture (973 K), VSTO-A exhibited σ of 298 S/cm, and VSTO-H showed σ = 284 S/cm. This
strongly suggests the bulk conductivity is the same for a given dopant level irrespective
of processing atmosphere, whereas grain boundaries or electrical heterogeneities are re-
sponsible for the variations in lower temperature conductivity. Generally, the processing
atmosphere showed little or no disparity on the electrical transport properties (σ, S, PF) of
VSTO-A or VSTO-H ceramics. For example, x = 0.15 at 973 K showed PF values of 873 and
870 µW/K2.m for VSTO-A and VSTO-H ceramics, respectively (Figures 5c and 7c).

The effect of processing atmosphere was clearly observed in the thermal transport
properties of the ceramics. The lowest k (2.67 W/m.K) at 973 K was observed in x = 0.20
(Figure 8a), which is ~11% lower than the lowest k (2.99 W/m.K at 973 K) obtained in
VSTO-A ceramics. The k value range (3.25–2.67 W/m.K) observed in VSTO-H ceram-
ics is comparable to the lowest k values of most doped SrTiO3-δ ceramics prepared via
conventional methods [7,33]. This significant reduction in k as shown in VSTO-H compo-
sitions confirms that strongly reducing conditions are efficient in achieving low thermal
conductivity in SSR-synthesized Sr1-3x/2Lax/2Smx/2TiO3-δ ceramics.

The overall effect of the electrical and thermal transport properties on the thermo-
electric performance of VSTO-H ceramics is shown by the temperature dependence of ZT
(Figure 8b). ZT of x ≥ 0.15 ceramics increases with increasing dopant concentration. In
contrast, ZT of x ≤ 0.10 ceramics increases within the temperature range 573–873 K but
decreases at high temperatures (973 K). x = 0.20 possesses the highest ZT over the entire
measured temperature range, reaching a maximum value of 0.30 at 973 K.
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4. Conclusions

A-site-deficient Sr1-3x/2Lax/2Smx/2TiO3-δ (x = 0.05, 0.10, 0.15, 0.20, and 0.30) ceramics
were successfully prepared by the solid-state reaction method. A portion were calcined
in air (VSTO-A), whilst the remainder was calcined in 5% H2/N2 (VSTO-H), and both
were sintered in 5% H2/N2 flowing gas at 1773 K for 6 h. Generally, Sr vacancies, La + Sm
co-doping, and a highly reducing atmosphere decreased the thermal conductivity, with
Sr1-3x/2Lax/2Smx/2TiO3-δ VSTO-H achieving 3.25–2.67 W/m.K over the entire measured
temperature range. All ceramics (VSTO-A and VSTO-H) were resistant to oxidation in air
up to ~400 ◦C.
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In VSTO-A ceramics, x = 0.30 achieved a maximum ZT value of 0.25 at 973 K, and an
improved ZT = 0.30 at 973 K was obtained for x = 0.20 VSTO-H ceramics. The higher ZT
value achieved in VSTO-H ceramics reflects a balance between reduced k and good metallic
σ behaviour without compromising the power factor. The application of a strongly reducing
atmosphere in the processing of the ceramics (both in calcination and sintering, as seen
for VSTO-H ceramics) provided a promising route to further enhance the thermoelectric
properties of titanate-based ceramics.
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