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Abstract: In the present work, an experimental study is performed to study the radiation shielding
characteristics of SrTiO3 (STO) perovskite ceramic added with different amounts (x = 0, 2, 5, and
10%) of tungsten trioxide nanoparticles (WO3 NPs). The four ceramic samples were prepared using
the solid-state reaction method. The structural properties were examined using X-ray diffraction
(XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. The analysis showed the
successful formation of WO3- doped STO samples. The crystallite size, estimated using the Scherrer
equation, was found in the range of 50.86–41.17 nm. The effect of WO3 NPs on the radiation
shielding performance of these ceramics was studied. Different parameters, such as linear attenuation
coefficient (LAC) and other related factors, were experimentally determined. The linear attenuation
coefficient results demonstrated that the additional amount of WO3 in the ceramics correlates with an
improvement in their shielding abilities. The half-value layer (HVL) values for the ceramics with 2%
WO3 nanoparticles are equal to 0.071, 1.760, 2.407, and 2.564 cm at 0.060, 0.662, 1.173, and 1.333 MeV,
respectively. As the energy increases, more radiation can pass through the material; therefore, a larger
thickness is required to absorb half of the total photons, leading to a greater HVL. The tenth value
results reaffirmed that increasing the WO3 content in the STO ceramics improves their shielding
efficiency. The radiation protection efficiency (RPE) of the four prepared STO ceramics was reported.
From the RPE, we found that more photons can be attenuated at lower energies.

Keywords: SrTiO3; WO3 nanoparticles; XRD; FTIR; radiation attenuation

1. Introduction

The use of radiation has been growing during the past decades in various areas,
including agricultural, industrial, and medical fields. Despite the enormous profits of
radiation, it has the prospect of causing a significant risk hazard to human safety and the
environment. Three basic concepts are followed for better radiation protection: minimizing
the exposure time, increasing the distance that separates the entity of question and the
source of radiation as much as possible, and using a protective material to isolate the entity
of question from radiation. These three concepts are applied as far as practicable to reduce
the entire absorbed dose due to radiation exposure [1].

The rendering of a material as a radiation shield is frequently evaluated by its ability
to stop the penetration of incident radiation through various mechanisms of interaction.
γ radiation, categorized as high penetrating potential, interacts with the material in three
distinct processes: Compton scattering (CS), pair production (PP), and photoelectric ab-
sorption (PA) [2]. The probability of each interaction occurring is dependent on the incident
γ radiation power and the composition of the protective material. PA is the main process
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for low energy γ radiation that interacts with materials with high atomic numbers. For
high-energy γ radiation, PP became the dominant process. The γ interaction behavior with
the shield is characterized by the linear attenuation coefficient (LAC), which depends on
the properties of the material, the energy, and the incident radiation. Appropriate shielding
material is able to attenuate γ radiation with minimum change to its thermal, mechanical,
and physical properties as well as its chemical stability. In general, many factors must be
considered when designing a radiation shield, including the kind and intensity of radiation,
its energy level, cost, toxicity, and weight of material [3–6].

The frequently employed shielding materials are lead, concrete, and alloys. Studies
searching for developed materials for radiation shielding applications have increased
owing to their important role in progressed technologies that need ionizing radiations,
such as nuclear medicine, radiology, and the characterization of materials. This necessitates
advanced materials to be employed in the fabrication of protective structures to shelter
humans and the environment from the hurtful impact of ionizing radiation. Aygün et al.
studied heavy concretes holding chrome-ore for nuclear radiation shielding applications [7].
Their results showed better shielding properties for concretes with aggregates and additives
compared to some heavy concretes and standard concrete [7]. M.I. Sayyed et al. prepared
four alloys, including CrTe, CrTe0.95Sb0.05, CrTe0.90Sb0.10, and CrTe0.80Sb0.20, using a solid-
state reaction. The results showed that replacing Te with Sb in the different alloys causes
an improvement in their linear attenuation coefficient [8].

Glass-based materials are also common shielding materials and are possible alterna-
tives to concretes for radiation-shielding purposes [9–14]. Glass materials display unique
properties that make them useful for some industrial and technical applications. For ex-
ample, T. H. Khazaalah et al. used soda–lime–silica (SLS) glass waste to fabricate free-Pb
glass shielding [8]. γ-ray shielding properties of borate and phosphate glasses containing
BaO, Bi2O3, and PbO in different ratios were previously studied. The results showed good
attenuation properties of these glass systems [10,11]. In addition, the radiation shielding
efficiency of borosilicate glass, which consists of silica and boron oxide, has been stud-
ied [12]. A recent report showed that borosilicate glass (30 mol%) mixed with 20 mol% of
Bi2O3 and 50 mol% of BaO displays the highest density value and better radiation shielding
performances [14].

Perovskite-based ceramic materials have attracted great interest due to their unique
characteristics [15–17]. SrTiO3 (STO) is a model of the perovskite-like ceramic material
with many important properties and possible uses in diverse applications such as optoelec-
tronic [18], photovoltaic [19,20], photocatalytic [20,21], and energy storage applications [22].
STO displays a high dielectric constant, average permittivity, and low tangent loss [14]. STO
has also proven its efficacity in the domain of radiation shielding [23–25]. Moreover, STO is
a mixed conducting perovskite [23,24] which can be influenced by doping and/or addition,
temperature, and oxygen partial pressure (pO2). For instance, E. Hannachi et al. studied
the radiation-protecting properties of STO doped with tin oxide. The results showed that
tin oxide addition enhanced the radiation shielding capacity of STO ceramic [23].

Metal oxide semiconductors play an interesting role in different areas of science, such
as engineering, medicine, physics, chemistry, etc. Metal oxide semiconductors have gained
much interest owing to their particular optical, magnetic, and electrical properties. Among
the most useful metal oxide semiconductors, WO3 has been employed for different appli-
cations such as electrocatalyst [26], photocatalyst [27], electrochromic [28], anticancer [29],
and gas sensing [30]. WO3 is an n-type semiconductor with a large band gap (around
2.7–3.5 eV) and is non-toxic. One of the most important characteristics of WO3 is its mor-
phological assortment. It can be designed in different dimensional morphologies, such
as nanoparticles [31], nanowires [32], nanofibers [33], nanorods [31], nanosheets [34], and
nanoplates [35]. It is shown that some special morphologies of WO3 nanostructures are
more appropriate for particular applications. With the emergence of nanotechnology as a
progressive branch of science in recent years, the radiation protection system has also used
various types of nanoparticles [36–38]. The fundamental supposition of the investigations
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was that the application of nanoparticles leads to a more even distribution within the
matrix compared to particles with micrometric size, and, hence, a better attenuation will be
attained. Dong Yu found that the γ attenuation of nano-sized WO3 was greater than the
micro-sized particles [39]. Tekin et al. showed that the materials doped with nano-sized
WO3 displayed better shielding characteristics than materials doped with micro-sized WO3
particles [37]. Kazemi et al. demonstrated, using the MCNPX model, that composites with
WO3 nanoparticles had mass attenuation coefficients greater than those of composites with
WO3 microparticles [40].

To the best of our knowledge, there is no study regarding the effect of WO3 nanopar-
ticles on the radiation-shielding characteristics of ceramic materials. Thus, we aim in
this work to study, for the first time, the radiation attenuation of STO ceramic mixed
with WO3 nanoparticles. Different radiation shielding parameters were experimentally
measured and discussed.

2. Experimental Procedure
2.1. Synthesis of Materials

All chemicals, strontium carbonate (SrCO3), titanium dioxide (TiO2), and tungsten tri-
oxide nanoparticles (WO3 NPs), were reagent grade and used without further purification.
First, stoichiometric strontium titanate SrTiO3 (STO for brevity) was synthesized using the
solid-state reaction by mixing finely in ball milling media SrCO3 and TiO2 powders. The
obtained mixture was sintered at 1300 ◦C for 5 h to form SrTiO3 ceramic (STO for brevity),
as shown in Equation (1).

SrCO3 + TiO2 ⇒ SrTiO3 + CO2 (1)

In the second stage, different amounts of WO3 NPs (x = 0, 2, 5, and 10 wt.%) were
added to the STO sample. The mixtures were then compacted into pellets using PVA, which
plays the role of the binder. The resulting pellets were placed in crucible alumina, then
sintered at 1500◦ to obtain compact and dense ceramics of pristine STO ceramic (x = 0 wt.%)
and WO3-doped STO ceramics (x = 2, 5, and 10 wt.%). Then, the obtained ceramic samples
were given for various characterizations.

2.2. Characterization of Ceramics

The crystallinity and phase analysis of the prepared ceramics were analyzed using a
Rigaku Benchtop Miniflex powder XRD instrument with Cu Kα radiation. Using the Bruker
alpha-II FT-IR spectrometer, the FT-IR spectra were recorded in the region of 400–4000 cm−1.
The γ-ray shielding parameters of STO-WO3 NPs ceramics, such as linear attenuation
coefficient (LAC), were experimentally determined using a high pure germanium (HPGe)
detector and different point sources (Co-60, Cs-137, and Am-241). Readings resulting from
the detector were processed using the Genie 2000 program. This program displays the
intensity (count rate) for each photon that fell on the detector and was discovered during
the measured time. From this point, the intensity of each specific energy was measured
in the presence (I) and the absence (I0) of the absorption sample. Then, by knowing the
thickness of the absorption sample (t), the following law is used to calculate the LAC, which
represents the possibility of the photon interaction through a certain distance within the
absorption sample [41].

I = I0 e−LAC . t then, LAC =
1
t

ln
I0

I
(2)

The other attenuation factors-based LAC determination, such as half and tenth value
layers (HVL, TVL) and radiation absorption factor (RAP). The definition and laws of these
factors were reported in previously published papers [42,43].
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3. Results and Discussion
3.1. Structural and Functional Analysis

The synthesized ceramics were analyzed using XRD and FT-IR to investigate the
structural and compositional properties. Figure 1 depicts the XRD patterns of SrTiO3 (STO)
doped with different amounts of WO3 NPs. Pure STO exhibits (100), (110), (111), (200),
(210), (211), (220), and (310) planes corresponding to cubic perovskite structure (space
group: Pm-3 m) of SrTiO3 which are in agreement with JCPDS card no. 35–0734. The
ceramic doped with x = 2 wt.% of WO3 NPs does not contain any impurity. However, the
secondary phase of SrWO4 (marked as ‘*’ in the figure; card no. 85–0587) appeared for
x = 5 and 10% of WO3 NPs, indicating that WO3 NPs may react with the host material
(STO) during the sintering process. The peak intensity of the impurity phase increases
remarkably as the content of WO3 NPs increases. The structural parameters, such as crystal
cell parameter ‘a’ as well as the unit cell volume ‘V’ for all as-prepared ceramics calculated
from the XRD data, are listed in Table 1. It is evident that the structural parameters ‘a’ and
V’ are higher for doped samples compared to the STO pristine sample. This effect can be
attributed to the difference in ionic radii between the W element (0.66 Å) derived from
WO3 NPs dopant and Ti element (0.605 Å) derived from the host SrTiO3. The presence of
the SrWO4 secondary phase can also be another reason for the lattice expansion in WO3-
doped STO ceramics.
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Figure 1. XRD patterns of STO ceramic and STO ceramics doped with x wt.% of WO3 NPs.

Table 1. Structural parameters deduced from XRD analysis.

Ceramics STO STO + (2%)
WO3 NPs

STO + (5%)
WO3 NPs

STO + (10%)
WO3 NPs

a (Å)= 3.9020 3.9047 3.9032 3.9042
V (Å3)= 59.4103 59.5337 59.4651 59.5108

Structure Cubic Cubic Cubic Cubic
dXRD (nm)= 45.48 41.17 45.49 50.86

The crystallites size (dXRD) is estimated for all ceramics by using the Scherrer equa-
tion [44]:

dXRD =
k λ

β cos θ
(3)
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where k is a constant close to unity (k = 0.9), β is full width at half maximum, and θ is
Bragg’s angle. The calculated dXRD values for various ceramics are registered in Table 1
and are found to be in the range of 50.86–41.17 nm. Compared to the pristine sample, the
crystallite size first reduces for the sample doped with a low amount of WO3, suggesting
that WO3 NPs act as inhibitors for the grain growth of STO ceramic [45]. With further
increasing the amount of WO3, the dXRD return to increase. This unexpected result may be
due to the transformation of tungsten oxide into metal tungstate. Indeed, for high amounts
of WO3, a new second phase of SrWO4 was detected, which is mainly attributed to the
possible reaction between the host STO phase and WO3 NPs. It can be then assumed that
the newly formed phase may result in initiating the growth process of aggregate particles
by coalescence [46]. Further analysis is needed to validate this assumption, which will be
the aim of our future work.

The functional groups of all ceramics were characterized using FTIR analysis, as
depicted in Figure 2. In the measured range, several distinct absorption bands were detected
for the pristine STO ceramic. The signal at about 560 cm−1 is related to the characteristic
stretching vibration of the Sr-Ti-O bond [47], which confirms the successful formation of the
SrTiO3 phase. This peak is maintained in the FTIR spectra of doped ceramics, confirming
that the STO host perovskite structure is preserved. Another characteristic band with small
intensity is observed around 1100 cm−1, which can be attributed to the C=O stretching
modes [48]. A large band around 3000 cm−1 is also observed for STO ceramic, which
may be assigned to the O–H stretching modes [49]. Additional bands around 825 cm−1

appeared for ceramics doped with x = 5 and 10% of WO3 NPs. This band is most probably
a result of the signals of the W-O stretching vibration [50].
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Figure 2. FT-IR results of STO ceramic and STO ceramic doped with x% of WO3 NPs.

3.2. Radiation Attenuation Analysis

Figure 3 demonstrates the MAC (mass attenuation coefficient) of the prepared samples
at four tested energies. At the first energy, the MAC values increase as more WO3 nanopar-
ticles are added to the ceramic. For example, the MAC of the WO3-free ceramic is equal to
1.821 cm−1 at this energy, while the MAC of the ceramic with 10% WO3 nanoparticles is
equal to 2.188 cm−1. From MAC determination and the density of ceramic samples, the
LACs (linear attenuation coefficients) of the prepared ceramic samples can be calculated.
Figure 4 demonstrates the LACs of the prepared ceramic samples at four tested energies.
At the first energy, the LAC values increase as more WO3 nanoparticles are added to the
ceramic. For example, the LAC of the WO3-free ceramic is equal to 9.308 cm−1 at this
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energy, while the LAC of the ceramic with 10% WO3 nanoparticles is equal to 11.563 cm−1.
The same trend can be observed at higher energies, however, with a smaller difference.
Nevertheless, these results show how the amount of WO3 in the ceramics correlates with
an improvement in their shielding abilities. In addition, this figure also shows that LACs
have an inverse relationship with energy. More specifically, the STO ceramic with 2% WO3
has an LAC equal to 9.810, 0.394, 0.288, and 0.270 cm−1 at 0.060, 0.662, 1.173, and 1.333 MeV,
respectively. Thus, ceramics are most effective against low-energy photons.
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The half-value layer (HVL) of the investigated samples is graphed in Figure 5 against
energy. For all the tested ceramics, their HVL values correlate with energy. For example,
for the ceramic with 2% WO3 nanoparticles, its HVL values are equal to 0.071 cm, 1.760 cm,
2.407 cm, and 2.564 cm at 0.060 MeV, 0.662 MeV, 1.173 MeV, and 1.333 MeV, respectively.
As the energy increases, more radiation can pass through the material, which is why
this relationship occurs. Therefore, a larger thickness is required to absorb half of the
total photons, leading to a greater HVL. The figure also shows that HVL decreases with
increasing WO3 content. This trend is most evident at higher energies, such as 1.173 MeV.
Moreover, at 1.173 MeV, the WO3 values are equal to 2.483, 2.407, 2.334, and 2.259 cm for
the samples with 0, 2, 5, and 10% WO3 nanoparticles. Thus, increasing the amount of WO3
nanoparticles in the ceramics improves their HVL values, lowering how thick a material
needs to be to attenuate the same number of photons.
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The tenth value layer (TVL) is like HVL, except it is defined as how thick a material
needs to be to absorb nine-tenths of the incoming photons. Because of this, similar trends
can be observed between the two figures; however, all the TVL values are higher than their
HVL counterpart. The same two trends can be observed in Figure 6. Mainly, the TVL values
increase with energy. For example, the TVL values for the STO with no WO3 nanoparticles
are equal to 0.247, 6.158, 8.250, and 8.809 cm at 0.060, 0.662, 1.173, and 1.333 MeV, respectively.
The second trend involves the relationship between TVL and photon energy. At 0.662 MeV,
the STO ceramics have TVL values of 6.158, 5.848, 5.724, and 4.604 cm for the samples with
0, 2, 5, and 10% WO3 nanoparticles. Thus, increasing the WO3 content in the STO ceramics
improves their shielding efficiency.
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Figure 6. Tenth value layer of STO ceramic and STO ceramic doped with x% of WO3 NPs.

The mean free path (MFP) of the STO ceramics is shown in Figure 7 at the four tested
energies. The maximum MFP values occur for the STO ceramic, while the ceramic with
10% WO3 nanoparticles has the minimum MFP values. For example, at 0.060 MeV, the
STO ceramic has an MFP value of 0.107 cm, while the ceramic with 10% WO3 NP has an
MFP value of 0.086 cm. Thus, the amount of WO3 in the ceramic mixture correlates with
more collisions occurring within the sample, leading to greater attenuation. Furthermore,
for any single ceramic, its MFP values increase with energy. For instance, STO-5WO3

’s is
equal to 0.099 cm, 2.486 cm, 3.367 cm, and 3.628 cm at 0.060, 0.662, 1.173, and 1.333 MeV.
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Higher energy radiation tends to pass through the samples more easily, decreasing the
number of collisions and increasing the distance between collisions. Thus, ceramics are
able to attenuate lower energy photons than higher energy ones. The results of LAC, HVL,
and MFP, as well as the mass attenuation coefficient (MAC), are reported in Table 2.

Table 2. The experimental values of the attenuator parameters for STO-ceramic samples.

Code Energy
(MeV) STO STO + 2%

WO3 NPs
STO + 5%
WO3 NPs

STO + 10%
WO3 NPs

LAC, cm−1

0.060 9.308 9.810 10.097 11.563

0.662 0.374 0.394 0.402 0.500

1.173 0.279 0.288 0.297 0.307

1.333 0.261 0.270 0.276 0.279

HVL, cm

0.060 0.074 0.071 0.069 0.060

0.662 1.854 1.760 1.723 1.386

1.173 2.483 2.407 2.334 2.259

1.333 2.652 2.564 2.515 2.484

TVL, cm

0.060 0.247 0.235 0.228 0.199

0.662 6.158 5.848 5.724 4.604

1.173 8.250 7.997 7.753 7.505

1.333 8.809 8.517 8.353 8.253

MAC, cm2· g−1

0.060 1.821 1.904 1.943 2.188

0.662 0.073 0.076 0.077 0.095

1.173 0.055 0.056 0.057 0.058

1.333 0.051 0.052 0.053 0.053
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The radiation protection efficiency (RPE) of the four prepared STO ceramics was
calculated and graphed in Figure 8 at a thickness of 0.5 cm. RPE increases with WO3
content at all tested energies. For instance, at 1.333 MeV, the RPE values are 12.25%, 12.64%,
12.87%, and 13.02% for the samples with 0, 2, 5, and 10% WO3 nanoparticles. A greater RPE
indicates a more effective shielding capability, so raising the amount of WO3 in the ceramics
leads to greater attenuation. Furthermore, RPE decreases as the energy of the incoming
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photons increases. The RPE of the sample with no WO3 is equal to 99.05 at 0.060 MeV
and drops to 12.25% at 1.333 MeV. Meanwhile, the RPE of the sample with 10% of WO3
nanoparticles is equal to 99.69% and 13.02% at 0.060 MeV and 1.333 MeV, respectively. This
conclusion reinforces some of the results from the previous figures that more photons can
be attenuated at lower energies.
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To compare the shielding abilities of the prepared ceramics with other radiation shields,
Figure 9 graphs the LACs of the STO and STO + 10% of WO3 NPs ceramics alongside four
other shielding materials at 0.662 MeV. The STO and STO + 10% of WO3 NPs ceramics
had a greater LAC value than granite and marble [51,52]. SnTe and PbTe shields have a
greater LAC than the STO ceramic but less than the STO + 10% of WO3 ceramic [53]. Thus,
ceramics have an overall very desirable shielding ability compared to other commonly
used materials for radiation shielding purposes.

Crystals 2022, 12, x FOR PEER REVIEW 12 of 15 
 

 

0.662 MeV
0.0

0.2

0.4

0.6

0.8

 

 

LA
C

 (c
m

-1
)

Photon Energy

 Granite      Marble
 SnTe          PbTe
 STO           STO+10 WO3 NPs

 
Figure 9. Linear attenuation coefficient for STO and STO + 10% WO3 NPs ceramics alongside four 
other shielding materials at 0.662 MeV. 

4. Conclusions 
In this work, we proposed a strategy for developing new ceramic materials 

consisting of STO doped with WO3 nanoparticles for the purpose of radiation protection. 
The different samples were prepared using the simple solid-state reaction method. The 
successful formation of the required compositions was confirmed by XRD and FTIR 
analyses. All as-prepared ceramics crystallized into the cubic structure. A new phase 
belonging to SrWO4 was detected for 5 and 10% doped ceramics suggesting an 
interaction between the host STO and the dopant WO3 NPs has occurred. The lattice 
constant ‘a’ and the unit cell volume ‘V’ were found to be higher for doped ceramic 
compared to the STO pristine ceramic. The crystallite size varied with the content of WO3 
NPs. In the second part, we focused on the role of adding WO3 NPs in improving the 
radiation-protective characteristics of STO ceramics. The LAC was experimentally 
measured using a high pure germanium (HPGe) detector and three-point sources (60C, 
241Am, and 137Cs). The LAC of the WO3-free ceramic at 0.06 MeV is equal to 9.308 cm−1, 
while it is 11.563 cm−1 for the ceramic with 10% WO3 nanoparticles. This shows that the 
LAC values increase as more WO3 nanoparticles are added to the ceramic. We 
investigated the relationship between the LAC and the energy, and we concluded that 
the ceramics are most effective against low-energy photons. In order to examine the 
thickness of the ceramics that required attenuating certain levels of the photons, we 
evaluated the HVL and TVL. From the findings of both factors, we found that a larger 
thickness is required to absorb the photons with higher energies. Moreover, we examined 
the impact of WO3 nanoparticles on these two factors. In brief, increasing the amount of 
WO3 nanoparticles in the ceramics improves their HVL and TVL values.  In addition to 
these factors, the MFP results also proved that the ceramics are able to attenuate lower 
energy photons than higher energy ones. At 1.333 MeV, the RPE for the samples with 0, 2, 
5, and 10% WO3 nanoparticles are 12.25%, 12.64%, 12.87%, and 13.02%, respectively. 
Hence, from the RPE data, we found that increasing the amount of WO3 in the ceramics 
leads to greater attenuation. 

Figure 9. Linear attenuation coefficient for STO and STO + 10% WO3 NPs ceramics alongside four
other shielding materials at 0.662 MeV.



Crystals 2022, 12, 1602 10 of 12

4. Conclusions

In this work, we proposed a strategy for developing new ceramic materials consisting
of STO doped with WO3 nanoparticles for the purpose of radiation protection. The different
samples were prepared using the simple solid-state reaction method. The successful
formation of the required compositions was confirmed by XRD and FTIR analyses. All as-
prepared ceramics crystallized into the cubic structure. A new phase belonging to SrWO4
was detected for 5 and 10% doped ceramics suggesting an interaction between the host STO
and the dopant WO3 NPs has occurred. The lattice constant ‘a’ and the unit cell volume
‘V’ were found to be higher for doped ceramic compared to the STO pristine ceramic. The
crystallite size varied with the content of WO3 NPs. In the second part, we focused on
the role of adding WO3 NPs in improving the radiation-protective characteristics of STO
ceramics. The LAC was experimentally measured using a high pure germanium (HPGe)
detector and three-point sources (60C, 241Am, and 137Cs). The LAC of the WO3-free ceramic
at 0.06 MeV is equal to 9.308 cm−1, while it is 11.563 cm−1 for the ceramic with 10% WO3
nanoparticles. This shows that the LAC values increase as more WO3 nanoparticles are
added to the ceramic. We investigated the relationship between the LAC and the energy,
and we concluded that the ceramics are most effective against low-energy photons. In
order to examine the thickness of the ceramics that required attenuating certain levels of
the photons, we evaluated the HVL and TVL. From the findings of both factors, we found
that a larger thickness is required to absorb the photons with higher energies. Moreover,
we examined the impact of WO3 nanoparticles on these two factors. In brief, increasing
the amount of WO3 nanoparticles in the ceramics improves their HVL and TVL values. In
addition to these factors, the MFP results also proved that the ceramics are able to attenuate
lower energy photons than higher energy ones. At 1.333 MeV, the RPE for the samples with
0, 2, 5, and 10% WO3 nanoparticles are 12.25%, 12.64%, 12.87%, and 13.02%, respectively.
Hence, from the RPE data, we found that increasing the amount of WO3 in the ceramics
leads to greater attenuation.
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