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Abstract: Mobility is a key parameter for SnO2, which is extensively studied as a practical transparent
oxide n-type semiconductor. In experiments, the mobility of electrons in bulk SnO2 single crystals
varies from 70 to 260 cm2V−1s−1 at room temperature. Here, we calculate the mobility as limited by
electron–phonon and ionized impurity scattering by coupling the Boltzmann transport equation with
density functional theory electronic structures. The linearized Boltzmann transport equation is solved
numerically beyond the commonly employed constant relaxation-time approximation by taking
into account all energy and momentum dependencies of the scattering rates. Acoustic deformation
potential and polar optical phonons are considered for electron–phonon scattering, where polar
optical phonon scattering is found to be the main factor which determines the mobility of both
electrons and holes at room temperature. The calculated phonon-limited electron mobility is found
to be 265 cm2V−1s−1, whereas that of holes is found to be 7.6 cm2V−1s−1. We present the mobility as
a function of the carrier concentration, which shows the upper mobility limit. The large difference
between the mobilities of n-type and p-type SnO2 is a result of the different effective masses between
electrons and holes.

Keywords: tin oxide; Boltzmann transport equation; density functional theory

1. Introduction

Tin oxide (SnO2) is a critically important n-type semiconductor with a relatively high
mobility and a wide band gap (Eg = 3.6–3.7 eV) [1,2]. Due to its good electrical, optical, and
electrochemical properties, SnO2 has been extensively exploited in various state-of-the-art
applications: perovskite solar cells [3], as both compact layers and mesoporous layers for
transparent electrodes; lithium-ion batteries [4], as promising candidates to serve as the
anode material due to their high theoretical capacity; gas sensors [5], as the most commonly
used commercial material [6]; photocatalytic applications [7], as photocatalysts in organic
pollutant degradation, water splitting, Cr(VI) reduction, CO2 reduction, air purification,
and photocatalytic sterilization; thermoelectric materials [8], as ceramic thermocouples to
replace noble-metal thermocouples that are unable to withstand the harsh environments
inside the hot sections of turbine engines used for power generation and propulsion.

Mobility is a key factor in charge transport since it describes how the motion of an
electron is affected by an applied electric field. As such, it is an important element in the
design of modern devices. In experiments, the electron mobilities of bulk SnO2 single
crystals vary from 70 to 260 cm2V−1s−1 at room temperature [9–11], while SnO2 thin films
show lower electron mobilities from 25 to 130 cm2V−1s−1 [12–16]. The large variation
is a result of the many carrier scattering processes that take place beyond the intrinsic
electron–phonon, such as scattering by ionized impurities [17], neutral impurities [18],
grain boundaries [19], and dislocations [20]. To properly evaluate the intrinsic mobility
of the material, as well as that of the doped material, we need to calculate its electronic
transport using full band electronic structure details, but also consider scattering processes
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that include the entire energy and momentum dependence of the scattering rates, beyond
the constant relaxation time approximation. The latter is one of the earliest and most
common approaches [21–23], especially in the context of high-throughput computational
searches targeting electronic transport properties [24]. However, it introduces an arbitrary
uncertainty upon the choice of the scattering time [25].

Conventional mobility models suppress atomic-scale detail, relying on deformation
potentials and either effective-mass theory or bulk energy bands to describe electron
velocities [26,27]. They do not necessarily represent the behavior of a practical device where
more significant extrinsic scattering mechanisms are present. Despite this, the intrinsic
mobility of a material still provides an upper limit to the material’s performance. Previous
calculations reported a lower electron mobility (187 cm2V−1s−1) compared to the highest
reported experimental values, as well as hole mobility (14.1 cm2V−1s−1) considering only
electron–phonon scattering using density functional theory calculations [28]. Other works
include ionized impurity scattering using the empirical Brooks–Herring–Dingle formula,
but use a fixed value (260 cm2V−1s−1) for the phonon-limited mobility of n-type SnO2 [16].
For proper mobility evaluation of the doped material, it is necessary to use a full-band
numerical approach to compute the intrinsic mobility for both electron–phonon and ionized
impurity scattering.

In this work, we use the full energy and momentum dependencies of electron–phonon
and ionized impurity scattering to compute the mobility for both electrons and holes in
SnO2. We first compute the band structures from density functional theory, from which we
also extract the density of states’ effective mass and the conductivity effective mass. Then,
we calculate the acoustic deformation potential and polar optical phonon scattering rates.
Finally, we use those rates within the linearized Boltzmann transport equation, which is
solved numerically beyond the constant relaxation-time approximation to calculate the
mobility of SnO2 as a function of the carrier concentration.

2. Computational Methods

The electronic band structure is calculated from density functional theory (DFT) using
the Quantum ESPRESSO package [29]. The optimized norm-conserving Vanderbilt (ONCV)
pseudopotentials are used for Sn and O under the generalized gradient approximation
(GGA) with the Perdew–Burke–Ernzerhof (PBE) functional [30,31]. The 6 × 6 × 10 and
120 × 120 × 200 Monkhorst-Pack k meshes are used for structure relaxation and electronic
band structure calculations, respectively. The cutoff energy of plane waves is set to 80 Ry.
All of the parameters have been tested to be sufficient in obtaining converged results
with the differences between the total energy being less than 0.001 eV/atom, as shown in
Figure 1.

(a) (b)

Figure 1. (a) Total energy versus k meshes along the x and y directions, where the k mesh along the z
direction is set to 10. (b) Total energy versus cutoff energy.

For electronic transport calculations and relevant quantities including the scattering
rates, mobility, transport distribution function, band velocity, density of states, and carrier
concentrations, we use the ElecTra code [25,32], our home-developed, open-source code
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which solves the linearized Boltzmann transport equation in the relaxation time approxima-
tion for charge carriers in a full-band electronic structure of arbitrary complexity, including
their energy, momentum, and band-index dependence.

3. Results and Discussions

SnO2 is a Rutile structure and crystallizes in the tetragonal P42/mnm space group,
as shown in Figure 2a. The calculated lattice parameters are a = b = 4.81 Å, c = 3.23 Å,
indicating a slight 1.5% overestimation with respect to the available experimental value
of a = b = 4.74 Å, c = 3.19 Å [33], which is the general tendency of GGA [34]. Both
the valance band maximum (VBM) and conduction band minimum (CBM) are located
at the Γ point, as shown in Figure 2b. The band gap Eg is calculated to be 0.734 eV,
lower than experimental values (Eg = 3.6–3.7 eV) [1,2], but in good agreement with pre-
vious calculations (Eg = 0.832 eV) using GGA [35]. There is a known problem with the
underestimation of the band gap using the GGA pseudopotentials [36]. This shortage
can, in principle, be overcome by using Heyd–Scuseria–Ernzerhof (HSE) hybrid func-
tionals [37], GW method [38], GGA + U method [39], meta-GGA functionals [40], or the
Tran–Blaha-modified Becke–Johnson (TB-mBJ) exchange potential approximations [41]. We
note, however, that since the band gap of this material is large enough, bipolar transport is
suppressed, and we have considered the conduction bands and valence bands separately
in the transport calculations. With regards to the accuracy of the band structure parameters,
previous work has compared the band structure using GGA and TB-mBJ corrections for
SnO2 [35] and found very similar overall behavior of the band structures, except for the
value of band gap. Thus, we take that GGA is reliable enough to describe the overall
behavior of the band structures to be used in our transport calculations.
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Figure 2. (a) Lattice structure for SnO2. (b) Band structure for SnO2 along high-symmetry lines.
(c) Fermi surface at energy E = 0.2 eV above the conduction band minimum (CBM). (d) Fermi surface
at energy E = 0.2 eV below the valance band maximum (VBM).

3.1. Effective Mass Extraction Method

The flat valance band and dispersive conduction band indicate heavy hole but light
electron states, as shown in Figure 2c and Figure 2d, respectively. Here, we use our home-
developed Effective Mass Finder (EMAF) code to calculate the two relevant effective masses
for electrons and holes as described in references [42,43]: the density of states effective mass
(mDOS) and the conductivity effective mass mcond. We compute the mDOS as the effective
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mass of an isotropic parabolic band that gives the same carrier density as the actual band
structure. We evaluate mcond as the effective mass of an isotropic parabolic band, which
maps the average velocity of the band states weighted by their contribution to transport.
For this, we employ a simple ballistic field effect transistor model, extract the average
injection velocity in the sub-threshold regime, and map that velocity to a parabolic band,
which provides the same injection velocity.

In detail, the process is as follows (using the conduction band as an example): We con-
sider the non-degenerate regime, in which the carrier concentration n can be expressed as:

n = NCe
EF−E0

kBT (1)

where EF is the Fermi level, E0 is the energy of the band edge, kB is the Boltzmann constant,
T is the temperature, and NC is the effective density of states calculated as:

NC = 2(
mDOSkBT

2πh̄2 )
3
2 (2)

For a generic numerical band structure, the carrier concentration n can be calculated as:

n =
2

(2π)3 ∑
k,n

fE(k,n)
)dVk (3)

where the sum runs over all the k points and bands in the first Brillouin zone, fE(k,n)
is

the Fermi–Dirac distribution, and dVk is the volume element in k space, which usually
depends only on the mesh.

We place the Fermi level in non-degenerate conditions (in the band gap) and compute
the carrier concentration n using Equation (3). We then match n with that calculated by
using the non-degenerate statistics and the effective density of states NC in Equations (1)
and (2). A value for a parabolic mass which provides the same charge density as the whole
band structure can then be extracted from NC. The so-calculated mDOS,e = 0.2305 m0 and
mDOS,h = 1.7268 m0.

For the conductivity effective mass, we essentially calculate the average uni-directional
velocity of all the 3D band structure states, where the contribution of each state is averaged
by its occupancy under non-degenerate conditions. We then map that velocity value to
the velocity from a parabolic band. The parabolic effective mass that is needed for this
mapping is the conductivity mass we are looking for. The parabolic mass extracted in this
way will collectively incorporate all details of the band structure related to transport. The
conductivity effective mass mcond is calculated from the injection velocity vinj as [42]:

mcond =
2kBT
πv2

inj
(4)

We then assume that the material of interest is the channel of a ballistic field effect
transistor (FET). The injection velocity vinj, which depends only on the band structure and
the temperature, is extracted by dividing the subthreshold current of a ballistic FET by the
charge density occupation as [44]:

vinj =
IFET

e
2π3 ∑k,n f(Ek,n−EF,S)

dVk
(5)

where EF,S is the Source Fermi level, and IFET is the FET current density.
Here, we assume injection of carriers from the source contact of the FET and a high

drain voltage, such that the Fermi level in the drain is much lower compared to that in
the source. In this case, the injection of carriers from the drain is negligible and can be
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omitted, and thus the total FET current is just the source current. This current can be simply
computed by counting all positive velocity going states weighted by their occupancy:

IFET =
e

2π3 ∑
k,n

f(Ek,n−EF,S)
|vk,n|dVk (6)

where |vk,n| is the band velocity in absolute terms to account only for positive traveling
states. We perform this calculation in the three major orientations, x, y, and z, and then
average (inversely) the three masses to obtain an overall conductivity mass as:

mcond =
3

1
mcond,x

+ 1
mcond,y

+ 1
mcond,z

(7)

In this way, the calculated mcond,e = 0.2011 m0 and mcond,h = 1.7659 m0.

3.2. Scattering Rates

The electron–phonon scattering rates, due to the acoustic deformation potential, can
be computed by evaluating the transition rates |SADP

k,k′ | between the initial k and final k′

states and can be extracted using Fermi’s golden rule as [26,45,46]:

|SADP
k,k′ | =

π

h̄
D2

ADP
kBT
ρv2

s
g(E) (8)

Here, DADP is the acoustic deformation potential, where 8.17 eV and 2.06 eV are used for
electrons and holes in SnO2 [28], respectively. ρ is the mass density. vs is the sound velocity
of the material, where 4.3 km/s is used [47]. g(E) is the density of states for the initial state.

The polar optical phonon scattering rates due to the Fröhlich interaction, |SPOP
k,k′ |, can be

computed from the dielectric constants which capture the matrix element in a polarizable
continuum as [45,46]:

|SPOP
k,k′ | =

πq2
0ω

|k− k′|2ε0
(

1
k∞
− 1

k0
)(Nω +

1
2
∓ 1

2
)g(E± h̄ω) (9)

Here, ω is the dominant frequency of polar optical phonons over the whole Brillouin
zone, which has been validated to be a satisfactory approximation [48], where 27.3 meV is
used [28]. ε0 is the vacuum dielectric constant. k0 and k∞ are the static and high-frequency
dielectric constants, respectively, where k0 = 11.6 and k∞ = 4.1 are used [28]. Nω is the
Bose–Einstein phonon statistical distribution.

Figure 3a,b show the calculated scattering rates for acoustic deformation potential
(ADP) scattering and polar optical phonon (POP) scattering for electrons and holes, re-
spectively. The POP scattering rates for both electrons and holes are much larger than the
ADP scattering rates, as expected from a polar material. On the other hand, compared to
electrons, holes have larger ADP and POP scattering rates. This can be understood from
the density of states for electrons and holes:

g(E) =

√
2m3

DOSE

π2h̄3 (10)

Compared to electrons (mDOS,e = 0.2305 m0), holes have a much larger density of states
effective masses (mDOS,h = 1.7268 m0) and much larger density of states, which results in
the larger ADP and POP scattering rates.
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(a) (b)

(c) (d)

electrons

electrons

holes

holes

Figure 3. Scattering rates arising from polar optical phonon (POP) and acoustic deformation potential
(ADP) scattering processes in SnO2 for (a) electrons and (b) holes at 300 K. Ionized impurity scattering
rates in SnO2 for (c) electrons and (d) holes at different impurity concentrations. The conduction
band minimum is set to zero eV in (a,c), while the valence band maximum is set to zero eV in (b,d).

In addition to electron–phonon scattering, the Brooks–Herring model is used to de-
scribe the elastic scattering rates due to ionized dopants [49]. The scattering rates due to
ionized impurity scattering (IIS) are given by [50]:

|SIIS
k,k′ | =

2π

h̄
Z2e4

k2
s ε2

0

Nimp

(|k− k′|2 + L−2
D )2

g(E) (11)

where Z is the electric charge of the ionized impurity, Nimp is the density of the ionized
impurities, and LD is the Debye screening length defined as [50]:

LD =

√
ksε0

e
(

∂EF

∂n
) (12)

where n is the carrier concentration. The partial derivative is computed at any Fermi
level and temperature as follows: the carrier concentration is computed by evaluating the
integral over the energy of the product of DOS and Fermi distribution, then the Fermi level
is moved by 1 meV, and the carrier concentration is computed again. From this finite EF
difference, the partial derivative is obtained.

Figure 3c,d show the calculated ionized impurity scattering rates at different impurity
concentrations for electrons and holes in SnO2, respectively. Compared to the electron–
phonon scattering rates, the ionized impurity scattering rates for electrons at high impurity
concentrations, e.g., at 1020 cm−3, are comparable to the POP scattering rates. However,
for holes, even at a high impurity concentration (1.26× 1020 cm−3), the ionized impurity
scattering rates are still lower than the POP scattering rates. Thus, the POP will always
dominate the scattering for holes in SnO2 at room temperature.
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3.3. Mobility Calculations

The mobility is computed using the transport distribution function within the lin-
earized Boltzmann transport equation as:

µ =
q2

0
ne

∫
E

Ξij(E)(−∂ f0

∂E
)dE (13)

where q0 is the electronic charge, f0 is the equilibrium Fermi distribution, and Ξij(E) is the
transport distribution function, which is expressed as a surface integral over the constant
energy surfaces for each band and then summed over the bands:

Ξij(E) =
s

(2π)3 ∑
k,n

vi(k,n)vj(k,n)τi(k,n)g(E) (14)

where s is the spin degeneracy and s = 2 is used as the two spin sub-bands are degenerate,
vi(k,n) is the i-component of the band velocity, τi(k,n) is the overall relaxation time which is
derived from the scattering rate |Sk,k′ | between the considered state and all the possible final
states [25], where |Sk,k′ | is calculated combining the strength of all scattering mechanisms
using Matthiessen’s rule as [51]:

|Sk,k′ | = |SADP
k,k′ |+ |S

POP
k,k′ |+ |S

IIS
k,k′ | (15)

Figure 4a,b show the calculated mobilities for electrons and holes, respectively, consid-
ering only electron–phonon scattering (e-ph, solid lines) or both electron–phonon and
ionized impurity scattering (e-ph+IIS, dotted lines). The calculated electron–phonon
scattering limited mobilities at low carrier concentrations are µe = 265 cm2V−1s−1 and
µh = 7.6 cm2V−1s−1.

(a) (b)
electrons holes

Figure 4. The calculated mobility versus carrier concentration for (a) electrons and (b) holes in
SnO2. Phonon-limited (solid lines) and phonon plus ionized impurity scattering (dotted lines) are
shown. Experimental measurements from single crystals (s.c., green triangles) and thin films (black
triangles) are also indicated. References for the data in (a): single crystals (refs. [9,10]) and thin films
(refs. [12–16]) for electrons. References for the data in (b): films (refs. [52,53]) for holes.

Previous calculations reported these mobilities to be µe = 187 cm2V−1s−1 (lower
compared to experiments) and µh = 10.8 cm2V−1s−1 (much higher compared to experi-
ments) [28]. Considering the whole range of carrier concentrations, our predicted mobilities,
including electron–phonon and ionized impurity scattering, are comparable to the mo-
bilities from single crystals and are higher than those from thin films, as expected (see
Figure 4) [9,10,12–15,52,53]. This can be attributed to significant carrier scattering from
the grain boundaries and dislocations induced by lattice mismatch between the film and
substrates such as corundum Al2O3 and rutile TiO2 [54,55]. On the other hand, SnO2 single
crystals are found to have higher mobility than the epitaxial thin films [9–11]. Using very
thick self-buffer layers [16], SnO2 epitaxial thin films on TiO2 (001) substrates are also found
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to have high electrons mobilities, which agrees very well with our calculated mobility with
both electron–phonon and ionized impurity scattering.

In order to understand the large difference between the electron and hole mobilities,
we calculate the transport distribution functions, as shown in Figure 5a, which are found to
be comparable for both electrons and holes, despite the fact that electrons have much higher
band velocities and much lower density of states. The comparable transport distribution
functions in Equation (14) for electrons and holes can be understood as follows. Compared
to holes, electrons have much higher band velocities, as seen in Figure 5b, due to their
smaller effective mass. The calculated density of states for electrons is lower than for holes,
as shown in Figure 5c, which is expected from Equation (10). On the other hand, the total
relaxation time is predominated by POP scattering. Because of this, from Equation (9), due
to the smaller effective mass of electrons compared to holes, we can expect a much smaller
exchange vector |k−k′|2 for electrons, as shown in the inset of Figure 5b. Overall, the larger
velocity (v2) and lower density of states for electrons in Equation (14) will be somewhat
compensated by the smaller |k− k′|2 and lower density of states in Equation (9) for POP
scattering rates. This finally results in the comparable transport distribution functions
for electrons and holes (note that although the deformation potentials for electrons and
holes are very different, ADP is an overall weaker mechanism in this case). Thus, the
much larger mobility for electrons compared to holes comes from the much lower carrier
concentration, as shown in Figure 5d, which is expected from the much smaller effective
mass of the electrons.

0 0.05 0.1 0.15 0.2

Energy (eV)

1

2

3

4

5

 
 (

a.
u

.)
 

electrons

holes

(a) (b)

(c) (d)

k k´

k k´

Figure 5. Calculated (a) transport distribution functions, (b) band velocities, (c) density of states, and
(d) carrier concentrations for electrons and holes in SnO2. In (a), the transport distribution functions
are averaged from Ξxx, Ξyy, and Ξzz. The inset of (b) shows the different |k− k′|2 for the heavy band
and light band.

4. Conclusions

In conclusion, we employed the numerically solved linearized Boltzmann transport
equation with first-principles calculated band structures to calculate the mobilities of
electrons and holes in SnO2. We consider acoustic deformation potential, polar optical
phonon, and ionized impurity scattering processes. Both electron and hole mobilities
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are found to be predominantly limited by the polar optical phonon scattering at room
temperature. The calculated effective masses of electrons and holes are directly related to
the difference in mobilities observed between n-type and p-type SnO2. The mobilities, as
a function of the carrier concentration, show an upper limit of µe = 265 cm2V−1s−1 and
µh = 7.6 cm2V−1s−1, which agrees well with previous experimental values, at least for the
n-type SnO2.
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