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Roy, M.; Sieroń, L.; Maniukiewicz, W.;

Aktar, T.; Maiti, D.; Novikov, A.S.;

Misra, T.K. Novel Organotin(IV)

Complexes of 2-[4-Hydroxy-3-

((2-hydroxyethylimino)methyl)

phenylazo]benzoic Acid: Synthesis,

Structure, Noncovalent Interactions

and In Vitro Antibacterial Activity.

Crystals 2022, 12, 1582. https://

doi.org/10.3390/cryst12111582

Academic Editor: Kil Sik Min

Received: 24 October 2022

Accepted: 4 November 2022

Published: 7 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Novel Organotin(IV) Complexes of 2-[4-Hydroxy-3-
((2-hydroxyethylimino)methyl)phenylazo]benzoic Acid:
Synthesis, Structure, Noncovalent Interactions and In Vitro
Antibacterial Activity
Pratima Debnath 1 , Paresh Debnath 1 , Manojit Roy 1,*, Lesław Sieroń 2 , Waldemar Maniukiewicz 2,* ,
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Abstract: Three new organotin(IV) complexes, [Me3Sn(H2L)]2 (1), Bu3Sn(H2L) (2), and [(Bu2Sn(H2L))2O]2

(3) were synthesized by the reaction of 2-[4-hydroxy-3-((2-hydroxyethylimino)methyl)phenylazo]benzoic
acid (H3L) with appropriate alkyltin(IV) precursors. The complexes were characterized by elemental
analysis, IR, and multinuclear (1H, 13C and 119Sn) NMR spectroscopy. Further, the complex 1 was
analyzed by single-crystal X-ray analysis. It displays a 24-membered cyclic dimeric Me3SnIV(H2L)
unit where the ligand act as a bridging framework using its carboxylate-O and phenoxy-O atoms.
The Sn(IV) adopts distorted trigonal-bipyramidal geometry. In the solution state, the structures
were determined by 119Sn-NMR spectroscopy, and the complexes 1 and 2 have distorted tetrahedral
geometry, whereas complex 3 shows distorted trigonal-bipyramidal geometry around the tin centres.
The Hirshfeld surface analysis and DFT calculations, together with a topological analysis of the
electron density distribution in the crystal structure of complex 1, indicate that its molecular packing
determined by various noncovalent interactions, including stacking and hydrogen bonding. The an-
tibacterial studies of the ligand and the complexes (1–3) against gram-negative bacteria viz. Klebsiella
pneumoniae (A),Vibrio cholerae (M) and Shigella boydii (Q) and gram-positive bacteria viz.Staphylococcus
aureus (J), Streptococcus pneumonia (K) are promising and the compounds can be treated as potential
common antibacterial materials.

Keywords: organotin(IV) compounds; NMR spectroscopy; crystal structure; cyclic dimeric;
noncovalent interactions; antibacterial activity

1. Introduction

The development of organotin(IV) compounds for use in biomedical, industrial, and
agricultural applications is attracting significant interest from researchers [1]. They have
been commercially used as a homogeneous catalyst for polymeric materials, such as PVC,
polyurethanes, silicone polymers, etc. [2]. Because of their specific interactions with the
phosphate group of DNA, they have been considered advanced anti-cancer agents [3–7]
and the agents for other diseases of proliferation [8–10]. They are distinctive from a
stereochemical perspective, displaying monomeric, polymeric or cyclic motifs [11,12].
Nevertheless, coordinated ligands play a vital role in the structural variety of organotin(IV)
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compounds. Ligands bearing carboxylate/hydroxo groups with Schiff base imine, azo, or
azo-imine functionalities have been extensively investigated [13–17] for their stereochemical
motifs and biological applications [18–25].

It has been observed that the cyclic compounds formed by organotin(IV) with lig-
ands containing hydroxy-azo/imino-carboxylate groups at the specific positions are either
tetrameric or dimeric forms of Sn(IV) [25–31]. Tetrameric Sn(IV) complexes are found to be
36- to 48-members. They adopt distorted trigonal-bipyramidal geometry regardless of the
organo-groups linked to Sn(IV). The ring size and multimeric character of Sn(IV) units are
thus controlled by the location of the coordinating sites that are present in a ligand frame.
Roy M. et al. [25] reported the 48-membered macrocyclic tetrameric trimethyltin(IV) com-
pound with 4-(2,4-dihydroxy-phenylazo)-benzoic acid, where in respect of the azo group
the carboxylate is at 4- and the hydroxyl is at 2′-positions and the ligand is in zwitterionic
form. The complex showed very good antidiabetic effectiveness, which overcomes the
effectiveness of standard compound acarbose. The ligand, 3-(salicylideneamino)benzoate
where the carboxylate is at 3- and the hydroxyl is at 2′-positions in respect of the imino
function yielded the 44-membered macrocyclic tetrameric triphenyltin(IV) compound [26].
The compound has shown effective anticancer activity as well. Basu Baul T.S. et al. [27]
designed the ligand, 5-[(E)-2-(3-pyridyl)-1-diazenyl]-2-hydroxybenzoic acid in which the
carboxylate and the hydroxyl groups at the 3- and 4-positions of a phenyl ring are linked
with 3′-pyridine through the azo-group. With the triphenyltin(IV) fragment, the ligand
produced a 44-membered macrocyclic tetrameric structure employing carboxylate-O and
pyridine-N. The research group framed a different ligand in which phenylazo group (hav-
ing no coordination site) attached at 4-position of the hydroxyl group and 3-position of
the (methylidene)aminoacetate group. The ligand in its zwitterionic form produced a
36-membered macrocyclic tetrameric structure with the triphenyltin(IV) fragment [28].
Thus, the ligands with coordination sites (carboxylate, hydroxy) at (4,2′), (3,3′), (3,2′) po-
sitions yield tetrameric organotin(IV) complexes. On the other hand, the ligands of type
(2,4′), i.e., the carboxylate group at 2-position and the hydroxyl group at 4′-position, with
SnPh3 and SnMe3 fragments yielded centrosymmetric dimeric 24-membered macrocyclic
organotin(IV) compounds [29,30]. In both cases, there are (methylidene)amino fragments
at the ortho-position of the hydroxy-group and unlike the (methylidene)aminoacetate
group [28], these were found to be uncoordinated. All of the compounds are bioactive and
it could be stated that the polynuclear organotin(IV) compounds are supposed to have
higher antitumor activity than that of monomeric ones [31].

In this present contribution, we report synthesis of a new ligand of type (2,4′) with
a pendent arm of (methylidene)aminoethyl alcohol at the ortho-position and its Sn(IV)
complexes with trimethyl-, tributyl- and dibutyl-organotin(IV) precursors. The report
includes the crystal structure of the complex of SnMe3 fragment which is a 24-membered
macrocyclic centrosymmetric dimer of organotin(IV), establishing our observations of
dimeric form with the (2,4′) systems from the literature [29,30]. The Hirshfeld surface
analysis and DFT calculations, together with a topological analysis of the electron density
distribution, were used for theoretical study noncovalent interactions in the obtained crystal
structure. Antibacterial properties of all the compounds against both gram-positive and
gram-negative bacteria are also highlighted.

2. Materials and Methods
2.1. Materials

Ethanolamine, salicylaldehyde, trimethyltin(IV) chloride, bis-tri-n-butyltin(IV) oxide,
o-amino benzoic acid, and dibutyltin(IV) oxide were taken from Merck by purchase process
and then used without further purification. Nutrient Agar (Hi-media) was used as culture
media for the growth of bacterial species. The analysis for the detection of elemental
Carbon, hydrogen and nitrogen analyses was performed on a PerkinElmer 2400 series II
instrument. The IR spectra were obtained from Perkin Elmer FTIR spectrophotometer in
the range of 4000–400 cm−1 using KBr discs. 1H, 13C and 119Sn NMR spectra of ligand and
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the complexes were recorded on a Bruker AMX 400 spectrometer measured at 400, 100 and
149 MHz, respectively. Me4Si was employed as a reference compound set at 0.00 ppm for
1H- and 13C-chemical shifts while Me4Sn was used as a reference for 119Sn-chemical shifts
set at 0.00 ppm.

2.2. Methods
2.2.1. Synthesis of 2-{4-Hydroxy-3-[(2-hydroxyethylimino)methyl]phenylazo}benzoic
Acid (H3L)

The diazotization of 2-aminobenzoic acid, followed by coupling with salicylaldehyde
led 2-(3-formyl-4-hydroxyphenylazo)benzoic acid [30]. It (1.00 g, 3.70 mmol) was then
dissolved in toluene (50 mL) and heated for 30 min. To this hot toluene solution, ethanolic
solution of ethanolamine (0.226 g, 3.70 mmol) was added dropwise in stirring condition,
and the mixture was made to reflux for 3 hrs. After the solid product fully formed, it was
filtered out, vacuum-dried, and then again recrystallized from anhydrous methanol to
produce the light yellow H3L product.

Yield: 0.967 g, 83.3%; m.p.: 210–214 ◦C. Anal.Calcd. for C16H15N3O4: C, 61.34; H, 4.83;
N, 13.41%. Found: C, 61.75; H, 5.01; N, 13.23%. UV-visible (DMF) λmax (nm): 267,
370. IR (KBr, cm−1): 3450 ν(OH), 2929 ν(C-H str. of aliphatic -CH2), 1698 ν(COO)asy,
1387 ν(COO)sym, 1613 ν(C=N), 1494 ν(N=N), 1273 ν(aromatic C-O), 1167 ν(aliphatic C-O).
1H NMR (DMSO-d6, 400 MHz) δH: 10.33[s, 1H, Ar-OH], 8.66 [s, 1H, H-7], 8.02 [d, 1H,
H-6, J = 2.8 Hz], 7.84 [dd, 1H, H-4, J = 9.2 and 2.8 Hz], 7.75 [d, 1H, H-3′], 7.60 [m, 1H,
H-5′], 7.50 [m, 1H, H-4′ and H-6′ ], 6.78 [d, 1H, H-3, J = 9.2 Hz ], 3.69 [m, 4H, H-8 & H-9]
ppm. 13C NMR (DMSO-d6, 100 MHz) δC: 174.24 [COO], 168.45 [C-7], 166.78 [C-2], 150.45
[C-1′], 141.37 [C-5], 134.29 [C-5′], 131.34 [C-2′], 129.94 [C-4′], 129.00 [C-4], 125.76 [C-6],
122.25 [C-6′], 117.58 [C-1], 115.22 [C-3], 59.65 & 55.78 [C-8 & C-9] ppm.

2.2.2. Preparation of Cyclic Dimeric Trimethyltin(IV) Complex of H3L, [Me3Sn(H2L)]2 (1)

The cyclic dimeric trimethyltin(IV) complex, [Me3Sn(H2L)]2 (1) was synthesised by
reacting 2-{4-hydroxy-3-[(2-hydroxyethylimino)methyl]phenylazo}benzoic acid (H3L) with
trimethyltin(IV) chloride in the stoichiometric molar ratio 1:1 (L:M) with triethylamine as a
base in a refluxing condition. The ligand H3L (0.4716 g, 1.505 mmol) in 30 mL of distilled
toluene in a round bottom flask was first treated with a triethylamine base (0.1522 g,
1.505 mmol) and the mixture was then refluxed for 30 min. After that, trimethyltin(IV)
chloride (0.3 g, 1.505 mmol) was added to the mixture and continually refluxed for a further
6–7 h. The reaction mixture was eventually filtered off and a yellow colored product was
extracted from the solution. The product was washed thoroughly with hexane, dried and
recrystallized from anhydrous toluene. The pure yellow crystals of compound 1 were
finally obtained.

Yield: 0.62 g, 87.32%; m.p.: 102–103 ◦C. Anal.Calcd. for C38H46N6O8Sn2: C, 47.93;
H, 4.87; N, 8.83%. Found: C, 47.87; H, 4.50; N, 8.90%. UV-visible (DMF) λmax (nm): 268, 372.
IR (KBr, cm−1): 3389 ν(O-H), 2921 ν(C-H str. of Me), 1654 ν(COO)asy, 1493 ν(N=N), 1372
ν(COO)sym, 1281 ν(Aromatic C-O),1183 ν(Aliphatic C-O), 772 ν(C-H oop bending), 579 &
538 (Sn-C), 492 ν(Sn-O).1H NMR (CDCl3, 400 MHz) δH, Ligand skeleton: 8.48 [s, 1H, H-7],
7.91 [m, 1H, H-6], 7.70 [m, 1H, H-4], 7.63 [m, 1H, H-3′], 7.58 [m, 3H, H-4′,5′and 6′], 7.05 [d,
1H, H-3, J = 8.8 Hz ], 4.07 [m, 1H, Aliphatic-OH ], 3.98 [m, 2H, H-9, J = 4.4 Hz], 3.89 [m, 2H,
H-8, J = 4.4 Hz]; Sn-CH3 Skeleton: 0.61 [s, 9H, (Sn-CH3)] ppm.13C NMR (CDCl3, 100 MHz)
δC: Ligand skeleton: 13C NMR (CDCl3, 100 MHz) δC: 173.97 [COO], 169.32 [C-7], 151.76
[C-2], 145.70 [C-1′], 133.89 [C-5], 132.48 [C-5′], 131.14 [C-2′], 130.36 [C-4′], 128.74 [C-4],
127.75 [C-6], 119.65[C-6′], 118.13 [C-1], 117.50 [C-3]; Sn-CH3 skeleton: −1.73 [Sn-CH3] ppm.
119Sn NMR (CDCl3, 149 MHz): +139.8 ppm.

2.2.3. Preparation of Tributyltin(IV) Complex of H3L, Bu3Sn(H2L) (2)

The tri-butyltin(IV) compound (2) was synthesized by the reaction of the ligand, 2-
{4-hydroxy-3-[(2-hydroxyethylimino)methyl]phenylazo}benzoic acid with bis-tributyltin
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(IV) oxide by using the Dean–Stark apparatus under refluxing condition in (L:M) 1:1 molar
ratio. The whole reaction was carried out in a toluene solvent as described for compound 1.
Yield: 0.26 g, 85.76%; m.p.: 86–89 ◦C. Anal.Calcd. for C28H41N3O4Sn: C, 55.83; H, 6.86;
N, 6.98%. Found: C, 55.67; H, 6.85; N, 7.01%. UV-visible (DMF) λmax (nm): 365, 372, 495.
IR (KBr, cm−1): 3450 ν(O-H), 2957 ν(C-H str. of nBu), 1640 ν(COO)asy, 1494 ν(N=N), 1391
ν(COO)sym, 1281 ν(Aromatic C-O),1183 ν(Aliphatic C-O), 598 & 585 ν(Sn-C), 507 ν(Sn-O).1H
NMR (CDCl3, 400 MHz) δH, Ligand skeleton: 8.41 [s, 1H, H-7], 7.93 [dd, 1H, H-4, J = 9.2 Hz
& 2 Hz ], 7.87 [s, 1H, H-6], 7.80 [d, 1H, H-3′, J = 7.2 Hz], 7.48 [s, 1H, H-5′], 7.40 [m, 1H,
H-4′ and H-6′], 6.99[d, 1H, H-3, J = 9.2 Hz], 3.92 [m, 2H, H-9], 3.77 [m, 2H, H-8] ppm;
Sn-nBu Skeleton: 1.65[m,6H, H-α], 1.25 [m, 12H, H-β, H-γ], 0.89 [t, 9H, H-δ] ppm. 13C
NMR (CDCl3, 100 MHz) δC: 172.74 [COO-], 166.46 [C-7],151.78 [C-2], 145.04 [C-1′], 131.37
[C-5], 130.89 [C-5′], 129.77 [C-2′], 129.50 [C-4′], 129.11 [C-4], 126.50 [C-6], 118.70 [C-6′],
117.65 [C-1], 117.58 [C-3], 61.77 & 60.47 [C-8 & C-9] ppm; Sn-nBuSkeleton: 27.83 [C-β] 2J
[119Sn-13C(19.9 Hz)], 27.07 [C-γ] 3J [119Sn-13C(64.4 Hz)], 16.67 [C-α] 1J [119Sn-13C(352.6 Hz)],
13.65 [C-δ] ppm. 119Sn NMR (CDCl3, 149 MHz): +115.97 ppm. The numbering scheme of
Sn-Bu skeletal in the triorganotin complex is shown below:
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2.3. Crystallographic Data Collection and Structure Refinement

Single crystal X-ray diffraction data were collected using theω-scan technique using
MoKα (λ = 0.71073Å) radiation. The title compound was studied at 100 K using a RIGAKU
XtaLAB Synergy, Dualflex, Pilatus 300 K diffractometer [32] with Photon Jet micro-focus X-
ray Source. Data collection, cell refinement, data reduction and absorption correction were
carried out using CrysAlis PRO software [32]. The crystal structures were solved by using
direct methods with the SHELXT 2018/3 program [33]. Atomic scattering factors were
taken from the International Tables for X-ray Crystallography. Positional parameters of non-
H-atoms were refined by a full-matrix least-squares method on F2 with anisotropic thermal
parameters by using the SHELXL 2018/3 program [34]. Hydrogen atoms participating in
hydrogen bonding were found on the Fourier map and freely refined while the others were
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placed in calculated positions (C–H = 0.93–0.98 Å) and included as riding contributions
with isotropic displacement parameters set to 1.2-times the Ueq of the parent atom. Crystal
data and structure refinement parameters are shown in Table 1.

Table 1. Crystal data and structure refinement parameters for complex 1.

Parameters 1

Empirical formula C38H46N6O8Sn2
Formula weight 952.23
Temperature (K) 100 (3)
Wavelength (Å) 0.71073
Crystal system triclinic

Space group P-1
a (Å) 7.1138 (1)
b (Å) 10.4253 (2)
c (Å) 14.0461 (2)
α (◦) 94.753 (1)
β (◦) 93.448 (1)
γ (◦) 108.603 (1)

Volume (Å3) 979.74 (3)
Z 1

Density (Mg/m3) 1.614
Absorp. coeff. (mm−1) 1.333

F (000) 480
Crystal size (mm3) 0.04 × 0.05 × 0.33

Theta range for data collection 2.9, 25.0
Index ranges −8<= h <=8; −12<= k <=12; −16<= l <=16

Reflection collected 26,309
Data completeness 99.9%

Independent reflections 3559 [R(int) = 0.022]
Goodness of fit on F2 1.11

Final R indices [I > 2sigma(I)] 0.0152
R indices (all data) 0.0159

Largest diff. peak and hole (e Å−3) 0.58 and −0.22

2.4. Computational Details

The Hirshfeld molecular surface was generated by the CrystalExplorer program
(version 17.5) [35,36]. The normalized contact distances, dnorm [37], based on Bondi’s van
der Waals radii [38], were mapped into the Hirshfeld surface. The DFT calculations based
on the experimental X-ray geometry of 1 were carried out using the dispersion-corrected
hybrid functionalωB97XD [39] with the help of Gaussian-09 [40] program package. The
Douglas–Kroll–Hess 2nd order scalar relativistic calculations requesting relativistic core
Hamiltonian were carried out using the DZP-DKH basis sets [41–44] for all atoms. The
topological analysis of the electron density distribution with the help of the quantum
theory of atoms-in-molecules (QTAIM) method, electron localization function (ELF), and
reduced density gradient (RDG) analyses were performed using the Multiwfn program
(version 3.7) [45].

2.5. Antibacterial Studies

The antibiotic activities of the ligand (H3L) and the compounds (1–3) were studied
against the three gram-negative bacterial strains viz. Klebsiella pneumoniae (A), Vibrio cholera
(M), Shigella boydii (Q) andtwo gram-positive bacterial strains viz. Staphylococcus aureus (J)
and Streptococcus pneumonia (K) according to the Kirby–Bauer Disk Diffusion Susceptibility
Test Protocol [46]. The standard antibiotics such as Polymyxin B and Gentamycin were
used as positive control against gram-negative bacteria and Vancomycin for gram-positive
bacteria. They were treated at various concentrations. In order to determine the zone of
inhibition, discs of 5 mm in diameter were used on pre-spread bacterial strains in a nutrient
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agar plate. Strains were treated with the compounds at different concentrations (1 µg/disc,
100 µg/disc and 500 µg/disc). After 18–24 h of incubation at 37 ◦C, the diameters (mm) of
clear zone of inhibitions were measured using a scale.

3. Results and Discussion
3.1. Synthesis

The ligand, an azo-imine carboxylate Schiff base, was synthesized by condensation of 2-
(3-formyl-4-hydroxyphenylazo) benzoic [30] with ethanolamine in toluene at warm condition.
The newly obtained ligand, 2-{4-hydroxy-3-[(2-hydroxyethylimino)methyl]phenylazo}benzoic
acid (H3L) was subjected to develop Sn(IV) compounds. Thus, the three new organotin(IV)
complexes (1–3) were synthesized by the reaction of H3L with appropriate alkyl tin(IV)
precursors such as: trimethyltin(IV) chloride, bis-tributyltin(IV) oxide and dibutyltin(IV)
oxide in refluxing condition by the use of distilled toluene. The single crystals of the
complex 1 were obtained from the reaction mixture, whereas the complexes 2 and 3 were
recrystallized from toluene. The three complexes were obtained in good yield and all the
three complexes 1–3 were found to be soluble in all common organic solvents. The reaction
scheme for the synthesis of the complexes 1–3 is shown in Scheme 1.
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3.2. IR-Spectroscopy

The IR spectroscopic data for the ligand (H3L) and the complexes (1–3) are given in the Ex-
perimental section, and their spectra are shown in Figures S1–S4 (see Supplementary Materials).
The ligand has various functional groups such as carboxylate, aliphatic and phenolic-OH,
carbonyl (-C=O), azo (-N=N-), imine (-C=N-), aromatic -C=C-, aliphatic and aromatic-C-O.
These appeared in the spectra in the usual positions for the ligand and its Sn(IV) com-
plexes. The overlapping stretching frequencies of all the –OH groups appear as strong and
broad band at 3450 cm−1 in H3L. The band is quite sharp and shifts to lower frequency at
3389 cm−1, indicating involvement of carboxylate-O and phenolic-O coordination to Sn(IV)
in the complex 1. However, there is not much change observed in complexes 2 and 3. The
weak band for aliphatic –CH2- groups can be seen at 2929 cm−1 for H3L and at 2921 cm−1

for the complex 1. However, in complexes 2 and 3, it is very prominent and multiplet
in form, indicating coordination of the ligand to Sn(IV) that has a butyl substituent. The
asymmetric (ν(COO)asy) and symmetric (ν(COO)sy) stretching frequencies of the carboxylate
group in the ligand appear at 1698 cm−1 and 1385 cm−1, respectively. As a result of COO-
coordination to Sn(IV), these bands shift to the frequency range at 1630–1654 cm−1 for
asymmetric -COO and 1372–1394 cm−1 for symmetric-COO [10,15–17,21,30]. The differ-
ence between the asymmetric and symmetric frequencies, i.e., ∆ν(ν(COO)asy − ν(COO)sym)
is 282, 248 and 236 cm−1 respectively for the complexes 1, 2 and 3, which are greater
than 200 cm−1, indicating that the carboxylate group coordinates to Sn(IV) in monoden-
tate mode in each complex [15,16]. The -C=N-, -C=C-, and -N=N- bands appear in the
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usual positions in the spectra of the ligand and the complexes, respectively ranging from
1645–1494 cm−1 (H3L), 1615–1493 cm−1 (1), 1620–1472 cm−1 (2), and 1610–1470 cm−1 (3).
The bands for aromatic and aliphatic-C-O groups can be seen at 1273 and 1167 cm−1 for
H3L, 1281 and 1183 cm−1 for 1, 2, and 1311 and 1193 for 3 cm−1, respectively. All the
compounds exhibit a strong band for out-of-plane bending of ring C-H bonds in the range
of 750 (complex 3) to 772 (complex 1). The Sn-C band of the complex 1 is doublet in nature
(579 and 538 cm−1), which means that the Sn-C bonds are non-linear and the Sn-O bond
is sharp at 492 cm−1. For complexes 2 and 3, these are assigned in a similar way (for 2:
598, 585 cm−1 and 507 cm−1; for 3: 595, 581 cm−1 and 538 cm−1) to Sn-C and Sn-O bonds,
respectively [10,21,30].

3.3. Multinuclear (1H, 13C and 119Sn) NMR-Spectroscopy

The NMR spectra of the ligand (H3L) were recorded in DMSO-d6 solvent, whilst these
were recorded in the CDCl3 solvent for the complexes 1–3; their spectral data are provided
in the experimental section. The 1H NMR spectra of the ligand and the complex 1 are
given in Figures 1 and 2; all other spectra including 1H NMR and 13C NMR are placed in
Figures S5–S10 (Supplementary Materials). While the aromatic protons of the azo-imino
ligand H3L are seen in the range of 6.78–8.02 ppm (Figure 1), the aromatic protons in all
the complexes 1–3 are found to be in the range of 6.94–8.43 ppm. The imine protons of all
the compounds are found at 8.67 ppm for H3L and at 8.48, 8.41 and 9.91 ppm, respectively,
for 1–3 compounds. The phenolic-OH at 10.33 ppm for the ligand is virtually absent in
the complexes. The carboxylate-OH, which is absent in the ligand spectra due to the
DMSO solvent, is absent in complexes 1 and 3, but present in complex 2 spectra. For the
ligand H3L, the four methylene protons attached with imino/OH functions appear as
a triplet at 3.69 ppm, while the same protons appear in the range of 4.11–3.76 ppm for
the three complexes 1–3. Based on the Sn-alkyl protons signals, the complexes could be
distinguished from the uncoordinated ligand, as well as from one another. The complex 1
has Sn-methyl groups, which is detected as a singlet peak at 0.61 ppm [21]; the complex 2
has Sn-Bu3, which results in two distinct peaks as a triplet peak at 0.89 ppm and two
multiplets in the range of 1.25–1.66 ppm for the methyl and the three methylene protons,
respectively; similarly, the complex 3 with Sn-Bu2 shows two multiplet peaks in the range
of 0.91–1.46 ppm for tin-butyl protons [10,21].

The 13C-NMR spectrum of the azo-imino carboxylate ligand H3L is shown as a δ(COO)
signal at 174.25 ppm, whereas the signal in the spectra of complexes is shifted downfield and
appears at 173.97, 172.74, and 171.76 ppm for 1–3, respectively. The imine carbons can be
found at 168.46 (H3L), 169.32 (1), 166.46 (2), and 167.24 (3) ppm. The aromatic ring carbons
of the ligand H3L show signals in the range of 166.79–115.22 ppm (Figure S7), but the same
signals are found in the range of 116.07–151.78 ppm in the spectra of the complexes 1–3
(Figures S8–S10). In the ligand spectrum, the ethylene carbons are found at 59.66 and
55.79 ppm, and in the complex 2 it is at 61.77 and 60.47 ppm. In complex 1, the tin-methyl-
carbon shows a highly shielded signal at −1.73 ppm. Moreover, the complexes 2 and 3
have tin-butyl carbons (c-α, c-β, c-γ, c-δ), which appear in the range of 27.93–13.65 ppm
for 2 and of 31.93–13.58 ppm for 3.

Moreover, the geometry and coordination number of the complex 2 can be predicted
from its carbon satellites (Figure S9) by determining nJ (119Sn-13C) coupling constant
values [15,16,21]. The complex 2 has 352.6 Hz, 19.9 Hz and 64.4 Hz coupling constant for1J
(119Sn-13C), 2J (119Sn-13C) and 3J (119Sn-13C) coupling satellites, respectively, indicating that
the complex has four coordinate quasi tetrahedral geometry around tin centres [15,16,21] in
the solution state. It was further confirmed by its 119Sn NMR spectral signal [15], which is
found at +115.98 ppm (Figure 3). The 119Sn NMR spectral signal at +139.86 ppm (Figure 3)
for the complex 1 also reveals that it has a similar structure in the solution to complex 2,
whereas in the case of complex 3, two sharp signals of 119Sn NMR spectrum are found at
−93.1 and −140.4 ppm, which indicate that it must have two types of tin centres with a
distorted trigonal bipyramidal geometry [10].
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3.4. Crystal Structure of 1

The ORTEP view with atom numbering of the complex 1 is shown in Figure 4. It is a
cyclic dimer of triorganotin(IV) (C38H46N6O8Sn2) with the asymmetric unit Me3SnIV(H2L).
It is a triclinic crystal system with the space group P-1. The coordination environment about
Sn(IV) is trigonal-bipyramidal, constituted by the three methyl group at the equatorial
positions and the two axial positions occupied by the one carboxylate group via unidentate
fashion and one phenoxo group from the ligand moiety. The coordinate ligand is in
the zwitterionic state, where phenolic H-atom shifts to the imino-N atom, forming a
6-membered ring through H-bonding. The distortion of coordination sphere of Sn(IV)
can be characterized quantitatively by parameter τ, defined by Addison et al. [47] (the τ
values for the idealized geometries are τ = 0, square planar, τ = 1, trigonal bipyramidal).
The value of τ = (b − a)/60 where b is the largest and a is the second largest basal angle
around the tin atom] for complex 1 is 0.94. The selected bond lengths, bond angles and
hydrogen bonds geometry are presented in Tables 2 and 3, respectively. The coordinated
ligand is in azo-form with N1-N2 bond length of 1.261(2) Å, which is comparable with
literature [21,25,30].

Table 2. The selected bond lengths (Å) and bond angles (◦) for 1.

Atoms Bond Length (Å)

Sn1-O1 2.2126 (11)
Sn1-C1 2.1270 (18)
Sn1-C2 2.1306 (15)
Sn1-C3 2.1303 (19)

Sn1-O3 i

N1-N2
2.3091 (11)
1.261 (2)

Atoms Bond Angle (◦)

O1-Sn1-C1 95.52 (6)
O1-Sn1-C2 93.02 (6)
O1-Sn1-C3 86.09 (6)

O1-Sn1-O3 i 177.68 (5)
C1-Sn1-C2 117.20 (7)
C1-Sn1-C3 121.47 (8)

O3 i-Sn1-C1 84.61 (5)
C2-Sn1-C3 121.13 (7)

O3 i-Sn1-C2 88.97 (6)
O3 i-Sn1-C3 91.86 (6)

Symmetrycode: i 1 − x, 2 − y, 1 − z.
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Table 3. The hydrogen bonding parameters for compound 1.

Compound D–H . . . A d (D–H) d (H . . . A) d (D . . . A) <(DHA)

1
N3-H3 . . . O3

O4-H4 . . . O2 ii
0.83 (2)
0.85 (3)

1.97 (2)
1.96 (3)

2.6316 (18)
2.7829 (18)

136 (2)
159 (3)

C18-H18B . . . O2 iii 0.99 2.56 3.529(2) 167

Symmetrycode: ii x, y, 1 + z iii −x, 1 − y, 1 − z.

The imine bond length (N3-C17 of 1.293(2) Å) is also comparable with the literature
value [21,22,30]. The complex is viewed as end-to-end bridged by the ligand, OOC-H2L-O
to Me3SnIV fragment. The C-Sn-C angles are of 117.20(7), 121.47(8), and 121.13(7)◦ and the
O-Sn-O angle is 177.68(5)◦. The Sn-C bonds are almost equivalent (Sn1-C1, 2.1270(18) Å; Sn1-
C2, 2.1306(15) Å Sn1-C3, 2.1303(19) Å). In the case of Sn-O bonds, the Sn1-O1(carboxylate-O)
(2.2126(11) Å) is shorter than that of Sn1-O3(phenolate-O) (2.3091(11) Å). Thus, the complex
possesses somewhat distorted trigonal bipyramidal geometry about Sn(IV), where axial
bonds are longer than the equatorial bonds. The distance between Sn1 and other carboxylate
oxygen is 3.303 Å, which is in line with the sum of their Van der Waals radii. Thus, it
can be treated as a strong secondary interaction. The complex has a centre of symmetry
with plane-centroid-Sn distance, 4.00 Å. The complex holds an intramolecular and an
intermolecular H-bonding between N3-H3 . . . O3 and O4-H4 . . . .O2 i (i +x, 1 + y, 1 + z),
respectively (Table 3, Figure S11). Another similar type, but with longer H-bonding, occurs
between C18-H18B . . . .O2 ii (ii −x, 1 − y, 1 − z).

3.5. Theoretical Study of Intermolecular Interactions

The molecular Hirshfeld surface (visualization of short interatomic contacts using
sums of appropriate vdW radii) represents an area where molecules come into contact, and
its analysis gives the possibility of an additional insight into the nature of intermolecular
interactions in the crystal state. We carried out the Hirshfeld surface analysis for the X-
ray structure of 1 to understand what kind of intermolecular contacts gives the largest
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contributions in crystal packing (Figure 5). For the visualization, we have used a mapping
of the normalized contact distance (dnorm); its negative value enables identification of
molecular regions of substantial importance for the detection of short contacts. In the
Hirshfeld surface, the regions of shortest intermolecular contacts are visualized by red
circle areas (corresponding to hydrogen bonds O–H···O and stacking interactions). The
fingerprint plots from the Hirshfeld surface analysis for the X-ray structure of 1 are given
in Figure S12. Results of the Hirshfeld surface analysis for the X-ray structure of 1 reveal
that intermolecular contacts involving hydrogen atoms (viz. H···H, O···H, and C···H) give
the largest contributions in the crystal packing.
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We carried out DFT calculations, followed by the topological analysis of the electron
density distribution, at theωB97XD/DZP-DKH level of theory for model supramolecular
associates to more deeply study the phenomenon of hydrogen bonds O–H···O and stacking
interactions in the X-ray structure of 1. Results of topological analysis of the electron
density distribution are summarized in Table 4; the contour line diagrams of the Laplacian
of electron density distribution ∇2ρ(r), visualization of electron localization function (ELF)
and reduced density gradient (RDG) analyses for hydrogen bonds O–H···O and stacking
interactions in the X-ray structure of 1 are shown in Figure 6.

Table 4. Values of the density of all electrons—ρ(r), Laplacian of electron density—∇2ρ(r) and
appropriate λ2 eigenvalues, energy density—Hb, potential energy density—V(r), Lagrangiankinetic
energy—G(r), and electron localization function—ELF (a.u.) at the bond critical points (3, −1),
corresponding to hydrogen bonds O–H···O and stacking interactions in the X-ray structure of 1, and
estimated strength for these contacts Eint (kcal/mol).

Contact ρ(r) ∇2ρ(r) λ2 Hb V(r) G(r) ELF Eint *

O–H···O 1.958 Å 0.024 0.094 −0.024 0.003 −0.018 0.021 0.067 5.6
C···C 3.310 Å 0.006 0.019 −0.006 0.001 −0.003 0.004 0.022 0.9

* Eint ≈ −V(r)/2.
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stacking interactions (bottom) in the X-ray structure of 1. Bond critical points (3, −1) are shown in
blue, nuclear critical points (3, −3)—in pale brown, ring critical points (3, +1)—in orange, cage critical
points (3, +3)—in light green, length units—Å, and the color scale for the ELF and RDG maps is
presented in a.u.

The topological analysis of the electron density distribution in model supramolecular
associates demonstrates the presence of bond critical points (3, −1) for hydrogen bonds
O–H···O and stacking interactions in the X-ray structure of 1 (Table 4 and Figure 6). The low
magnitude of the electron density, positive values of the Laplacian of electron density, and
very close to zero positive energy density in these bond critical points (3, −1) and estimated
strength for appropriate short contacts are typical for weak noncovalent interactions. The
balance between the Lagrangian kinetic energy G(r) and potential energy density V(r) at
the bond critical points (3, −1) for hydrogen bonds O–H···O and stacking interactions in
the X-ray structure of 1 (viz. −G(r)/V(r) > 1) reveals that covalent contribution in these
short contacts is negligible [48]. The Laplacian of electron density is typically decomposed
into the sum of contributions along the three principal axes of maximal variation, giving
the three eigenvalues of the Hessian matrix (λ1, λ2 and λ3), and the sign of λ2 can be
utilized to distinguish bonding (attractive, λ2 < 0) weak interactions from nonbonding
ones (repulsive, λ2 > 0) [49,50]. Thus, hydrogen bonds O–H···O and stacking interactions
in the X-ray structure of 1 are attractive. Note that estimated cumulative strengths of
hydrogen bonds O–H···O and stacking interactions responsible for the formation of formal
dimers in the X-ray structure of 1 by conventional supermolecule method (as the difference
between the total electronic energies of appropriate dimer and two monomers) are 44.8 and
46.3 kcal/mol, respectively.

3.6. Antibacterial Activities

Antibacterial activities of the ligand (H3L) and the compounds (1–3) were evaluated
at different concentrations (1 µg/disc, 100 µg/disc, 500 µg/disc) and compared with the
standard antibiotics. The Klebsiella pneumoniae (A), Vibrio cholerae (M) and Shigella boydii (Q)
(gram-negative) and Staphylococcus aureus (J), Streptococcus pneumonia (K) (gram-positive)
bacteria were included as bacterial strains. The Polymyxin B and Gentamicin as standard
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antibiotics against gram-negative bacteria and Vancomycin against gram-positive bacterial
strains were used as positive control at four different concentrations (10 µg/disc, 30 µg/disc,
100 µg/disc, 500 µg/disc) in order to compare with the activity of the tested compounds.
The calculated zones of inhibitions were measured and the data are given in Table 5. The
data are represented in bar-diagram in Figure 7 for the ligand and Figure 8 for the com-
plex 1. The zone diameter is the measure of activity; the zone diameter activity is higher
and stronger. The Vancomycin, an antibiotic drug for gram (+) bacteria only, shows lethal
activity at 30 µg/disc concentration against gram-positive bacterial strains viz. Staphylo-
coccus aureus (J) (Zone diameter, 14 ± 0 mm), Streptococcus pneumonia (K) (Zone diameter,
12 ± 0 mm) and remains inactive at higher concentrations (100 µg/disc and 500 µg/disc).
The activities of the compounds are less or comparable (see Table 5) with the standard
drug. Most importantly, they show activity even at a lower concentration—1 µg/disc (e.g.,
6.3 ± 0.5 and 10.7 ± 0.5 for 3)—and increases with an increase in concentrations. Their
activities are more or less the same. On the other hand, the standard gram (−) ve antibiotic
drugs, Polymyxin B for Klebsiella pneumoniae (A) and Gentamicin for Vibrio cholerae (M) and
Shigella boydii (Q) bacteria show lethal activity at concentrations 10 µg/disc, 100 µg/disc
and 500 µg/disc but not at 30 µg/disc (see Table 5). However, the compounds (H3L and
complexes, 1–3) under investigation show lethal activity against all kinds of bacterial strains
at all concentrations. The Polymyxin B show zone of inhibition ranges from 5.0 ± 0.0 to
12.0 ± 0.6 mm against Klebsiella pneumoniae (A), which is exclusively comparable with the
compounds (H3L: 6.0 ± 1.0–14.0 ± 1.0; 1: 5.0 ± 0.0–13.7 ± 0.6 mm). The activities of Gen-
tamicin range from 15 ± 0.0–25 ± 0.0 against Vibrio cholerae (M) and 17.0 ± 0.6–36.7 ± 0.6
against Shigella boydii (Q) bacteria. The activities of the compounds against these bacte-
ria are less or comparable (e.g., H3L: 5.0 ± 0.0–13.7 ± 0.6 against Vibrio cholerae (M) and
5.7 ± 1.0–15.3 ± 1.0 against Shigella boydii (Q); 2: 8.3 ± 1.0–18.7 ± 1.0 against Vibrio cholerae
(M) and 6.3 ± 1.0–18.0 ± 0.0 against Shigella boydii (Q)). The study highlights two important
characteristic points regarding their potential antibacterial properties; first, they are active
evenly against both types of bacteria; second, their activities are comparable against the
corresponding standard drugs. Thus, the compounds could be treated as common potential
antibacterial materials.
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Figure 7. The zone diameter at different concentrations of H3L on Strains, Klebsiellapneumoniae (A),
Staphylococcus aureus (J), Streptococcus pneumonia (K), Vibrio cholerae (M) & Shigella boydii (Q). Data are
represented as mean ± SD of three concentration of doses (* p < 0.05, ** p < 0.01, *** p < 0.001, ns—no
significance p > 0.05).
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Table 5. Antibacterial activities of the compounds and standard drugs against three (−) ve and two
(+) ve bacteria.

Compounds Conc.

Zone of Inhibition at Different Concentration (mm)

Gram (−) ve Bacteria Gram (+) ve Bacteria

K. pneumoniae
(A)

V. cholerae
(M)

Shigella boydii
(Q)

S. Aureus
(J)

S. Pneumoniae
(K)

Control 5.0 ± 0.00 5.0 ± 0.00 5.0 ± 0.00 5.0 ± 0.00 5.0 ± 0.00

Polymyxin B
10 µg 5.0 ± 0.0 - - - -

100 µg 7.0 ± 0.0 - - - -
500 µg 12.0 ± 0.6 - - - -

Gentamicin
10 µg - 15 ± 0.0 17 ± 0 - -

100 µg - 22 ± 0.0 23.3 ± 0.6 - -
500 µg - 25 ± 0.0 36.7 ± 0.6 - -

Vancomycin 30 µg - - - 14 ± 0 12 ± 0

H3L
1 µg 6.0 ± 1.0 5.0 ± 0.0 5.7 ± 1.0 6.7 ± 0.6 5.3 ± 1.0

100 µg 7.7 ± 0.6 7.7 ± 1.0 10.3 ± 1.0 7.7 ± 0.6 7.7 ± 1.0
500 µg 14.0 ± 1.0 13.7 ± 1.0 15.3 ± 1.0 9.3 ± 0.6 8.7 ± 1.0

1
1 µg 5.0 ± 0.0 5.0 ± 0.0 5.0 ± 0.0 6.0 ± 0.0 6.0 ± 0.0

100 µg 6.7 ± 0.6 9.0 ± 0.0 11.7 ± 1.0 7.3 ± 0.6 8.7 ± 0.6
500 µg 13.7 ± 0.6 13.7 ± 1.0 5.0 ± 0.0 10.3 ± 0.6 14.7 ± 0.6

2
1 µg 5.0 ± 0.0 8.3 ± 1.0 6.3 ± 1.0 6.3 ± 0.6 6.0 ± 0.0

100 µg 5.0 ± 0.0 17.7 ± 1.0 14.7 ± 1.0 7.0 ± 0.0 7.3 ± 0.6
500 µg 6.3 ± 0.6 18.7 ± 1.0 18.0 ± 0.0 8.7 ± 0.6 8.0 ± 1.0

3
1 µg 5.0 ± 0.0 5.0 ± 0.0 6.0 ± 0.0 6.3 ± 0.5 10.7 ± 0.5

100 µg 5.0 ± 0.0 11.7 ± 0.5 14.7 ± 0.5 7.0 ± 0.0 6.0 ± 0.0
500 µg 5.0 ± 0.0 8.3 ± 0.5 19.7 ± 0.5 8.7 ± 0.5 9.3 ± 0.5

‘-‘ means no activity; Polymyxin B and Gentamicin shows no activity at conc. 30 µg but Vancomycin only at
conc. 30 µg.
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Figure 8. The zone diameter at different concentrations of complex (1) on Strains Klebsiella pneumoniae (A),
Staphylococcus aureus (J), Streptococcus pneumoniae (K), Vibrio cholerae (M) & Shigella boydii (Q). Data
are represented as mean ± SD of three concentration of doses (** p < 0.01, *** p < 0.001, ns—no
significance p > 0.05).
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4. Conclusions

A new ligand containing versatile functional groups, including azo-, imine-, phenolic-
OH, alcoholic-OH and carboxylate functions, was synthesized. The ligand generates
versatile organotin(IV) complexes. With trimethyltin(IV), the ligand forms a 24-membered
cyclic dimeric organotin(IV) complex. In the solid state, various noncovalent interactions,
including stacking and hydrogen bonding, determine molecular packing. The solid state
TBP geometry about Sn(IV) changes into a distorted tetrahedral geometry in the solution.
Again, with tributyltin(IV), the ligand forms distorted tetrahedral geometry in the solution,
but with dibutyltin(IV), the ligand shows distorted trigonal bipyramidal geometry with
a two tin centre. The compounds possess considerable antibacterial activity against both
gram-negative and gram-positive bacteria. Thus, the compounds can be an effective
potential common antibacterial material.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12111582/s1, Supplementary material 1: The CCDC number
2203973 for the compound 1 has crystallographic supplementary data and can be obtained without
paying any charge from http://www.ccdc.cam.ac.uk/conts/retrieving.html (accessed on 1 October
2022), or the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB2 1EZ, UK; fax:
(+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. The supplementary data include IR spectra
in Figures S1–S4 respectively for the ligand and the complexes 1–3; 1H NMR and 13C NMR spectra
of compounds in Figures S5–S10; molecular packing and fingerprint plots from Hirshfeld surface
analysis for the X-ray structure 1 in Figure S11 and S12, respectively.
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