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Abstract: Water molecules and cations with mono, binary, and triple valences have been intercalated
into V2O5 to significantly improve its electrochemical properties as a cathode material of zinc-ion
batteries. Sn as a tetravalent element is supposed to interact aggressively with the V2O5 layer and
have a significant impact on the electrochemical performance of V2O5. However, it has been rarely
investigated as a pre-intercalated ion in previous works. Hence, it is intriguing and beneficial to
develop water molecules and Sn co-doped V2O5 for zinc-ion batteries. Herein, Sn-doped hydrated
V2O5 nanosheets were prepared by a one-step hydrothermal synthesis, and they demonstrated that
they had a high specific capacity of 374 mAh/g at 100 mA/g. Meanwhile, they also showed an
exceptional rate capability with 301 mAh/g even at a large current density of 10 A/g, while it was
only 40 mAh/g for the pristine hydrated V2O5, and an excellent cycling life (87.2% after 2500 cycles
at 5 A/g), which was far more than the 25% of the pure hydrated V2O5. The dramatic improvement
of the rate and cycling performance is mainly attributed to the faster charge transfer kinetics and the
enhanced crystalline framework. The remarkable electrochemical performance makes the Sn-doped
hydrate V2O5 a potential cathode material for zinc-ion batteries.

Keywords: vanadium pentoxide; cathode; doping; rate performance; stability

1. Introduction

Aqueous zinc-ion batteries (ZIBs), as one of the candidates for next-generation recharge-
able batteries, have attracted tremendous interest because their zinc metal anodes have
some unique features, including a high theoretical capacity (819 mA h/g), a low redox
potential (−0.76 V vs. SHE), a small radius (0.74 Å), and the two-electron reaction of
Zn/Zn2+ [1–5]. Unfortunately, the relatively large radius (4.3 Å) of the hydrated Zn2+ ion
in an aqueous electrolyte and a strong electrostatic interaction with the cathode host both
add to a high energy barrier for its intercalation/deintercalation in the cathode materials,
resulting in sluggish electrochemical kinetics, serious electrochemical polarization, as well
as unsatisfied cycling and rate performances [6–10]. Therefore, it is crucial to design and
develop suitable cathode materials for constructing high-performance ZIBs [3,11,12].

A variety of cathode materials have been investigated, such as manganese-based
oxides, Prussian blue analogs, conducting polymers, and vanadium-based oxides, over
the past few years [13–17]. Among these cathode materials, the vanadium-based oxides
have been widely studied for ZIBs because of their multivalence, open skeleton structure,
and high theoretical capacities [13,14,18–21]. Vanadium pentoxide (V2O5) is one of the
promising materials due to its high theoretical capacity and layered structure with it having
a large interspace [1,3,22,23]. However, V2O5 usually displays a low conductivity, a poor ion
diffusion coefficient, a long activation process, and an unsatisfying cyclic stability [1,24–26].
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Generally, the nanostructures with high specific surface areas and short ion diffusion
paths are conducive to good Zn2+ diffusion rates and rapid electrochemical kinetics [27].
Additionally, recent research suggests that the pre-insertion of water molecules or foreign
metal ions (e.g., Na+ and Ca2+) into V2O5 not only strongly modifies its crystal structure, but
it also plays an important role in its electrochemical kinetics [28–30]. The water molecules
intercalated in the V2O5 interlayers pillar its layered structure and effectively function like
a “lubricant” to facilitate fast Zn2+ transport, significantly improving the rate and cycle
performance of V2O5 [31].

As another choice, metal ions incorporated between the V2O5 layers may covert the
crystal structure of V2O5 to a more stable tunnel framework or enlarge the interlayer spacing
and strongly bond to the apical oxygens of the V2O5 layers to maintain the structural
stability of V2O5, depending on radiuses and charges of the metal ions [7,32]. Cations with
mono, binary, and triple valences, such as Na, K, Mg, Ca, Zn, Mn, and Fe, have already been
studied [10,11,28,33]. Generally, multivalent metal ions with a higher charge density and
stronger electrostatic interaction than those of the monovalent cations are beneficial to build
a stronger bond with the vanadium oxide layers, resulting in a better structural stability and
cycling performance [5]. Meanwhile, the strong electrostatic interaction between the V2O5
host and the foreign cations shields the interaction between the oxygen atom and Zn2+ and
thus, it reduces the energy barrier of the Zn2+ diffusion inside V2O5, which is conducive to
a better rate performance [27]. However, the charge numbers of the doped metal ions are
no more than three. What will happen to the zinc-ion storage capability if alien ions with a
charge number of more than three are hybridized with V2O5 is unsure. The element tin,
which is commonly in a tetravalent state with ion Sn4+ and with a charge number of four,
is believed to interact more strongly with the V2O5 layer than other previously reported
elements do, and it will have a significant impact on the electrochemical performance of
V2O5 if it is doping V2O5. However, it has been rarely investigated as a pre-intercalated
ion in previous works. Hence, it is interesting and worthwhile to develop Sn-doped
V2O5 cathodes for ZIBs and to clarify the role of the doped Sn element on the zinc-ion
storage capability.

Herein, Sn-doped hydrated V2O5 was synthesized in a one-step hydrothermal method
to realize a cathode material with a superior Zn-storage performance by a hydrothermal
reaction. Compared with the pristine V2O5, the obtained SnVO displays larger interlayer
spacing, a greatly improved rate performance, and a superior cycling stability. SnVO
delivers a high reversible specific capacity of 374 mAh/g at a current density of 100 mA/g,
retains 320 mAh/g at 5000 mA/g, and maintains 87.5% of its initial capacity after cycling
at 2 A/g for 2000 times. The facile synthesis route and its significant electrochemical
performance enhancement suggest that Sn doping is an effective strategy and Sn-doped
hydrated V2O5 is a prospective cathode materials for zinc-ion batteries.

2. Experimental Section
2.1. Preparation of Sn Doped V2O5·nH2O

Two mmol of V2O5 (Sinopharm Chemical, Shanghai, China) and 0.2 mmol of SnCl4·5H2O
(Adamas-beta, Shanghai, China) were dissolved in a mixture of 20 mL of deionized water
and 10 mL H2O2 (30 wt%, Sinopharm Chemical, Shanghai, China) by magnetic stirring at
room temperature. Then, the solution was poured into the autoclave reactor and heated
at 200 ◦C for 48 h. The resulting reactants were vacuum filtered, thoroughly washed with
deionized water, and then, they were dried at 80 ◦C for 6 h to obtain a dark red, dry gel,
which was labeled as SnVOH. For the comparison, a sample was synthesized following the
same procedure without the addition of SnCl4·5H2O, and it was labeled as VOH.

2.2. Materials Characterizations

The crystalline structure of the samples was identified using an X’Pert 3 diffractometer
(PANalytical, Almelo, The Netherlands) at the range from 5 to 80◦. The morphologies and
structure of the samples were investigated using a field emission scanning electron micro-
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scope (FESEM, HITACHI SU8200, Tokyo, Japan) equipped with an energy-dispersive
X-ray (EDX) detector and transmission electron microscopy (TEM, FEI Talos S-FEG).
X-ray photoelectron spectroscopy (XPS, PHI QUANTERA-II SXM) was used to identify the
valence state of the samples.

2.3. Electrochemical Measurements

The obtained SnVOH or VOH were mixed with a carbon nanotube (CNT) solution
(10 mg/mL, XFNANO, Nanjing, China) and then, it was filtered using a cellulose film
(0.22 µm, Shanghai Xinya, Shanghai, China) to form freestanding composite films, for which
the mass ratios of SnVOH or VOH were 70%. Additionally, the as-prepared composite films
were cut into small pieces and used directly as the cathode to assemble the CR2025 button
cells in the air with metallic zinc foil (100 µm thick) as the anode, 3 M zinc trifluoromethane
sulfonate (Zn(CF3SO3)2) solution as the electrolyte, and glass fiber as the separator. Cycle
voltammetry (CV) was performed on the button cells using an electrochemical workstation
(CHI 660E, CH Instruments, Inc., Bee Cave, TX, USA) within the potential range of 0.2–1.7 V
vs. Zn/Zn2+. The electrochemical impedance spectra (EIS) were acquired with the same
electrochemical workstation over the frequency range of 0.01–105 Hz at a voltage of 5 mV.
Additionally, galvanostatic charge–discharge (GCD) tests and galvanostatic intermittent
titration technique (GITT) tests were carried out using a NEWARE 4000 system (Neware
Technology Limited, Shenzhen, China) at room temperature. For the GITT test, the coin
cell was charging/discharging for 20 min at 0.1 A/g with a 120 min relaxation duration.
The solid diffusion coefficient was calculated according to the equation below:

D =
4L2

πτ

(
∆Es

∆Et

)2
(1)

where t, τ, and ∆Es represent the duration of the current pulse (s), the relaxation time
(s), and the steady-state voltage change (V) that was induced by the current pulse, re-
spectively [34]. ∆Et is the voltage change (V) during the galvanostatic current pulse after
eliminating the IR drop. L is the ion diffusion length (cm) of the electrode, which was
equal to the thickness of the composite film electrode (40.2 and 41.7 µm for the VOH and
SnVOH composite film, respectively). The specific capacity, the energy density, and the
power density were calculated based on the mass of active materials from the cathode.

3. Results and Discussion

The VOH and SnVOH were both synthesized via a facile hydrothermal reaction, as
shown in Figure S1. The compositions of the as-prepared samples were characterized by
XRD and XPS. No peaks related to tin metal or tin oxides were detected, and there are
only six discrete peaks in the XRD pattern for both VOH and SnVOH, corresponding to
the (00n) planes of a hydrated V2O5 phase (JCPDS NO. 40–1297) (Figure 1a), which is
similar to previous research [35]. Additionally, there are slight blue shifts which occurred
at the characteristic peaks of VOH after doping the Sn element, suggesting that the (00n)
interlayer spacing of VOH was expanded through the Sn doping. The expanded interlayer
spacing is commonly induced by the volume change after introducing doping ions to
the interlayers of the V-O bilayers in the hydrated V2O5 [1,3]. According to the Bragg
Equation in the Supporting Information file, the calculated interplanar distances of the
(001) plane are d001 = 14.91 and 14.81 Å for SnVOH and VOH, respectively. The small
differences in the interplanar distance of two samples could be ascribed to a combination
of two factors. On one hand, the intercalated Sn4+ can lead to an expanded interlayer
spacing. On the other hand, the strong attraction between the intercalated Sn4+ ions and
the adjacent V-O bilayers tends to bring the V-O bilayers close to or narrow to the interlayer
spacing. These two factors counteract each other and they induce a small interplanar
distance change [7,32]. The schematic crystalline structure of SnVOH is illustrated in Figure
S2. In the XPS spectrum of SnVOH (Figure 1b), two pairs of characteristic peaks can be
found in the V 2p spectra; the stronger peaks at 516.9 and 524.4 eV are ascribed to V5+,
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and the weaker peaks at 516.0 and 522.8 eV are from V4+, respectively [36]. The weak
peaks from V4+ indicate a very small amount of V4+, which may be caused by the doping
of Sn4+. The two O1s XPS peaks are deconvoluted into (V-O) lattice oxygen at 530.4 eV
and a hydroxyl (V-OH) of defective oxygen at 532.1 eV, respectively. The peaks that can
be observed in the Sn 3d spectrum belong to Sn4+ (Figure 1c), confirming the successful
doping of the Sn element in the SnVOH [37].
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Figure 1. Characterization of SnVOH. (a) XRD patterns of SnVOH sample; (b) XPS spectra of (b) O1s
and V 2p and (c) Sn 3d; (d) SEM of SnVOH sample; (e) EDS mapping of SnVOH sample; (f) TEM of
SnVOH sample.

SEM and TEM were performed to observe the morphology and structure of SnVOH.
The SEM image (Figure 1d) shows that the SnVOH sample is composed of nanosheets with
lateral sizes of tens of micrometers, and the VOH sample has a similar morphology with
an even element distribution (Figure S3). The diagram in Figure 1e shows the uniform
distribution of the V, O, and Sn elements. Additionally, the EDS elemental analysis result
demonstrates that the molar ratio of the Sn element in the SnVOH accounts for 3.85%,
as shown in Table S1. The TEM image of SnVOH in Figure 1f confirms the nanosheet
morphology and demonstrates that the thickness of the nanosheets is in the range of
10–20 nanometers. The distribution of the elements Sn, V, and O in the SnVOH nanosheet
was characterized by the EDS. The above analysis results suggest the Sn-doped V2O5 has
been successfully synthesized.

To evaluate the zinc-ion storage performance, VOH and SnVOH were mixed with the
CNT solution and then, they filtered to form free-standing composite films, which were
cut into small pieces and used directly as the cathode. The VOH and SnVOH nanosheets
were both evenly mixed with the CNTs (Figure S4a,c), and the composite films were
layered at a thickness of 40.2 and 41.7 µm, respectively (Figure S4b,d). The coin cells
were assembled using the VOH and SnVOH-based cathodes and tested in the voltage
range of 0.2–1.7 V vs. Zn/Zn2+. There are two pairs of redox peaks in the CV profile of
the VOH-based cathode, as shown in Figure S5a. Similarly, the CV profile of SnVOH in
Figure 2a shows two oxidation peaks at 0.75 and 1.11 V along with two reduction peaks
at 0.37 and 0.75 V, which correspond to the multi-step extraction/insertion of the Zn2+

ion in the framework of SnVOH, respectively [37,38]. The redox reactions are consistent
with the plateaus of the initial three galvanostatic charge and the discharge curves of
SnVOH at 0.1 A/g in Figure 2b. The GCD profiles of SnVOH in Figure 2c show the
maximum discharge capacity is 387 mAh/g at a current density of 0.1 A/g. Additionally,
its capacity retention is impressive, at 77.8%, when the current density increases from
0.1 to 10 A/g. The pristine VOH shows an average discharge capacity of 395 mAh/g at
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0.1 A/g (Figure 2d), which is close to that of SnVOH. However, its rate performance is
unsatisfactory by possessing a dramatically lower retention of 12.6% when the current
density increased to 10 A/g. The average discharge capacities of 387, 365, 349, 348, 345,
330, 321, 309, and 301 mAh/g were recorded for SnVOH at the current densities of 0.1, 0.3,
0.5, 0.8, 1, 3, 5, 8, and 10 A/g, respectively (Figure 2d). SnVOH had higher capacities than
VOH did at the current densities over 0.5 A/g, and the capacity advantage is larger at a
higher current density. The significant improvement in the rate performance of SnVOH
can be accounted for by the highly facilitated Zn2+ diffusion in the VOH framework after
incorporating the Sn element. Not only is there a dramatically enhanced rate performance,
but SnVOH also demonstrates an improved electrochemical stability at both the small and
large current densities, as shown in Figure 2e,f, respectively. During the cycling test at
10 A/g for 500 cycles, the capacity of SnVOH goes through a slow increasing process during
the initial 100 cycles and then, it remains stable in the following cycles, while the capacity
of VOH decays rapidly in the first 10 cycles, then, it slowly increases in the following
200 cycles, and stays steady in the last 300 cycles. The capacity retentions for SnVOH
and VOH are 135.4% and 76.1% after the cycling at 10 A/g for 500 times, respectively
(Figure 2e). During the cycling at 5 A/g for 2500 cycles, the VOH cathode undergoes fast
capacity fading, leading to a final capacity retention of 24%, which is much lower than
the 71% of the SnVOH cathode in the same condition (Figure 2f). In addition, the rate
and cycling performance of the Sn-doped hydrated V2O5 is superior to the results from
the recent research on hydrated V2O5, as shown in Table S2. The rapid capacity decay of
VOH may be mainly attributed to the unstable layered structure and the dissolution of
VOH during repeated insertion/extraction of zinc ions. Additionally, the enhanced cycling
performance of SnVOH reveals the outstanding structural stabilizer function of the doped
Sn ions.
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Figure 2. Electrochemical performance of VOH and SnVOH. (a) C–V curves at 0.1 mV/s in the voltage
range of 0.2–1.7 V vs. Zn2+/Zn, (b) corresponding GCD curves, (c) representative galvanostatic
charge–discharge curves at different current densities, (d) rate capacities at current densities between
0.1 to 10 A/g, (e) cycling performance at 10 A/g and (f) cycling performance at 5 A/g for the VOH
and SnVOH sample.

The high-rate performance and long-term stability of the SnVOH cathode are substan-
tially controlled by the electrochemical kinetics, which were analyzed through the C–V
curves at different scanning rates and during the GITT test, as shown in Figure 3. The
C–V curves of SnVOH in Figure 3a maintain a similar shape with two pairs of charge and
discharge peaks, while the reduction peaks and oxidation peaks shift to lower and higher
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voltages at increased scan rates, respectively. The peak current (i) and scan rate (ν) have a
relationship that is defined by the following equations [39]:

I = aνb (2)

which can be transformed to

log(i) = b log(ν) + log(a) (3)

where a and b are the variables. The b value ranges from 0.5 to 1.0, which indicates a
different mechanism. A b value of one is indicative of the dominated contribution of the
surface capacitance to the total capacity, and a b value of 0.5 exhibits diffusion-controlled
charge storage [27]. In addition, the slope of the log (i) versus the log (ν) plot can be used
to estimate the b value, as shown in Figure 3b,c. The b values of the peaks 1–4 for the
SnVOH electrode are 0.97, 0.81, 0.93, and 0.89, (Figure 3b), which implies the SnVOH has
considerable kinetics, and its charge storage mainly comes from surface capacitance, and it
is slightly influenced by the diffusion process. By fitting the C–V curves at different scan
rates in Figure S5b, the b values of the peaks 1–4 for the VOH electrode are 0.85, 0.86, 0.72,
and 0.96 (Figure S5c), suggesting the capacity of the VOH cathode is also influenced by
both the capacitive and diffusion processes, and it is dominated by the surface capacitive
capacity. Furthermore, the capacity is divided as a capacitive-controlled part (k1ν) and
diffusion-induced part (k2ν1/2) which are described by the following equations [40]:

i = k1ν + k2ν1/2 (4)

or
i/ν1/2 = k1ν1/2 + k2 (5)
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Figure 3. Kinetics study of VOH and SnVOH. (a) C–V curves of SnVOH electrode at different scan
rates, (b) log (current) vs. log (scan rate) plots of four peaks in C–V curves during the cycles, and
(c) capacity contribution ratios of battery type capacity and capacitance, (d) the discharge/charge
curves in GITT measurement of SnVOH, (e) corresponding diffusivity coefficient of Zn2+ in discharge
and charge processes of SnVOH samples, and (f) electrochemical impedance profiles recorded for the
VOH and SnVOH electrodes before electrochemical tests and after cycling at 5 A/g for 2500 times.
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The ratios of the surface-controlled capacitive and the diffusion-induced parts of
SnVOH at various scan rates are displayed in Figure 3c. The surface-controlled capacitive
contribution ratio increases from 75.7% (0.1 mV/s) to 83.4% (0.5 mV/s), indicating that the
batteries possess fast charge-transfer kinetics. For VOH, the surface-controlled capacitive
contribution ratio is 21.5% (0.1 mV/s), and this increases to 36.3% (0.5 mV/s), as pre-
sented in Figure S5d. The much higher surface-controlled capacitive contribution ratio for
SnVOH implies that it has much faster kinetics when one is doping the Sn element, which
may be ascribed to the effect of Sn4+ shielding the interaction between the oxygen atom
and Zn2+ [41].

Then, the constant current intermittent titration technique (GITT) was used to deter-
mine the ion diffusion coefficient of Zn2+ in the VOH and SnVOH cathodes
(Figures S5e and S3d). As demonstrated in Figure 3e, The diffusion coefficients of SnVOH
are from 10−8.9 to 10−8.6/(cm2 s) during the charge and discharge processes, respectively,
which are higher than those of the VOH samples (10−9.0 to 10−8.8/(cm2 s), in Figure S5f).
The results confirm that Zn2+ migration in SnVOH is faster when it is compared to that in
VOH. Thus, the much higher rate performance of SnVOH can be ascribed to a reduced inter-
facial impedance and an enhanced ion diffusion. Moreover, doping the Sn element largely
reduces the charge transfer resistance from 300 to 100 Ω (Figure 3f), which is indicative of a
reduced ion diffusion impedance between the interface of the cathode and electrolyte. After
cycling at 5 A/g for 2500 times, the charge transfer resistance of SnVOH-based cell rises to
about 580 Ω, which is still smaller than 880 Ω of VOH based cell. The results confirm that
faster electrochemical kinetics can be achieved by doping the Sn element.

4. Conclusions

In summary, the Sn-doped hydrated V2O5 ZIB cathode materials were prepared by
simple one-step hydrothermal synthesis. Compared to the undoped sample, the Sn-doped
hydrated V2O5 demonstrates a significant enhancement in its rate performance and cyclic
stability. SnVOH shows a high initial reversible capacity of 387 mAh/g at 0.1 A/g, an
excellent rate capability with 301 mAh/g even at a large current density of 10 A/g, and its
retains 87.5% of its initial capacity after the cycling at 2 A/g for 2000 times. The rate and
cycling performance of Sn-doped hydrated V2O5 are superior to the results from recent
research on hydrated V2O5. These great improvements can be due the smaller charge
transfer resistance and the higher zinc diffusion coefficient that occur after the Sn doping.
Therefore, this work reveals that Sn doping is an effective strategy to improve the zinc
storage performance of hydrated V2O5, and the Sn-doped hydrated V2O5 is a promising
cathode material candidate to construct ZIBs of a high specific capacity, an excellent rate
performance, and a high durability.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12111617/s1, Figure S1: Scheme of synthesis of SnVOH;
Figure S2: The schematic crystalline structure of SnVOH; Figure S3: EDS characterization of VOH
sample; Table S1: The molar ratio of different elements in SnVOH; Figure S4: Characterization of VOH
and SnVOH composite cathodes; Figure S5: Electrochemical characterization of VOH-based cathode;
Table S2. Electrochemical performance comparison of SnVOH with recent literature data on doped
hydrated V2O5-based cathodes in ZIBs. Refs. [42–45] are cited in the Supplementary Materials file.
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