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Abstract: A new generation of high-efficiency power devices is being developed using wide bandgap
(WBG) semiconductors, like GaN and SiC, which are emerging as attractive alternatives to silicon.
The recent interest in GaN has been piqued by its excellent material characteristics, including its high
critical electric field, high saturation velocity, high electron mobility, and outstanding thermal stability.
Therefore, the superior performance is represented by GaN-based high electron mobility transistor
(HEMT) devices. They can perform at higher currents, voltages, temperatures, and frequencies,
making them suitable devices for the next generation of high-efficiency power converter applications,
including electric vehicles, phone chargers, renewable energy, and data centers. Thus, this review
article will provide a basic overview of the various technological and scientific elements of the
current GaN HEMTs technology. First, the present advancements in the GaN market and its primary
application areas are briefly summarized. After that, the GaN is compared with other devices, and
the GaN HEMT device’s operational material properties with different heterostructures are discussed.
Then, the normally-off GaN HEMT technology with their different types are considered, especially
on the recessed gate metal insulator semiconductor high electron mobility transistor (MISHEMT) and
p-GaN. Hereafter, this review also discusses the reliability concerns of the GaN HEMT which are
caused by trap effects like a drain, gate lag, and current collapse with numerous types of degradation.
Eventually, the breakdown voltage of the GaN HEMT with some challenges has been studied.

Keywords: GaN HEMT; normally off; reliability; challenges; power devices; semiconductor devices;
wide bandgap

1. Introduction

Electrical power has been a fundamental driver of humanity’s progress and is indis-
pensable in our daily life. Power electronics are critical components of electrical power
usage because they control, convert, and manage electric currents, voltages, or powers.
They are extensively utilized in consumer items, energy harvesting, and usage, such as
switching power supplies, power converters, power inverters, motor drives, etc. Figure 1
shows the different fields of operation of power devices with the required voltage and
current ratings [1,2]. As depicted in Figure 2, a typical power electronic system includes a
power source, a filtering mechanism, a power conditioner, a load, and a control circuit. A
power conditioner is composed of a series of semiconductor devices working in a switched
mode, in which the devices are turned between the “OFF” and “ON” states under the
direction of the gate driver [1]. When turned “off”, an ideal switch should have no leakage
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current and a full voltage drop across it. If switched “on”, it should have a zero voltage
drop across it (Figure 3). In actuality, the power devices exhibit a resistance during the
on-state (RON) and a leakage current during the off-state. Under the common biasing
conditions, the voltage across it is restricted by the off-state drain to source the breakdown
voltage (BVDSS). Thus, to maximize the energy efficiency and minimize conversion losses,
the most crucial properties of power devices to accomplish are a low RON and a high BVDSS.
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Moreover, Gallium Nitride (GaN) has risen as an attractive material for fabricating
semiconductor devices over the last decade. Its excellent performance characteristics, like
its wide band gap, high electron mobility, high breakdown field, low noise, high saturation
velocity, and low thermal impedance, are essential for modern power device technology [3].

This review article will provide a basic overview of the various technological and
scientific elements of the current GaN HEMT technology, where we summarize the recent
and future potential market strategy of GaN HEMT power devices. Additionally, the
previous and present data of the most extensively used commercially device, the normally-
off GaN HEMT, are amalgamated, focusing explicitly on the insulator’s role in the recessed
MISHEMT region and the metal on the p-GaN performances, which makes this review
article more comprehensive compared to other review articles. Moreover, this review also
discusses the reliability concerns of the GaN HEMT which are caused by trap effects like a
drain, gate lag, and current collapse with numerous types of degradation.

1.1. Market Strategy of GaN HEMT Power Devices

GaN-based devices are being reported in various market-driven sectors, including RF
power devices, photonics, high-frequency communications, control, and high-power con-
version, which assists commerce’s and corporations in meeting the constantly expanding
need for more outstanding metrics. The inherent robustness of the device enables it to com-
pete effectively in the current markets for tiny, rugged, and highly dependable electronics,
such as in vehicle, military, and space applications. GaN engineering appears promising for
achieving the critical performance requirements and the possibility of sustained economic
benefits upon its maturity.

Figures 4 and 5 show that according to Yole Développement (Yole), the power GaN
market will double by 2020, surpassing the USD one billion mark in 2026. As an additional
validation of this remarkable GaN market development, Yole projects that the telecom and
datacom and automotive sectors will contribute to the total growth in the mid- to long-term,
owing to GaNs rise in fast chargers. In the consumer market, GaN had a good year in
2020, owing to the technology adoption by various businesses, including Xiaomi, Lenovo,
Samsung, Realme, Dell, LG, and other Chinese aftermarket firms. Yole anticipates that
the GaN consumer power supply industry will be the primary driver, growing from USD
29 million in 2020 to about USD 672 million in 2026 at a compound annual growth rate
(CAGR) of 69%. In the telecom and datacom sectors, where more efficient, smaller power
supplies must comply with the stricter energy consumption standards, data centers and
telecom operators are already interested in GaN devices.

Following Eltek, Delta, and BelPower’s recent small volume adoption of the GaN-
based power supply, it was predicted that there would be a more significant market for
GaN in 2020, with a market value of USD 9.1 million and a CAGR of 71% from 2020 to 2026,
reaching more than USD 223 million in 2026. The automotive and mobility markets are also
paying close attention to GaN because of significant incentives for vehicle electrification and
a need to increase the driving range via A system efficiency improvement. AEC-qualified
manufacturers include EPC, Transphorm, GaN Systems, and Texas Instruments. STMicro-
electronics, a major IDM, also pursues GaN for EVs via partnerships and acquisitions. In
2022, GaN will likely infiltrate at limited levels, primarily via OEM and Tier-1 samples.
Yole anticipates that the automobile and mobility industry will exceed a value of USD 155
million in 2026 [4].
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While GaN continues to gain traction in the general consumer market, telecom, data-
com, automotive, and mobility businesses will benefit from the “economy of scale impact”
and price erosion. Indeed, Yole anticipates that a GaN adoption will increase in these areas,
where reliability and affordability are critical, beginning in 2023–2024. In the long run, after
GaN has shown its durability and high current capability at a lower price, it may be able to
reach the more difficult EV/HEV inverter market and the conservative industrial industry,
creating an extraordinary high-volume potential for GaN. Indeed, Nexperia and VisIC are
developing GaN-based xEV inverter systems to compete with SiC and Si. Furthermore, as
various industry experts previously said, GaN is more suitable for low-to-medium voltage
applications (200–600 V), including a sizable share of the consumer electronic market (e.g.,
phone chargers, audio amplifiers, and computer power supplies). GaN is the most excellent
contender to replace conventional Si devices in this voltage range. The 600–900 V voltage
range is strategically important since it includes converters for electric cars (EVs), hybrid
EVs, and inverters for sustainable energy (e.g., photovoltaic). GaN devices are projected
to compete or coexist alongside SiC devices in this voltage range. Recent industry analyst
studies [5] show that the GaN power device market is expected to grow dramatically,
surpassing a value of USD 700 million in 2025, as illustrated in Figure 6.
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1.2. Market Strategy of GaN HEMT RF Devices

The gallium nitride (GaN) radio-frequency (RF) device market is rising at a compound
annual growth rate (CAGR) of 18% from a USD 891 million value in 2020 to a more than USD
2.4 billion value by 2026, forecasts the market analyst firm Yole Développement [6]. It has
been forecasted that the market will be dominated by defense and 5G telecom infrastructure
applications, representing 49% and 41% of the entire market by 2026, respectively. In
particular, the GaN-based macro/micro-cell sector will represent more than 95% of the
GaN telecom infrastructure market in 2026, as reflected in Figure 7.

In the RF GaN industry, everything started with GaN-on-SiC (gallium nitride on silicon
carbide) technology. Launched more than 20 years ago, GaN-on-SiC is now a serious rival
to silicon LDMOS and gallium arsenide (GaAs) in RF power applications. Dominated by
GaN-on-SiC technology, a vertical supply chain integration has been preferred in defense
and 5G telecom applications. Therefore, GaN-on-SiC technology is still preferred in terms
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of its high-power density and thermal conductivity. In addition to its deep penetration in
the military radar, GaN-on-SiC has also been the choice of telecom OEMs such as Huawei,
Nokia, and Samsung for 5G massive MIMO infrastructures. Due to their high bandwidth
and efficiency, GaN-on-SiC devices continuously take a share from LDMOS of the 5G
market and are starting to benefit from the 6” wafer platform transition. In this context,
the GaN-on-SiC device market is growing at a 17% CAGR from USD 342 million in 2020
to USD 2.222 billion in 2026. However, as a key challenger, GaN-on-Si is still in the game,
promising cost-efficient and scalable solutions. The recent entry of foundries and synergy
with the emerging power electronics GaN-on-Si industry can also help GaN-on-Si RF to
gain momentum in the longer term, says Yole. Driven by handsets but also defense and 5G
telecom infrastructure applications, the GaN-on-Si device market is growing at a CAGR of
86% from less than USD 5 million in 2020 to USD 173 million in 2026 [6], as illustrated in
Figure 8.
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2. Wide Bandgap Semiconductors for Power Devices

Due to the many constraints of silicon-based power devices and the rising interest in
increasing performances, new semiconductor materials for next-generation power elec-
tronic devices are being developed. Because of their better electrical properties, wide
bandgap (WBG) semiconductors like GaN, β-Ga2O3, and SiC have emerged as market
leaders in power electronic applications. Since the material’s small bandgap is responsible
for many of the constraints for Si-based devices, wide bandgap power devices have a better
performance with a larger blocking voltage, dependability, and efficiency with less thermal
constraint [7–9]. Thus, GaN, β-Ga2O3, and SiC have a bandgap which is two to four times
that of Silicon. A bigger energy bandgap makes it more challenging to break the bonding
and generate free charge carriers for a current conduction, which results in a less conductive
material and transistors with lower leakage currents and a more excellent stability at high
temperatures. On the contrary, β-Ga2O3 devices have a substantially greater breakdown
voltage compared to Si devices when their on-resistances are comparable. Moreover, GaN
devices have a larger saturation on-current than Si devices due to the higher saturated
electron velocity of GaN. Additionally, the carrier drift velocity directly connects with the
switching speed of semiconductor devices, and this device has a quicker recovery time and
a lower reverse recovery current. On the other hand, SiC presents a thermal conductivity
three times higher than Si and GaN and 16 times higher than β-Ga2O3. The characteristics
of Si are compared to those of WBG semiconductors such as SiC, β-Ga2O3, and GaN in
Figure 9 [10–12].
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However, numerous figures of merit (FOM) have been proposed to compare the merit
of several semiconductor materials for a provided application. A higher figure of merit
number indicates a better performance. Hence, Johnson’s figure of merit (JFOM) provides
an indication of the material suitability for high-power applications at high frequencies,
which can be estimated by using Equation (1) [13]:

JFOM = (
EcVsat

2π
)

2
(1)

Here, Vsat denotes the saturation electron velocity, and Ec denotes the critical electric
field. On the contrary, to analyze the optimum results of field effect transistors in low-
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frequency power switching applications, Baliga’s figure of merit (BFOM) was devised
where conductive loss predominates, as shown in Equation (2) [14]:

BFOM = εrµEg
3 (2)

Here, εr denotes the semiconductor’s dielectric constant, and µ denotes the electron
mobility. For a high frequency, the Baliga high-frequency FOM (BHFOM) in Equation (3)
evaluates the devices where the switching losses are the most significant [14]:

BHFFOM =
µEc

2Vg
1
2

2VBR
3
2

(3)

Here, the gate drive voltage is Vg, while the breakdown voltage is VBR. By using
the device’s on-state specific resistance, Ron, and the critical electric field, Ec, the latter
is coupled to an experimental figure of merit on Equation (4). Eventually, to account for
the high power, high temperature, and high-frequency performance simultaneously, the
combined FOM (CFOM) was devised, as shown in Equation (5) [15]:

FOM =
VBR

2

Ron
= εrµ

Ec
3

4
(4)

CFOM = χεrµVsatEc
2 (5)

Table 1 shows the multiple figures of merit for the β-Ga2O3 potential high-frequency
and high-power performance compared to other competing semiconductor materials.
According to this table, β-Ga2O3 is a great contender for high-frequency power applications.
In JFOM, the β-Ga2O3 is more remarkable than approximately 1.5 times that of GaN,
10 times that of SiC, and about a thousand times that of Si. Consequently, β-Ga2O3
outperforms Si, GaN, and SiC in terms of its high-frequency/high-power performance.
Similarly, in BFOM, β-Ga2O3 is more remarkable than around four times that of GaN,
ten times that of SiC, and a thousand times that of Si [16]. Moreover, wide-bandgap
semiconductors, regardless of their FOM, provide better performance features for high-
power, high-frequency applications. Thus, due to the high values of the Baliga FOM and the
breakdown field, β-Ga2O3 is a promising candidate for the next generation of high-power
devices, including HEMT, Schottky barrier diodes (SBDs), and field-effect transistors (FETs).

Table 1. Figures of merit of GaN and competing semiconductor materials in power electronics [12].

Material Johnson’s Figure
of Merit, (JFOM)

Keyes Figure of
Merit, (KFOM)

Baliga’s Figure of
Merit, (BFOM)

Baliga’s High
Frequency Figure

of Merit,
(BHFFOM)

Combined Figure
of Merit, (CFOM)

Si 1.0 1.0 1.0 1.0 1.0
SiC 277.8 3.6 317.1 46.3 248.6

GaN 1089.0 1.8 846.0 100.8 353.8
β-Ga2O3 2844.4 0.2 3214.1 142.2 37.0

2.1. Lattice Structure and Polarization of GaN-Based Semiconductors

Wurtzite hexagonal close-packed (HCP) (α-phase), rock-salt, and cubic zincblende
(β-phase) are examples of III-N-based semiconductors, mainly GaN-based semiconduc-
tors [17,18]. Figure 10 depicts the wurtzite crystal structure, which is particularly important
for electronics and optoelectronics applications today. The hexagonal unit cell of wurtzite
comprises two intersecting hexagonal close packed (HCP) sub-lattices. As illustrated in
Figure 10, it is defined by two lattice parameters, the height of the cell c0, and the length of

a side of the hexagonal base a0, in an ideal ratio c0
a0

=
√

8
3 ≈ 1.633. Each sub-lattice is made
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up of one kind of atom. In relation to one another, the internal cell parameter u0 = 3/8
moves them along the c-axis. Table 2 presents the structural and polarization properties
of III-Ns.

Table 2. Structural and polarization parameters of III-N wurtzite semiconductors [17].

Parameter GaN AlN InN

a0(A◦) 3.197 3.108 3.580
c0/a0 1.6297 1.6033 1.6180

ε1 = (u0 − uideal) × 10−3 1.9 6.4 3.7

These ideal values are absent in the typical nitride compounds GaN, InN, and AlN
and their associated alloys. The c0/a0 ratio deviates from the ideal lattice’s 1.633 as the
non-ideality of the lattice grows [19].
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Because of the very high electronegativity of the N atom, which is 3.04 on Pauling’s
scale, and for Aluminum (1.61), Gallium (1.81), and Indium (1.78) atoms [19], consequently,
the data for u0 and c0/a0 deviate from the optimum values given earlier [21]. Group III-N
semiconductors have a particularly high polarization due to the crystal structure’s intrinsic
electronic charge redistribution, which means a spontaneous polarization, Psp, [19]. The
directions <0001> and <0001> are not comparable due to a lack of inversion symmetry
shown along its c-axis in the wurtzite structure. Hence, cation-face, i.e., Ga-face and anion-
face, i.e., N-face, are the alternative polarities of GaN. The polarization field points change
their position in the cation-face, i.e., Ga-face, surface towards the substrate. On the contrary,
the polarization field points move in the opposite direction in the anion-face, i.e., N-face.

Because of the lack of this inversion symmetry, when the group III-N semiconductors’
lattice is imposed by stress in the <0001> direction, the ideal lattice values of the crystal
structure’s c0 and a0 will shift to adapt to the stress. As a result, the strength of the
polarization would shift. In the strained group III-N crystals, this extra polarization is
known as piezoelectric polarization, Ppz [22]. For instance, the in-plane constant of the
lattice a0 would drop, and the vertical constant of the lattice c0 would rise if the crystal of
the nitride is subjected towards a biaxial compressive stress. Due to the piezoelectric and
spontaneous polarizations working in opposing directions, the ratio of c0/a0 will climb
to 1.633 of the perfect lattices, and the overall polarization strength will be reduced in the
crystal. Moreover, when the tensile stress is imposed on the crystal, the spontaneous and
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piezoelectric polarization work simultaneously. As a result, the total polarization will rise.
The piezoelectric coefficients e33 and e13 are evaluated for the piezoelectric polarization,
Ppz [23,24], as shown in Equation (6),

Ppz = e33ε3 + e13 (ε1 + ε2 ) (6)

Here, a0 and c0 are the lattice parameter equilibrium values, ε3 = (c − c0)/c0 is the
strain along the c axis, and ε1 = ε2 = (a − a0)/a0 is the isotropic in-plane strain. The various
strains in the lattice are connected in Equation (7). The elastic constants denoted by c13 and
c33. Combining Equations (1) and (2) provides the corresponding formula in Equation (8):

ε3 = −2
c13

c33
ε1 (7)

Ppz = 2
a− a0

a0

[
e13 − e33

c13

c33

]
(8)

The equation
(

e13 − e33
c13
c33

)
will be negative if e33, c13, and c33 are positive, and the

piezoelectric coefficient e13 is negative in wurtzite III-nitrides [25]. Thus, it is claimed
that piezoelectric and spontaneous polarization are parallel under tensile stress layers, but
they are anti-parallel under compressive stress layers. Polarization and gradients induce
fixed sheet charges at the surfaces and interfaces of the AlGaN/GaN heterostructures.
As a result, there are high electric fields within the heterostructure. The electric field in
nitrides may approach 3 × 106 V/cm, which enhances the hole or electron formation at the
AlGaN/GaN contacts. This is called polarization-induced doping, which is the root of the
two-dimensional electrons gas (2DEG) (discussed more in the below segment).

Figure 11a shows that growing a tiny epi AlGaN layer on top of a thicker GaN layer
generates an AlGaN/GaN heterostructure. A 2DEG is generated at the interface between
the AlGaN barrier and the GaN channel because of the Psp and Ppz, which may be a
conduction channel consisting of exceptionally high mobility electrons even without any
n-type doping, which is ideal for transistors. Both GaN and AlGaN have a significant
Psp. When the material is strained, a Ppz component develops in GaN, AlN, or AlGaN.
The piezoelectric polarization arises in the thin layer of AlGaN because it is beneath the
tensile strain. In contrast, the layer of GaN is considerably thicker and nearly relaxed in an
AlGaN/GaN heterostructure. Psp and Ppz are parallel when the AlGaN layer is under a
tensile strain (Figure 11a) [23]. So, to acquire the AlGaN characteristics and determine the
actual polarization-induced charge densities, we apply Equations (9) through to (14) [26].

Similarly, 2DEG is generated at the interface between the AlN barrier and the GaN
channel for the reason of the Psp and Ppz, as illustrated in Figure 11b. However, due to
the large difference in the spontaneous and piezoelectric polarizations between the GaN
and AlN layers, the 2DEG, which forms near the AlN/GaN interface, can reach over
3 × 1013 cm−2 for an extremely thin AlN barrier layer thickness (d < 5 nm), along with
a high mobility (>1000 cm2/V·s) and a very low sheet resistance (Rsh < 150 Ω/�) [27].
On the contrary, due to the high aluminum content and the associated degree of bond
polarity, a spontaneous polarization in in the In0.18Al0.82N/GaN heterostructures generates
two-dimensional electrons gas (2DEG) densities which are competitive with AlGaN/GaN
structures without the need for a strain-induced piezoelectric component. For InAlN alloys,
the strain state can go from tensile when the In % is lower than ~18%, to compressive
when the In % is higher than ~18%, as shown in Figure 11c ((1), (2)), respectively; when
the InAlN is the lattice matched to the GaN buffer, the In % is around 18%. Moreover, the
implementation of the InAlN barriers with the In % around 18% allows for the strain to
be controlled in the InAlN/GaN heterostructure, and a lattice-matched In0.18Al0.82N layer
to the GaN sheet charge density is almost three times higher than for the conventionally
grown Al0.25Ga0.75N barriers on the GaN channels [28].
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Spontaneous polarization can be observed in Equation (9). As an alternative, for a
precise interpolation, a bowing parameter b might be utilized in Equation (10) [29]. The
constants of the lattice for AlxGa1-xN are in Equations (11) and (12) where x = Al mole
fraction. The elastic constants are presented in Equations (13) and (14).

Psp(x) = (−0.052x− 0.029)
c

m2 (9)

Psp(x) = (
(
xPsp(AIN) + (1− x)Psp(GaN) + bx(1− x)

)
(10)

a0 (x) = (−0.077x + 3.189)× 10−10 m (11)

c0 (x) = (−0.203x + 5.189)× 10−10 m (12)

c13 (x) = (5x + 103) GPa (13)

c33 (x) = (−32x + 405) GPa (14)

The above equations indicate that if the Al content in the AlGaN layer rises, the overall
polarization will soar. A polarization charge density (ρp) corresponds to a polarization
gradient (P) in space (ρp = ∇P). Therefore, at the AlGaN/GaN abrupt contact, a fixed
polarization charge would be induced. In the case of AlGaN/GaN, fixed positive induced
polarization charges form at the interface. Even without n-type doping, the positive
polarization-induced charges at the interface of AlGaN/GaN attract the free electrons.
Because of this, in the AlGaN/GaN interface, 2DEG is generated. The carrier density of
2DEG may also be estimated analytically by using polarization [30].

The 2DEG creation is explained in a few Figures. Thus, in the undoped AlGaN/GaN
heterojunction, the 2DEG creation may be described on the AlGaN surface by introducing
donor states. An the isolated AlGaN material energy band gap is depicted in Figure 12
with the presence of surface donor states. The isolated AlGaN material is believed to be
free of compressive/tensile forces. The Fermi level is attained if the density of the AlGaN
material is enough. So, the electrons are advanced to the conduction band and drawn
to the other side by polarization-induced electric fields after the Fermi level exceeds the
donor state-level ES. The Fermi level causes the dropping of the electrons into the GaN side
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when the AlGaN and GaN materials come into contact. The 2DEG results from a buildup
of electrons at the interface, as displayed in Figure 13. Thus, combined with the ionized
surface donor, it produces an electric field that points between the interface and the surface
in the AlGaN layer to minimize the polarization field [31].
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Figure 13. In the 2DEG quantum well, the buildup of electrons is shown in the energy band of an
undoped AlGaN/GaN heterojunction. Reproduced with permission from Chin. Phys. B. [31].

As noted previously, the creation of 2DEG occurs naturally at the interface when a
tiny strained AlGaN layer is developed on top of a thicker relaxed GaN layer. Due to the
confinement of high mobility electrons, this 2DEG exhibits very conductively in the quan-
tum well. Because of the reduced surface scattering, the electron mobility rises between
the unstrained GaN and 2DEG areas at roughly 1000 cm2/V·s and 1500–2000 cm2/V·s,
respectively. For HEMTs, a transistor channel with a higher mobility and electron con-
centration seems appropriate. Figure 14 depicts a basic AlGaN/GaN HEMT design. The
substrates are mostly SiC, silicon, sapphire, or GaN, and a buffer layer is formed to relieve
the strain induced by a foreign substrate’s lattice mismatch. The 2DEG creates a native
channel between the source and drain of the device.. In most early AlGaN/GaN transis-
tors, a Schottky gate electrode is formed by the deposition of Ni/Au or Pt metal on top
of the AlGaN layer [32]. The GaN HEMT, with the 2DEG present at the interface of the
AlGaN/GaN, was first shown in early 1993 [33]. The channel is regulated by supplying
a gate voltage (VGS) and, therefore, a vertical electrical field to deplete or augment the
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channel, making it less conductive in the off-state or more conductive in the on-state. Later,
researchers from all over the globe have progressively reported high-performance GaN
HEMTs for high-power and RF applications [34,35].
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Figure 14. AlGaN/GaN HEMT layout and 2DEG generated in AlGaN/GaN contact are shown by
the dashed line.

As said previously, when no bias voltage is applied from the gate to the source at
the AlGaN/GaN interface, i.e., VGS = 0 V, the 2DEG channel exists. This kind of HEMT
is known as a normally-on HEMT or a depletion-mode (D-mode) HEMT. It signifies that
a current may freely flow between the source and the drain. It also indicates that the
AlGaN/GaN HEMT’s threshold voltage (VTH) is less than 0 V, requiring a VGS to deplete
the 2DEG and switch off the HEMT, as shown in Figure 15. Meanwhile, this feature is also
one of the primary problems for the state-of-the-art AlGaN/GaN HEMTs utilized in higher
current and power applications [36]. It has several practical limitations, including a high
consumption, possible electrical safety risk, intrinsic fail-safe functioning, and complex
circuit layout [32,36]. As a result, a normally-off operation, or an enhance-mode (E-mode)
HEMT, is needed due to a high and positive threshold voltage (VTH).
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0 > VTH > VGS.
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2.2. Lateral and Vertical GaN Power Transistors

Power transistors based on GaN are considered for two types of design: lateral and
vertical structures. The lateral structure of the GaN HEMT is illustrated in Figure 16,
where 2DEG formed at the AlGaN/GaN heterostructure interface. A high electron mobility
(2000 cm2/Vs) and electron velocity (1.3× 107 cm/s saturation velocity and 2.5× 107 cm/s
peak velocity) characterize the AlGaN/GaN structure. Furthermore, due to a significant
spontaneous and piezoelectric polarization, the GaN HEMT structure exhibits a density
of sheet carriers over 1 × 1013 cm−2 in III-nitride materials. GaN HEMTs have a low on-
resistance because of the device’s carrier density and high electron mobility. This structure
is discussed deeply in the normally-off GaN HEMT section.
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Similarly, the vertical layout is beneficial for obtaining a high breakdown voltage
and low on-resistance characteristics, as displayed in the current aperture vertical electron
transistor (CAVET) in Figure 17 [36]. Here, the drain at the bottom, the gate, and the source
are on the top of the structure. The gate controls the current via an aperture among the
current blocking layers (CBLs) into the drain, where vast amounts of material flow, which
is commonly produced by an isolation implantation or P-type doping of the GaN layer.
The AlGaN/GaN layer’s horizontal high mobility electron channel is combined with a
thick GaN drift region to obtain a low RON and a high breakdown voltage. Compared
to the lateral designs, vertical devices into the bulk material of the device maintain the
blocking voltage in the vertical direction, resulting in a lower chip area for a particular
operation current.
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3. Normally on and off GaN HEMT Power Device Structure
3.1. GaN HEMT Technology (Normally on)

When the AlGaN/GaN HEMT structure is normally on, it is known as the depletion-
mode (D-mode) structure. Figure 18 illustrates one of the examples of it. Where the buffer
layer (1–5 µm) is deposited on the substrate for compensating the lattice mismatch stress,
after that, to form a heterojunction, the GaN (UID) layer, AlN layer (0.7–1.2 nm), and
AlxGaN1-xN barrier (15–30 nm) layer is deposited. The thickness and Al molar fraction x of
the AlxGaN1-xN (usually 0.15 to 0.4) varies to maintain the number of acceptable electric
charges under the relaxation’s critical thickness [37]. The heterojunction’s energy bands are
bent downward to produce a quantum well with a sharp, where electrons of a high intensity
are confined at the interface of AlGaN/GaN due to a bandgap offset and the polarization
impact of AlGaN/GaN [38]. Then, the 2DEG channel generates the high-density current
from the Ohmic-contact source to the drain [39]. Consequently, a Schottky gate is needed
for the pinching off the 2DEG channel, which is normally on. When sufficient negative
voltages are applied to the devise gate, the height of the Schottky barrier increases, allowing
for the conduction band to pass through the AlGaN barrier’s gate region; thereby, the
HEMT is turned off. Eventually, for the device surface protection, passivating layers (often
SiO2 or SiNx) are required [40–42].
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3.2. GaN HEMT Technology (Normally off)

In the field of power conversion, a negative bias is required to turn off the devices,
which is the major issue for the normally-on devices. On the contrary, a normally off
operation is widely wanted for safety reasons. Consequently, academia and industry
(e.g., Gan Systems, Infineon, Panasonic, STMicroelectronics, and On Semiconductors) are
working to create and market dependable normally-off HEMTs [43]. Thus, the threshold
voltage VTH in AlGaN/GaN HEMT is determined by numerous variables relating to the
heterojunction and gate metal characteristics, shown in Equation (15) [44]:

VTH(x) = ϕB(x)− ∆EC(x)−
σ(x)

ε0εAlGaN(x)
t−

qND
2ε0εAlGaN(x)

(t)2 (15)

where between the gate metal and the AlGaN barrier layer, ϕB(x) denotes the Schottky
barrier height, σ(x) denotes the polarization charge at the interface of the AlGaN/GaN,
∆EC(x) denotes the conduction band discontinuity at the interface of the AlGaN/GaN,
εAlGaN(x) denotes the AlGaN layer permittivity, ε0 denotes the permittivity vacuum, t
denotes the AlGaN thickness, ND denotes the doping, q denotes the electric charge, and x
denotes the Al content in the barrier layer. As ns increases at a zero bias, more significant
polarization discrepancies between the AlGaN and GaN and thicker AlGaN barriers result
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in a more negative VTH. Hence, it is clear from the equation that the AlGaN barrier layer or
modifying Schottky barrier height relies on the thickness and Al content to tune the VTH.
Therefore, various approaches have been suggested for obtaining the normally-off GaN
HEMTs: the (a) cascode configuration, (b) fluorine implantation and thin/ultrathin-barrier,
(c) p-GaN Gate, and (d) recessed gate.

3.2.1. HEMTs with Cascode Configuration (Normally off)

Figure 19 reflects a cascode setup of high-voltage normally-on GaN HEMTs and low-
voltage normally-off Si MOSFETs [45,46]. When the VTH of a Si MOSFET less than the
positive gate-to-drain voltage is applied to the system, the GaN HEMT’s gate-source voltage
is 0 V; as a result, the opening of a GaN HEMT is normally on. By contrast, deactivating the
Si MOSFET results in the GaN HEMT having a significant negative gate to source voltage,
thus, the 2DEG channel is pinching off. Evidently, the cascode setup generates a positive
VTH for regulating the GaN HEMT switch that is normally on. Additionally, normally-
off GaN HEMTs with the cascode design are commercially available at 600 V [43,45].
However, the parasitic effects of the packing and the high-temperature stability of the
Si MOSFETs remain significant disadvantages [47,48]. If the GaN HEMT has a relatively
high on-resistance compared to the Si MOSFET, the “cascode” configuration performs well
at that time. In fact, since the on-resistance increases with the rated breakdown voltage,
the “cascode” approach is advantageous when the normally on GaN HEMT is one of a
high-voltage, and the Si MOSFET is low-voltage [49]. As an illustration, the Si MOSFET
will provide just a 3% on-resistance to a 600 V GaN HEMT “cascode”. On the contrary, for
a lower targeted breakdown, the on-resistance of the GaN HEMT decreases; thus, the Si
MOSFETs contribution becomes significant. Hence, the “cascode” approach is practically
advantageous for applications above 200 V [49].
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3.2.2. HEMTs with Fluorine Implantation and Thin/Ultrathin Barrier (Normally off)

Figure 20a shows an alternative method of performing the normally-off operation
to avoid the dry etching, which could cause damage to the device operation. Due to
their considerable electron-negativity, fluorine given by the ion implantation and in the
AlGaN layers may easily boost the AlGaN barrier electron potential and empty the 2DEG
channel [50]. Likewise, by adjusting the height of the AlGaN conduction band, the 2DEG
can be depleted by a GaN HEMT design with a thin/ultrathin barrier [51,52], as displayed
in Figure 20b. When the AlGaN barrier thickness falls below a critical value, the VTH
shifts to a negative bias in the recessed-gate configuration. However, in various application
issues, like for fluorine gates, the injection method must be repeatable, and for thin barrier
HEMT designs, the output current is low, restricting these two devices [51,53].
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3.2.3. HEMTs with p-GaN Gate (Normally off)

A p-GaN (or p-AlGaN) layer is applied to the AlGaN/GaN heterostructure at the
gate region. As illustrated in Figure 21, it is probably the most promising technique to
accomplish a normally-off operation [54–56]. In fact, it is presently the only commercially
available normally-off GaN HEMT technology. GaN HEMTs of this sort have received
much attention from the scientific community and the industry. The p-GaN gate HEMTs
working principle is generally represented in Figure 22. The AlGaN conduction band is
elevated by the p-GaN cap layer on the AlGaN, resulting in 2DEG depletion. Hence, it is
possible to obtain the device’s normally-off mode [57]. Earlier, Uemoto et al. [55] proposed
a GaN HEMT with a p-AlGaN gate that is normally off, with a VTH of 1.0 V and a BVDSS of
800 V.
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The characteristics of the AlGaN/GaN heterostructure should be specified appropri-
ately to enable an effective depletion of the 2DEG and a high VTH (VTH > 0) [48–60]. The
layer thickness of the AlGaN barrier is usually between 10 and 15 nm, whereas the content
of Al is between 15 and 25%. For the effective depletion of 2DEG, a high amount of doping
in the p-GaN layer (>1018 cm−3) is frequently needed [61]. In this regard, increasing the Mg
electrical activation is one of the most critical factors in improving the threshold voltage
VTH of the p-GaN layer for a specific Mg concentration. Adequate growth parameters
for the p-GaN layer and annealing conditions may achieve the latter goal [62,63]. On the
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contrary, because of the high energy of ionization (in the range from 150 to 200 m eV)
of Mg as a p-type dopant, i.e., an acceptor, obtaining a high activation of Mg in p-GaN
is problematic [64,65]. In most cases, an acceptor concentration of 2–−5 × 1019 cm−3

is employed, roughly two orders of magnitude more than the concentration of holes. A
greater Mg concentration in p-GaN might cause the layer’s crystalline quality to deteriorate,
reducing the electrically active acceptors [66,67]. As a result, in the p-GaN gate HEMTs,
getting a high VTH is difficult. Earlier, a Pd-based Ohmic gate was implemented on the
cap layer of p-AlGaN, which improved the device’s hole injection and current capabilities.
Therefore, the transistor was also known as a “gate injection transistor” (GIT) [55]. The
GaN–GIT structure was modified to a hybrid drain-embedded GIT (HD-GIT) by Kaneko
et al. [68] The Panasonic group contains a p-doped GaN area adjacent to the ohmic drain.
The injected holes discharge the trapped electrons near the drain edge in the off-state from
the p-GaN layer, which helps prevent the current collapse. Compared to the standard
GIT structure, this new modification boosts the breakdown voltage to 850 V with a slight
increase in the device’s leakage current and the on-resistance of 2.6 mΩ·cm2.Crystals 2022, 12, x FOR PEER REVIEW 20 of 45 
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In contrast, the metal/p-GaN/AlGaN/GaN system TCAD simulations indicate that on
the p-GaN, a Schottky metal gate must have a higher VTH and less leakage than an Ohmic
gate [55,63,64]. In the on-state, Meneghini et al. [60] demonstrated that a Schottky gate
based on WSiN to the p-GaN rather than a typical Ni/Au Ohmic contact could improve
the gate voltage swing of a transistor and lower the gate leakage current by roughly four
orders of magnitude. Generally, the continuous power consumption of GaN HEMTs is due
to the gate leakage and heat generation in the gate driver. The lack of a considerable gate
side current injection due to the significant Schottky barrier is thus essential for HEMTs
with a p-GaN gate for a decreased power consumption. Because of this, on the p-GaN, the
Schottky gate is preferable over the Ohmic gate solution nowadays. Furthermore, several
data from the literature are shown in Table 3, where some metals have been used in the
Schottky gate contact to the p-GaN. Subsequently, because of its thermal and chemical
durability and processing compatibility, adopting a TiN gate is now a good choice [69].
Eventually, several device and reliability difficulties still need to be investigated further,
such as the low VTH, high gate leakage currents, the poor gate BV, and the influence of
fabrication techniques on the device’s performance [57,70].
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Table 3. Survey of literature data on different Schottky Contact.

Matel Gate Doping ndop and p-GaN Thickness T VTH (V) RON (Ω·mm) Ref

Ti (40 nm)/Au (100 nm) ndop = 4 × 1019 cm−3, T = 100 nm 1.82 11.9 [71]
Ti (25 nm)/Au (120 nm) ndop = 1 × 1018 cm−3, T = 70 nm 3 13.9 [72]

Ni/Au ndop = 3.5 × 1018 cm−3, T = 50 nm 1.5 8 [73]
Ti (50 nm)/Au (150 nm) N/A, T = 70 nm 1.2 N/A [74]
Ni (20 nm)/Au (200 nm) ndop = 5 × 1019 cm−3, T = 100 nm 1.5 N/A [75]
Ni (25 nm)/Au (200 nm) ndop = 1 × 1018 cm−3, T = 60 nm 1.7–2.1 5.65 & 5.05 [76]

Ni/Au ndop = 3 × 1019 cm−3, T = 85 nm 1.5 29.5 [77]
Ni (25 nm)/Au (120 nm) N/A, T = 100 nm 1.5 20 [78]

Ni/Au ndop = 4 × 1019 cm−3, T = 70 nm 1.02 15.4 [79]
Ni (15 nm)/Au (280 nm) ndop = 4 × 1019 cm−3, T = 70 nm 2.2 43.6 [80]

Ti/Au ndop = 4 × 1019 cm−3, T = 85 nm 2.1 21 [81]
TiN ndop = 3 × 1019 cm−3, T = 80 nm 1.6 17.8 [82]
W ndop = 1 × 1019 cm−3, T = 75 nm 2.1 49 [83]

TiN N/A, T = 60 nm 2.1 15 [62]
Pd ndop = 3 × 1019 cm −3, T = 100 nm 1.7 8.5 [84]

Mo (100 nm)/Ni (20 nm) ndop = 3 × 1019 cm −3, T = 80 nm 1.08 10.7 [85]
W ndop = 1 × 1019 cm −3, T = 75 nm 1.6 26.5 [86]

Ti (25 nm)/Au (120 nm) N/A, T = 75 nm 3.2 & 1.8 16 [87]
Ti (45 nm)/Au (200 nm) ndop = 2 × 1018 cm−3 & 2 × 1019 cm−3, T = 50 nm 1.30 & 1.45 9.66 & 9.51 [88]

Ti/Au/Ni ndop = 4 × 1017 cm−3, T = 50 nm 1.5 N/A [89]

3.2.4. HEMTs with Recessed Gate (Normally off)

This method reduces the layer thickness of the AlGaN barrier under the gate via a
plasma etching, which is the last option offered for achieving an HEMT (normally off) [90].
Because the leakage current of the gate is caused by a tunneling phenomenon that is
very sensitive to the barrier layer thickness and uniformity, this approach necessitates
a perfect control of the AlGaN etching process. Furthermore, etching-induced damage
might increase the leakage current of the gate and non-uniformity effects in VTH [91].
Additionally, there are two types of gates recessed available such as the slight MIS-HEMT
of the recessed-gate design underneath the gate dielectric, a thin AlGaN barrier, and the
complete MIS-FET of the recessed-gate design, known as a MOS-HFET hybrid, as shown
in Figure 23a,b [92,93].
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Standard MIS-FETs may obtain an E-mode performance by entirely eliminating the
AlGaN barrier layer underneath the gate, resulting in the device turning off at a zero gate
voltage. Whenever the positive voltage of the gate exceeds VTH, an accumulation layer
of an electron forms at the interface of the gates, which operates the devices’ conductive
channel and is switched on. It has benefited from a high threshold voltage (VTH) but suffers
from a decrease in the channel mobility (µFE) due to rough surfaces in the recessed region
and electrically active faults in the MIS structure. In addition, a poor channel mobility will
raise the device on-resistance (RON) and system power consumption. Therefore, a slight
MIS-HEMT of the recessed-gate has been offered to improve the device’s channel mobility
(µFE) and decline its on-resistance (RON), where the thin layer of the AlGaN barrier will
hinder the 2DEG channel from the MIS interface. As a result, the channel mobility (µFE)
increased and reduced the on-resistance (RON) [94]. Thus, the channel mobility (µFE) was
defined as Equation (16):

µFE =
Lg

WCoxVDS

(
∂IDS

∂VGS

)
(16)

Here, Lg and W donate the channel length and width, while Cox donates the gate
insulator capacitance per unit area. Moreover, Fiorenza et al. [95] have evaluated in
MISHEMTs of the recessed gate the field-effect mobility by using gate insulator SiO2
with several variables (the roughness of the surface, the temperature, the field of electric,
the quality of the dielectric, and so on). This study demonstrated in the insulator/GaN
system the necessity of reducing the interface state density to enhance the field effect’s
mobility and decrease the precise on-resistance. Eventually, these two recessed gates
improved the threshold voltage, device performance, channel mobility, the reliability of
the device, and overcame the gate leakage issue [96–98]. Additionally, the gate dielectric
for the gate recessed depends on several characteristics, such as the permittivity, the (Al)
GaN band offset, the bandgap, and the insulator chemical stability [38,94,95]. Especially
for power-switching devices, a wide bandgap material is also significant. The (Al) GaN
band offsets are required to reduce the gate leakage currents appropriately, even while
operating the forward gate bias. On the contrary, a high permittivity value is advantageous
for obtaining high transconductances [43]. In the case of MIS-HEMTs, the capacitive
contribution of the gate dielectric is minimized by a high permittivity dielectric, facilitating a
stronger connection between the 2DEG channel and the gate and therefore maintaining high
transconductances, which is especially important for RF devices. In addition, compared to
Schottky gate HEMTs, the high permittivity materials may limit the changing of the values
of the threshold voltage from positive to negative of normally-on MIS-HEMTs, which helps
lower the static power usage and improve the performance and the energy efficiency of the
device [99].

In GaN-based insulated-gate transistors, Figure 24 demonstrates the bandgap-permittivity
connection for nitride compounds and the insulators for different gate dielectrics [38,95,96].
Figure 25a illustrates that Robertson et al. [100] calculated the insulators on the GaN band
offsets; they were the first to forecast the band alignment of the GaN and the insulators
using charge neutrality levels (ECNL) calculations. Figure 25b shows the dielectrics on the
Al0.3Ga0.7N band offsets recently obtained by Reddy et al. [101] using the same approach.
As a gate dielectric, SiO2 on AlGaN/GaN MIS-HEMTs was first implemented by Khan
et al. [102] and they noticed that it enhances the gate voltage swing capabilities and controls
the leakage currents in the gates for its attractive characteristic-like large band offset to
(Al)GaN, the chemical stability, and the large bandgap.
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Figure 25. Various dielectric materials regarding (a) GaN [100] and (b) Al0.3Ga0.7N [101] have
different valence and conduction band offsets (∆EV and ∆ EC).

In contrast, for MIS gate designs utilizing dielectrics such as Ga2O3, SiNx, because of its
small conduction band offsets, resulted in large gate leakage currents [103–105]. Likewise,
the minor AlN and (Al)GaN lattice mismatch has been shown in a few investigations,
whereby it is appropriate for the gate insulator and passivation layer [106,107]. Moreover,
numerous high-permittivity dielectrics have been used in the MIS gate architectures of
GaN HEMTs [108], including HfO2, ZrO2, Ta2O5, La2O3, CeO2, and TiO2 [109–111]. Thus,
Table 4 represents the data gathered from the literature study of normally-off HEMTs with
a recessed gate where several types of gate insulators (SiN, SiO2, Al2O3, and processing
(PECVD, LPCVD)) are shown.
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Table 4. Survey literature data on difference types of gate insulators and processes.

Gate Insulator Insulator Processing µFE
(cm2·V−1·S−1) VTH(V) RON (Ω·mm) On/off Ratio Gm

(mS/mm) Ref

SiN(30 nm)/
SiO2 (3 nm)

SiO2ALD + post
annealing at 890 °C in N2
+ SiN LPCVD at 665 °C

116 2.4 15.9 Ω·mm at
VGS = 12 V 6 × 108 52 [112]

SiN(100 nm and 300 nm)/
ZrO2(23 nm)

SiN PECVD + ZrO2 ALD
at 200 °C 850 2.19 9.2 Ω·mm at

VGS = 8 V ~109 135 [113]

SiO2 (50 nm)
PECVD + post annealing

at 850 ◦C in N2
110 0.7 N/A N/A N/A [95]

Al2O3 (25 nm) ALD + TMA and ozone N/A 5 12.9 Ω·mm at
VGS = 19.7 V N/A 44 [114]

HfO2 (13 nm) ALD+ ozone 1482 3.1 6.0 Ω·mm at
VGS = 8 V 105 N/A [115]

Al2O3 (15 nm) ALD+ ozone 1991 2.6 5.5 Ω·mm at
VGS = 8 V 105 N/A [115]

SiN (2 nm)/
SiN (15 nm)

LT- PECVD at 850 ◦C +
HT-LPCVD at 780 ◦C 160 2.37 13.2 Ω·mm at

VGS = 15 V N/A 17 [116]

SiN (15 nm) HT-LPCVD at 780 ◦C 38 1.28 20 Ω·mm at
VGS = 15 V N/A 2 [116]

TiO2(3.4 nm) Thermal oxidation 1270 4.2 N/A 2.3 × 108 N/A [110]

Al2O3 (25 nm)
ALD + post annealing at

830 °C in N2
2033 2.5 6.8 Ω·mm at

VGS = 12 V 108 92 [117]

SiN (20 nm)

LPCVD on
photo-electrochemical

recess
49 0.8 26 Ω·mm at

VGS = 15 V N/A 2 [118]

SiN (15 nm) SiN LPCVD at 780 ◦C 141 1.3 12 Ω·mm at
VGS = 15 V N/A 13 [118]

SiN (30 nm)/
AIN (5 nm)

AIN PEALD + SiN
LPCVD 198.80 6.28 11.62 Ω·mm at

VGS = 15 V 108 85.75 [119]

HfO2 (20 nm)
ALD + post annealing at

600 °C in N2
N/A 2.5 3.8 Ω·mm at

VGS = 6.5 V 2.1×109 81.38 [120]

Al2O3 (30 nm)
ALD + post annealing at

850 °C in N2
1602 2.6 10.2 Ω·mm at

VGS = 10 V N/A 58 [121]

AIN (7 nm)/
SiN (7 nm)

MOCVD 180 1.2 N/A (5–−6) × 108 60 [122]

Al2O3 (4 nm)
ALD + post annealing at

900 °C in O2
1450 1.55 7.1 Ω·mm at

VGS = 12 V N/A 54 [123]

SiNx (20 nm)/
SiON (10 nm)

SiON PECVD at 350 ◦C in
SiH4, NH3, N2O, and N2

atmospheres + SiNx
LPCVD at 780 ◦C with an

ammonia flow of 280
sccm, a SiH2Cl2 flow of

70 sccm.

1793 0.81 31.2 Ω·mm at
VGS = 12 V N/A N/A [124]

Al2O3 (18 nm)
ALD + post annealing at

400 °C in N2
65 7.6 19.5 Ω·mm at

VGS = 14 V N/A N/A [125]

Al2O3 (30 nm)
ALD + post annealing at

850 °C in N2
1670 0.53 24.4 Ω·mm at

VGS = 10 V ~108 42 [126]

Al2O3 (5 nm)/
SiN (7 nm)

SiN LPCVD at 780 °C 122 1.7 12.9 Ω·mm at
VGS = 18 V ~108 53 [127]

NiOx(100 nm) Sputtering N/A 0.45 9.42 Ω·mm at
VGS = 4 V 108 ~75 [128]

SiO2 (20 nm)
ALD + post annealing at

780 °C 1700 1.56 7.4 Ω·mm at
VGS = 6 V 1010 190 [129]

Al2O3 (20 nm)
ALD + post annealing at

900 °C in N2
245 5 N/A at VGS =

12 V 1010 19 [130]

Si3N4 (10 nm)/TiO2 (20 nm) SiN PECVD + TiO2 ALD 1200 1.81 43.81 Ω·mm at
VGS = 10 V N/A 112 [131]

Subsequently, the AlGaN thickness is another important factor for the threshold
voltage (VTH). Medjdoub et al. [132] had shown the relation between the AlGaN thickness
with a threshold voltage. From Figure 26a, notice that if the AlGaN thickness (tRA) reduces,
the VTH increases. Similarly, other authors, Saito et al. [133], presented the relationship
between the VTH and the specific on-resistance (RonA) by calculating the equation, as
displayed in Figure 26b. On the contrary, the on-resistance (RONA) will be increased if the
2DEG mobility is decreased. Thus, from Figure 26b, the equation for calculating the specific
on-resistance (RonA) is denoted by Equation (17),

RonA =
(

Rgs + Rch + Rgd + 2Rcon

)
×
(

Lgs + Lch + Lgd + 2Lcon

)
(17)
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Figure 26. (a) The AlGaN layer thickness and gate threshold voltage relation. (b) In the recessed-gate
GaN HEMT, the calculation of specific on-resistance and the relation between the threshold voltage
and the specific on-resistance. Reprinted under the open access policy from Bentham Open [132].

Additionally, the field plate has used a device structure to reduce the current collapse.
For GaN-based devices, current collapse is a well-known phenomenon that results in a
trade-off between the breakdown voltage and the on-resistance by inserting the source-gate
field plate; the electric field at the gate-drain edge is redistributed [134–136], as shown in
Figure 16. The current collapse is discussed in the below segment.

4. Reliability of GaN HEMTs
4.1. Degradation Creation

While GaN HEMTs have improved remarkably, several material-related challenges
must be resolved before they are revealed as a reliable and sustainable technology. Al-
GaN/GaN HEMTs’ actual device performance has not yet reached the theoretically pre-
dicted levels. Even on unaged GaN HEMTs, parasitic effects could be noticed that degrade
the performance metrics but do not significantly impact the reliability. Nevertheless, over
time or under aging stresses, the degradation processes that accelerate with time impair
not only the electrical response but also the device’s resilience and dependability, result-
ing in shorter lifetimes and failure. The GaN industry’s principal aim is to improve the
dependability of its products while also reducing the parasitic effects. Further degradation
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difficulties with GaN devices include thermal mismatches, heteroepitaxy, and polarization
effects with the substrate, all of which are inherent to the material. Compared to other con-
ventional technologies, AlGaN/GaN HEMTs can work at an extremely high bias, electric
fields, and temperatures. Figure 27 demonstrates the various types of degradation affecting
AlGaN/GaN HEMTs [137,138].
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Figure 27. Several degrading problems affect AlGaN/GAN HEMTs with their origin. Reprinted
with permission [138]. Copyright 2010, Cambridge University Press, and the European Mi-
crowave Association.

It is important to note that five to eight issues are associated with thermally induced
degradation processes that have already been reported in other semiconductor systems (SiC,
GaAs, Si, etc.). As a result, these failure mechanisms are simpler to explain and exclusive to
the metallization scheme which has been adopted. Both three and four mechanisms are
connected to the introduction of the hot electrons; it is a usual problem that field-effect
transistors of a high voltage face. Other semiconductor devices have been proven to suffer
from a deterioration, caused by hot electrons (Si, GaAs, InP, etc.). On the other hand, because
of this semiconductor material’s piezoelectric and polar properties, one to two issues are
specific for GaN devices; consequently, those processes have not been fully defined or
investigated. As a result, the GaN HEMT reliability analysis is a unique issue that needs to
be devoted, as well as an in-depth physics-based study. Furthermore, high Schottky-gate
leakage currents are also one of the main issues for degrading the device performance and
reliability. Thus, the reduction in BVGD raises the noise figure (NF) and decreases the power-
added efficiency (PAE) due to the high gate leakage current [139]. In addition, there are
numerous mechanisms of gate leakages, including the emission of a thermionic field [140],
the emission of thermionic [141], the dislocation-assisted tunnelling [142], the trap assisted
tunnelling [143], the Fowler–Nordheim tunnelling [144], the defect hoping [145], the space
charged limited current [146], and the Frenkel–Poole emission [147].

4.2. Reliability Issues

These days, researchers focus on enhancing the AlGaN/GaN HEMTs reliability device
because of the trapping effect during the AlGaN/GaN HEMT operation. One of the major
obstacles causing performance degradation is the trapping effects in AlGaN/GaN HEMTs
during operation, causing current dispersion between DC to RF or otherwise, DC to pulsed
ID−VD characteristics. Trapping effects like the frequency dispersion of transconductance,
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the sensitivity of the light, the drain lag and gate lag transients, and the limited microwave
power output have all been detected [148].

As shown in Figure 28, there are various trapping mechanisms usually seen in Al-
GaN/GaN HEMTs, such as:

• Under a high negative VGS, barrier traps and a gate electron are injected onto the
surface;

• Under a high on-state VDS, the barrier/buffer traps are injected using hot electrons;
• During material growth, the electrons captured by the deep layers are induced.
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and their effects on device performance. Reprinted with permission [149]. Under the terms of the
Creative Commons Attribution 4.0 license.

4.2.1. Current Collapse

In order to maintain the charge neutrality, trapping electrons reduces in the 2DEG
channel the density of the sheet carriers, resulting in a decreased current density in the
drain. This decrease in the drain current is referred to as the “current collapse”. M. A. Khan
et al. [150] released the first article on AlGaN/GaN HFETs current collapse in 1994. The
“drain-lag” and “gate-lag” conditions of the quiescent bias (Q-bias) are the main parameters
used to characterize the current collapse phenomena [148]. In Figure 29, the characteristics
curve of ID–VD demonstrates the current collapse’s effect on the output power of HEMT.
The solid and dotted lines indicate the device’s ID–VD characteristics curve before and after
the current collapse phenomena. The current collapse causes the knee voltage (Vknee) to
grow as the maximum current decreases (IDmax). It reduces the maximum output power
(Pmax) that may be achieved, which is provided by the given equation:

Pmax =
(∆VD × ∆ID)

8
(18)

The dissimilarity between the Vknee and the breakdown voltage (BVGD) equals the
highest possible voltage swing (∆VD). IDmax specifies the maximum current swing. Pmax
is depicted in Figure 29 by the shaded region, and the current collapse phenomena have
narrowed this operating window. Thus, the main reason for the current collapse is caused by
the reduction in positive charges of polarization induced from the heterojunction transistor
surface, followed by the loss of an equivalent number of electrons in the 2DEG [151].
∆RDS[ON] characterizes the current collapse, as illustrated in Figure 29, because the electrons
are trapped in the gate-drain access area by the surface, buffer, or barrier traps. Similarly,
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under the gate are the areas of electron trapping (see Figure 28), resulting in a threshold
voltage shift (∆VTH), which characterizes a current collapse; therefore, the pulsing ID–VD
characteristics are caused by a drop in the drain current in the device’s saturation zone, as
seen in Figure 29.
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current collapse is shown in this diagram. Reprinted with permission [152]. Copyright 2003, the
American Vacuum Society.

4.2.2. Drain and Gate Lag

The gate lag refers to the drain current’s transient response to the gate voltage, and a
drain lag is the transient response of the drain current to the drain voltage, which remains
constant when the drain or gate voltage matches. According to Figure 30, Zhang et al. [153]
investigated the magnitudes of collapse between the saturation and the knee voltages for
the various quiescent biases. Hence, the collapse considerably reduces the performance
near the knee voltage. From curve (a), when VDS = 4.5 V, the collapse percentage was 4.2
and 9.8, respectively, with the Al/SiN passivation layer. On the contrary, the collapse rate
increased by a 5.5 and 13.8 percentage, with the SiN passivation layer at the VDS = 5 V,
approximately, on the curve (b).

However, the effects of acceptor- and donor-like traps on the HEMT device were
analyzed by Tirado et al. [154] The accumulating hole near the surface counteracts the
acceptor-like traps, and the device is insensitive to the acceptor-like traps. Therefore, the
surface donor-like traps are the primary cause of the gate lag [155]. Figure 31a presents
that in addition to the dipole charge owing to polarization-induced charges, the charge
due to 2DEG, the charge due to the donor-like trap ionization, and the charge due to the
holes accumulating close to the AlGaN surface, the filling and emptying of the donor-like
traps in the surface can impact the density of the 2DEG. When a new device is strained, the
electrons that directly tunnel through the Schottky gate contact can occupy the donor-like
traps and turn them neutral [156]. The 2DEG density is dropped with the reducing donor-
like traps due to the charge neutrality criteria, which causes an initial fall in the current
in Figure 31b [154], where the drain current instantly rises as the on-state remains stable
for a while. After that, until saturation, its soars again. At the final stage, the drain current
change is referred to as the delay of the current, known as a gate lag.
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Figure 31. (a) Diagram of an HEMT device’s space charge element. The two-dimensional electron gas
is referred to as σ2DEG, the dipole charge induced by polarization is denoted by ± σ POL1,2, Ionized
donor-like traps are referred to as σIDT, and σAH symbolizes the accumulation of holes near the
AlGaN surface. (b) AlGaN/GaN HEMT gate lag phenomenon’s transient waveform of the drain
current. Reproduced with permission from IOP Publishing [154].

When measured at the turn-on pulsing mode, the observed drain current tends to
reduce with time, as shown in Figure 32a. When evaluated at the turn-off pulsing mode,
Figure 32b indicates a decline in the drain current when the voltage at the drain returns to
0 V. These two varieties of the drain current curves are frequently referred to as the drain
lag [157]. Due to the trapping of the electron in the channel, this current reduction occurred.
Some electrons might tunnel through the AlGaN barrier while the device is in the on-state
and trapped by deep-level traps. Eventually, to overcome these issues, the passivation
layer and field plate had to be used on the device, as presented in Figure 16.
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phenomena. (a) turn-on pulsing mode (b) turn-off pulsing mode. Reproduced with permission [157].
Copyright 2009, the author (s), published by AIP Publishing.

The gate lag measurements compare the prompt and steady-state ID at a constant low
field drain voltage (avoid self-heating contributions) while the gate bias is modulated from
a quiescent point, usually below the pinch-off voltage ~VG = −6 V, to an open channel
condition such as VG = 0 V. At the pinch-off, a high amount of channel electrons are
trapped in bulk or surface states, which do not immediately feed back into the channel
instantaneously when the gate turns on. With the large-signal recovery time of constants
up to the order of seconds, the responsible traps must have a significantly large activation
energy and/or be fed by a “slow” conducting mechanism (like hopping) to explain the
long time constants. The surface states are believed to dominate in the gate lag since the
passivation significantly improves the current response.

For the drain lag measurements, the gate voltage is kept constant at around 0 V, while
the drain voltage is shifted from a low equilibrium value of ~10–100 mV to a higher value
of 15–30 V. The buffer traps are reported to be dominant here since the devices with higher
buffer layer conductivities display lower drain lag ratios. High-drain biases inject electrons
into the buffer, where they stay trapped. The passivation has a minimal effect, and the
hot electrons can contribute significantly. The recovery time is often in minutes, and the
reduction in the knee voltages and ID,max is amplified. The threshold shifts associated with
the current collapse are also accounted for with the drain lag effect.

4.2.3. Trapping Effects of Surface

In GaN HEMTs, the effects of surface trapping are commonly used to describe electron
trapping on the AlGaN barrier surface. R. Vetury et al. [158] utilized the “virtual gate”
idea to describe the current dispersion because of surface trapping on the ungated surface
between the drain and gate contacts under negative VGS and a positive drain bias. Thus,
Figure 33a illustrates that, at first, due to the presence of a momentous initial drain current,
the 2DEG channel must remain in the slot region; from the bilateral metal gates to the
AlGaN surface in the slot area, the electrons are injected and captured by the surface states
when the off-state gate voltage is applied. Afterwards, from both the bilateral gate edges
to the middle of the slot region, the negative trapped surface charges steadily deplete the
2DEG conduction channel, which, acting as a “virtual gate” on both sides, converges at the
middle of the slot region, and the entire 2DEG channel in the slot region becomes wholly
depleted. Eventually, it has gradually become a complete “virtual gate”, as presented in
Figure 33b [159].
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Figure 33. The device layout illustrates (a) electron injection in the slot region and the virtual gate in
both areas. (b) the devices become fully virtual gates. Reproduced with permission [159]. Copyright
2019, the author (s), Published by AIP Publishing.

The impact of the virtual gate on the sheet carrier density is observed in Figure 34 [160],
where the increased drain voltage at the gate edge of the drain side causes a linear reduction
in the sheet carrier density. For this reason, electrons accumulate at the drain side’s gate
edge. Consequently, this accumulation of electrons not only influences the channel but also
extends towards the lateral axis of the device, for instance, extending the depletion from
1.1 µm to 1.2 µm for the drain voltage from 0 V to 25 V.
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4.2.4. Trapping Effect of Bulk

Bulk traps are traps of electrons which are found in the GaN buffer, AlGaN barrier,
or other parts of the device heterostructure, as shown in Figure 27. J. Joh et al. [161] also
reported that the injection of an electron into the bulk traps from the gate induced the bulk
trapping effect to occur. Thus, X. Zheng et al. [162] illustrated that varying the VGS has
bulk trapping effects on the AlGaN barrier traps (TP2) and the GaN channel layer traps
(TP1), presented in Figure 35. However, from the gate current (IG), TP2 can capture more
electrons if the VGS increases the negative bias voltage. TP2s electron trapping reduces the
channel carrier concentration, which lowers the drain current. Additionally, the trapping
process of TP2 is speeded up by a higher negative bias voltage of VGS, which decreases the
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action time of TP2. Meanwhile, TP1 is insensitive to the change in VGS, causing little effect
on TP1. Eventually, it is observed that the VGS effect on TP1 is less than on TP2.
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Figure 35. Trapping process of TP1 and TP2 with various values of VGS. Reproduced with permis-
sion [162]. Copyright 2016, Elsevier.

P.V. Raja et al. [163] analyzed the buffer trapping effects on the AlGaN/GaN HEMT
device. For the gate lag transient, the VGS pulsed from −3 V to 0 V (from the off- to
on-state) with a fixed VDS = 10 V. The gate lag transient is simulated by changing the
density of the buffer trap, NTB (from 5 × 1016 to 5 × 1017 cm−3), with a fixed electron
trap at ETB = EC− 0.47 eV and an electron capture cross-section σnB = 7 × 10−17 cm2. As
a result, by increasing the NTB, the signal magnitude of the gate transient is reduced, but
variations of the transient are unchanged, as presented in Figure 36a. On the contrary, the
VGS remains at 0 V, and the VDS is switched from 2 V to 10 V in the drain lag transient.
The parameters of NTB and σnB remain the same on the buffer trapping. Consequently,
reducing the magnsitude of IDS does not affect the current dispersion behavior, as displayed
in Figure 36b.
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4.2.5. Kink Effect

The kink effect refers to the output I–V characteristics of an undesirable change
phenomenon caused by changes in the conductivity of the drain [164]. This is determined
by the working point of the device, as well as the temperature, voltage, and current.
As is evident in Figure 37, lengthy integration durations while comparing the output
characteristics were achieved with a downward and upward VDS pumping. When the VDS
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is pushed down from a high value, the drain current drops at the VDS_kink position, but it
reappears when the VDS is pumped up. As a result, the lower gd is due to trapping the states
and is connected among the source and drain electric field. This is also supported by the
fact that the magnitude of the kink is unaffected by the running VGS value, demonstrating
that a large drain current is not required for a trap filling. The kink phenomenon has
threshold characteristics related to the VDS_ kink. There is no kink in the IDS. if the VDS.max
does not exceed the VDS_kink. As the gate voltage (VGS) is increased from 0 V to VGS.max,
the nonmonotonic behavior of the VDS_kink is noticed. In the region of a relatively high
VGS, the VDS_ kink rose with VGS. Nevertheless, the VDS_kink rose when VGS reduced in the
near pinch-off zone. The inset figure demonstrates the nonmonotonic behavior of the kink
voltage (VDS_kink) when the VGS is stepping from 10 V to 0 with ∆VGS =−0.2 V. Each sweep
of VDS, is followed by a 5 min rest [165].
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American Vacuum Society.

4.2.6. Runaway Effect

When the drain voltage is raised in the saturation regime, the runaway effect occurs,
defined by a simultaneous increase in the drain and gate currents [166,167]. Usually,
the gate-to-drain diode component dominates the gate leakage, which rises as the VDS
approaches the threshold. The gate leakage is projected to decrease when the VGS is
minimized. As shown in Figure 38, the absolute gate current in the runaway mode is
larger for the lower VGS levels. After the runaway-inducing aging testing, the reliability
characterizations might be severely detrimental since a continuous rise in the IG and ID
could result in catastrophe failures, turning the runaway into an end-of-life mechanism.
For the runaways, the significant drain and gate voltage will be noticed. Under open
channel situations, the runaway shifts to a lower VDS and greater negative VG values.
Lower activation voltages result from higher temperatures and longer aging durations.
According to conduction mechanism research, the runaway seems to be linked to the
Fowler–Nordheim tunnelling process.
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Figure 38. Output characteristics of the device reveal a runaway mechanism on the ellipse area with
different temperatures. Reproduce with permission [167]. Copyright 2012, Elsevier.

4.2.7. Belly Shape Effect

According to Brunel et al. [168], after the HTOL or HTRB reliability testing, the
electrical parasitic phenomena known as the belly shape effect (BS) in which on the Schottky
forward characteristic, an excess of the gate leakage current resembling a “belly shape”
character is noticed [168,169]. Figure 39 shows a standard belly shape. After just a few
hours of aging, a belly shape forms, with varying magnitudes during the aging process,
indicating degradations due to variations in the epitaxial layers, metal, or surface states.
Nonetheless, the mechanics of its development are still unknown, and additional research
is needed to address the dependability manifestations. Without compromising the overall
dependability, it may result in high leakage currents for fascinating research on the situation
and internal physics.
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4.3. Breakdown Voltage in GaN HEMTs Device

Gallium nitride transistors are expected to play an essential role in the next-generation
power converters, thanks to the high expected breakdown voltage, which is a direct
consequence of the high breakdown field of GaN (>300 V/µm). Thus, in switching the
operation, the transistors alternate between the on-state, where the gate opens the channel
and allows the carriers to flow through the device, and the off-state, where the gate closes
the channel and blocks the carriers’ current. At the off-state, the gate potential, VGS, is lower
than the device’s threshold voltage, VTH, and is considered a subthreshold condition. For
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an efficient switching, the off-state operation point conditions should be at a high positive
drain voltage and negligible drain current; therefore, a strong gate-blocking capability is
required. At very high positive drain voltage conditions, the blocking capability of the
device degrades and gives rise to the subthreshold leakage (STL) current. The subthreshold
leakage current will increase and become significant, thereby reducing the efficiency of
the switching. A significant leakage current is three orders of magnitude lower than the
device’s maximal output current. At high voltages, currents higher than this value may
initiate destructive processes in the device; therefore, it is considered the starting point of
the device breakdown. In most cases, the breakdown voltage is either the sub-threshold
drain leakage, or the gate leakage increases above 1 mA/mm.

The main physical reasons for sub-threshold current leakages (STL) increased at a
higher drain bias voltage are sketched in Figure 40. The STL has to be taken into account
for a high voltage GaN device engineering and it is explained as follows:
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First, the electrons punch through in the buffer underneath the gated channel re-
gion [171]: this effect depends on the magnitude of the vertical electric field in the gate
region and the ability of the buffer structure to confine electrons to the channel, as shown
in Figure 41a. Second, the Schottky gate reverses the bias tunnelling: this originates from
the drain side edge of the gate and is triggered by the high electric fields present in this
particular device region, as displayed in Figure 41b. Third, Figure 41c presents the vertical
device breakdown or the substrate leakage across the epitaxial layers to the conductive
substrates such as n-SiC or Si: this is mainly an issue of the buffering technology and can
be prevented by suitable epitaxial concepts [171]. High-voltage GaN devices place very
stringent demands on high-voltage buffer structures since, in most cases, these devices
are fabricated on conductive substrates (Si, n-SiC) which are usually connected to either
the drain or the source terminal of the power devices. Fourth, surface-related breakdown:
this is mainly associated with the quality of device passivation, whether the interface is be-
tween the passivation layers or the semiconductor surface itself, as indicated in Figure 41d.
Finally, an ambient arcing between the closely spaced device electrodes may also occur if
the devices are operated in the air. Thus, this has to be taken into account by the device
layout design, the technology, and design of the passivation, and also the device packaging.
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Figure 41. Schematic represents the main source of limiting the high voltage capability of Al-
GaN/GaN HEMT on substrates (Si, SiC, or GaN). (a) Punch through effect, (b) Breakdown along
channel region, (c) Breakdown through buffer layer, (d) Leakage currents originating from the
gate structure.

5. Challenges for GaN HEMTs Device

Next-generation power-efficient converters might be created using GaN-based power
devices if the fundamental problems pertaining to the material’s quality, device’s fab-
rication, and its performance can be resolved. However, challenges arise, such as it is
impossible to crystallize GaN from melted material because the bulk GaN crystal devel-
opment process is more challenging compared to Si and SiC. Bulk GaN substrates require
high temperatures, >2200 ◦C, and a nitrogen pressure >6GPa, plus they have tough growth
methods, such as a hydride vapor-phase epitaxy (HVPE), sodium flux, and an acidic/basic
ammonothermal method is required. On top of that, these GaN substrates have a defect
density of between 104 and 106/cm2, which necessitates a careful examination before they
can be used for commercial purposes [172]. Ion implantation is used to dope the conven-
tional Si and SiC power devices selectively. However, for GaN, it is still a highly complex
process requiring specialized instruments capable of high-temperature (>1200 ◦C) and
high-pressure conditions (>1 GPa) [173]. Bulk GaNs commercialization is hampered not
only by the high cost and small size of these substrates, but also by the enormous initial
investment required to set up GaN-specific fabs, which could drive up the average selling
price (ASP) of discrete devices and further impede the adoption of these devices. Therefore,
achieving significant advancements in both the cost and substrate size of these bulk GaN
substrates is crucial.

Moreover, some other challenges, such as the GaN HEMT PAs, operate at high-
frequency and high-power conditions, where the drain and the gate metals meltdown
because of the Eddy current triggered by the magnetic field from the nearby coil. On the
contrary, the high operating current may also facilitate the issue. The meltdown occurs at
the Au layer, and several hints of Au can be traced in either subsequent layer [174]. The
heavy ion irradiation makes the challenge for the GaN HEMT because this ion irradiation
induces a device damage by creating lattice defects and accelerating the degradations of
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the GaN HEMT under tests (CGHV1J006D, manufactured by Wolfspeed, Durham, NC,
USA). On the other hand, a gate injection triggers an impact ionization in the channel, thus
inducing failures under the off-state. Its breakdown drain bias becomes lower than the
pristine one, owing to the defect generations between the channel layer and the buffer layer
during the ion irradiation [175].

Furthermore, after wet etches are done to remove the ohmic contacts of electrically
stressed devices; the formation of nano-cracks underneath the ohmic metal contacts of GaN
HEMTs becomes challenging for the researchers [176]. This crack might grow from the
metal inclusions under the influence of a vertically oriented electric field, which introduces
biaxial stress in the channel layer. The hoop stresses introduced by the biaxial compressive
stresses and the residual tensile stress introduced in the epitaxial process impel the cracks
to extend from the alloyed S–D contacts into the channel.

6. Conclusions

GaN HEMTs appear to be a competitive semiconductor technology for the foreseeable
future. The existing and projected demand for GaN-based products in power industries
is outlined. The benefits and physics of III-N materials are explained to comprehend
GaN-based device transistors better. The contest between Si, GaN, SiC, and β-Ga2O3 is
anticipated to heat up in the following years since these devices are forecast to represent a
crucial function in the next generation of power converters. Research at both the academic
and industry levels will lead to a significant advancement in device technology. On the other
hand, reliability is still a big issue. Thus, the main GaN HEMT reliability concerns caused
by the trap effects like a drain, a gate lag, a current collapse, and a breakdown voltage are
explained briefly. Finally, we discussed the lateral type AlGaN/GaN HEMT devices, but
in the future, we will include the vertical type AlGaN/GaN HEMT devices. Overall, the
future growth of the GaN research field will be aided by the continued improvement of all
these features, thanks to the more sophisticated machinery and higher-quality materials.
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