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Abstract: Perovskite materials have attracted extensive attention because of their superior perfor-
mance in the fields of photoelectric detection, photovoltaics, light-emitting diodes, metal–air batteries,
etc. However, their development and application in the field of X-ray detectors have not been re-
viewed. In this paper, research on perovskite-based X-ray detectors is analyzed using the bibliometric
method. This analysis sample includes the literature from 1997 to the present. In addition, the
research status of perovskite-based scintillators and direct X-ray detectors under different crystalliza-
tion conditions and different preparation methods is discussed. Finally, several problems that need to
be overcome in the future of perovskite-based X-ray detectors are put forward.
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1. Introduction

X-ray radiation has attracted extensive attention since it was discovered by German
physicist Wilhelm Röntgen in 1895. As early as one year after the discovery of X-ray radiation,
it was used in the field of medicine many times with excellent characteristics [1–3]. High-
energy ionizing radiation has strong penetrability. Under the irradiation of X-rays, the
electrons in the atom are ionized, so it can accurately reflect the energy change, phase,
and other information of the tested object. Because of this characteristic, X-ray radiation
is widely used in many fields, such as medical research [4,5], safety inspection [6,7], and
material characterization [8–10]. Therefore, as a component for sensing X-rays, the X-ray
detector has attracted extensive attention among researchers in different fields.

Generally, there are two X-ray detection methods: the direct type and the indirect
type. Between them, the direct detector has a detectable response current to X-ray ra-
diation. The indirect detector, also known as scintillator detector, converts X-rays into
visible light or ultraviolet light and then uses photoelectric devices to convert them into
electrical signals. The principle of the above two detection methods is shown in Figure 1a.
Traditional inorganic semiconductor X-ray detectors often have some disadvantages, such
as low stopping ability, poor stability, high toxicity, complex structure, high price, etc. [11].
Therefore, people pay attention to perovskite materials, which are easily manufactured,
have a low price, and have superior photoelectric properties [12].

Perovskite materials are widely used in solar cells [13–16], photocatalysis [17–19],
electrocatalysis [14,20], superconductivity [21,22], photodetectors [23,24], light-emitting
diodes [25–27], and in different fields. Among them, as a new type of X-ray detection
material, organic–inorganic hybrid perovskite has attracted extensive attention in the past
five years. However, due to the existence of organic cations, the problem of poor stability
of the organic–inorganic hybrid perovskite material needs to be solved urgently. Therefore,
researchers have turned their attention to all-inorganic perovskite materials, especially
halide inorganic perovskite materials. However, to our knowledge, the development of
perovskite X-ray detectors has not been analyzed and described.
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1.1. Stability Criteria of Perovskite Materials

The Goldschmidt tolerance factor (t) is often used to evaluate the stability of perovskite
materials. In ABX3, a typical molecular formula of perovskite materials, most IA main
group metal ions cannot be used as component A in all-inorganic perovskite materials. As
shown in Figure 1b, taking the materials of the APbI3 series as an example [28], in the IA
main group, only the Cs element is in the range of t. Because the Rb element is at the edge
of the t range, it is only considered as a candidate that can be integrated into perovskite
lattice. The ideal typical perovskite structure is shown in Figure 1c. Its three-dimensional
structure stability needs to meet Equations (1) and (2):

t = (RA + RX)/(RB + RX)
1/2 (1)

0.89 < t < 1 (2)

where RA, RB, and RX are the ion radii of components A, B, and X, respectively.
Double perovskite is a material that was developed rapidly recently. Its molecular

formula is A2BIBIIIX6, also known as cryolite or elpasolite. Its basic structure is shown in
Figure 1d. Different from conventional perovskite materials (molecular formula: ABX3),
monovalent metal cations (Cs+, Rb+, etc.) are often used at position A in all-inorganic
lead-free double perovskite materials. The divalent cations at position B are split into the
combination of monovalent cations at position BI (Ag+, Li+, K+, etc.) and trivalent cations
at position BIII (Bi3+, Sb3+, Al3+, etc.). Its structural stability needs to meet the octahedron
factor at the same time (µ) and the tolerance factor (t); see the following Equations (3)–(6):

t = (RA + RX)/
[(

RBI + RBIII
)
+ RX

]1/2 (3)

µ =
(

RBI + RBIII
)
/2RX (4)

0.81 < t < 1.11 (5)

0.44 < µ < 0.90 (6)

where RBI and RBIII are the ion radii of monovalent cations at the BI position and trivalent
cations at the BIII position, respectively. However, there is no obvious quantitative rela-
tionship between the thermodynamic stability of cubic perovskite and tolerance factor t.
Considering that t only describes the stability of the perovskite material frame, Qingde
Sun et al. [29] found that there is an obvious linear relationship between decomposition
energy ∆HD and µ + t (Figure 1e). Furthermore, the atomic packing ratio (η) is introduced
into the power digit of µ + t. Therefore, they concluded that the thermodynamic stability
of perovskite had a better linear relationship with (µ + t)η (Figure 1f). Taking this factor
as the stability descriptor to judge the relative stability of perovskite material structure,
the accuracy increases from 70% of the Goldschmidt tolerance factor to 90%. In addition,
∆HD of nearly 70 new perovskite materials are predicted using the criterion, and the results
are in good agreement with the first principle calculation, which proves that the (µ + t)η

criterion has a certain degree of accuracy and universality.
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Figure 1. (a) Schematic diagram of direct and indirect X-ray testing. (b) The tolerance factor of
component A element cations (Li+, Na+, K+, Ru+, MA+, FA+) in APbI3. Theoretically, the element
that can form a stable structure is a black solid circle, and Rb (red empty circle) is very close to 0.8 [28].
(c) Typical perovskite crystal structure diagram [30] and (d) double perovskite crystal structure
diagram [30]. ∆HD of 138 perovskite materials and (e) µ + t or (f) (µ + t)η . The criterion is linearly
correlated. Blue and orange are halide and sulfide, respectively [29].

In recent years, a popular double perovskite material is Cs2AgBiBr6. In 2017, Weicheng
Pan et al. [31] reported a high-sensitivity X-ray detector using solution-treated double
perovskite Cs2AgBiBr6 single crystals. Through thermal annealing and surface treatment,
the disorder of Ag+/Bi3+ was eliminated to a certain extent, and the crystal resistivity
was improved. This made the high temperature and irradiation stability excellent, and
the comprehensive performance reached or even partially exceeded the level of lead-
based perovskite detector. Under the low working voltage of 5 V, the sensitivity of the
X-ray detector reached 105µCGy air

−1cm−2, and the LOD was 59.7 nGyairs−1. In 2019,
Lixiao Yin et al. [32] took solubility and supersolubility as quantitative indicators to guide
the growth of Cs2AgBiBr6 single crystals. The optimized Cs2AgBiBr6 crystal had a narrow
distribution range, smooth surface, and high resistivity. In addition, the sensitivity of
the prepared X-ray detector under a 50 Vmm−1 electric field was 1974 µCGy air

−1 cm−2

(Figure 2a,b), which was close to the lead halide perovskite detector. At the same time, the
authors suggested that the quantitative understanding of the perovskite growth process
may also be applicable to other crystal growth methods, such as anti-solvent or solvent
evaporation. However, the disordered arrangement of AgI/BiIII usually causes unexpected
structural distortion, which seriously affects the photoelectric properties of Cs2AgBiBr6
single crystals. In the same year, Weinan Yuan et al. [33] improved the ordered arrangement
of [AgX6]5- and [BiX6]3- octahedrons in three-dimensional space using the selective action
of amino, benzene ring, and perovskite AgI/BiIII elements in phenylethylamine bromide
(PEABr). The theoretical and experimental results showed that this method could effectively
reduce the defect density of states and exciton self-trapping effect, so as to adjust the band
gap and enhance the carrier mobility, so as to promote its application in X-ray detectors.
The corresponding detector based on PEA-Cs2AgBiBr6 single crystals showed superior
performance, such as longer carrier drift distance, higher photoconductive gain, and faster
current response (from 3190 µs to 13 µs, as shown in Figure 2c). In addition, the prepared
PEA-Cs2AgBiBr6 single-crystal X-ray detector had a sensitivity of 288.8 µCGyair

−1 cm−2

at a bias of 50 V (22.7 Vmm−1). In 2020, Hainan Zhang et al. [34] reported an ultra-
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sensitive X-ray detector based on pure Cs2AgBiBr6 all-inorganic lead-free perovskite film,
which was encapsulated in a metal shell with a Be window. High-quality Cs2AgBiBr6
films with long electron–hole diffusion length (about 700 nm) and long carrier lifetime
(about 750 ns) were obtained with a low-cost solution process. Thanks to the excellent
performance of Cs2AgBiBr6 film and the stable environment provided by the packaging
module, the obtained device had high X-ray detection abilities. The minimum detection
dose rate was 145.2 nGyairs−1, and the sensitivity was as high as 1.8 × 104µCGy air

−1 cm−2,
which was about 1000 times more sensitive than the commercial α-Se X-ray detector. It
is worth mentioning that the device still maintained good detection performance after
2 months of storage. In addition, in 2020, Zheng Zhang et al. [35] prepared Cs2AgBiBr6
double perovskite single crystals from saturated aqueous solution. Moreover, the band-gap
energies of Cs2AgBiBr6 were measured using low-temperature photoluminescence (PL)
and were 2.00 eV (indirect) and 2.26 eV (direct), respectively. Using the space-charge-
limited current method, the density of trap states and carrier mobility were estimated to
be 1.44 × 1010 cm3 and 7.02 cm2 V−1 s−1, respectively. Under the excitation of 450 nm
laser, the lower bound of the mobility lifetime (L-S) product of 2.48 × 10−3 cm2 V−1 was
determined, which was sufficient to ensure the long drift distance of carriers. In addition,
the direct response of the Cs2AgBiBr6 single crystals to X-ray radiation was also tested.
The reported Cs2AgBiBr6 single crystal-device deposited gold electrodes on two parallel
surfaces and showed good linear response to low-energy X-rays.
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Figure 2. (a) The sensitivity of controlled-cooling-based Cs2AgBiBr6 single crystals under different
electric field intensities [32]. (b) Photocurrent response to X-ray dose rate under electric field intensi-
ties of 2.5 V mm−1 and 50 V mm−1 [32]. Photocurrent response of PEA-Cs2AgBiBr6 (c) and pristine
Cs2AgBiBr6 (d) single crystal X-ray detector [33].

1.2. Performance Evaluation Standard of X-ray Detectors

Generally, the X-ray absorption capacity of an X-ray detector is evaluated using
Equations (7) and (8):

ID = I0e−αρD (7)

α = ρ
Z4

AE3 (8)
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where ID represents the X-ray intensity when the thickness is D and I0 is the X-ray intensity
when the thickness is 0; e is the electron charge; α is the absorption coefficient; ρ is the
density of the material; Z is the atomic number; A is the atomic mass; and E is the photon
energy of X-rays. Hence, when constructing halide inorganic perovskite X-ray detectors
without violating the stability criterion, heavy metal elements are often used as the element
components at the B position, BI position, and BIII position. Taking double perovskite
Cs2AgBiBr6 (average Z = 53.1) as an example, the material can effectively absorb X-rays
using the Bi element with Z = 83 [36].

In addition, especially in direct X-ray testing, in order to effectively collect charge,
the material should have a high carrier drift length per unit electric field. It is a product
of µτ, where µ is the carrier mobility and τ is the carrier lifetime. Using the modified
Hecht equation and through the relevant photoconductivity fitting, the product of µτ can
be calculated [37,38] as shown in Equation (9):

I =
I0µτV

L2 ×
1 − exp(− L2

µτV )

1 + Ls
Vµ

(9)

where I is the photocurrent, I0 is the saturated photocurrent, L is the thickness, V is the
application deviation, and s is the recombination velocity.

In addition, as a kind of sensor, the evaluation parameters of X-ray detectors also
include sensitivity and the limit of detection, where the sensitivity represents the response
of the X-ray detector under radiation, as shown in Equation (10):

Rs =
Ip − Id

DS
(10)

where Rs is the sensitivity, Ip is the photocurrent, Id is the dark current, D is the X-ray
radiation dose rate, and S is the effective area of the X-ray detector. The limit of detection is
expressed in concentration (or mass), which refers to the lowest concentration (or mass)
obtained from the minimum analysis signal that can be reasonably detected in a specific
analysis step. It is defined by the International Union of Pure and Applied Chemistry
(IUPAC) that the response signal generated by a certain dose is three times that of the noise
signal, i.e., S/N = 3.

2. Development Trend of Perovskite X-ray Detector Research Field

The clustering, analysis, and visualization of a certain research direction is the re-
search content of bibliometrics. We used bibliometric tools to analyze and process the
literature in the field of perovskite X-ray detectors in Web of Science Core Collection. The
results directly reflected the structure, characteristics, relevance, and development trend
of this research direction. At present, common bibliometric software include CiteSpace,
VOSviewer, Bibexcel, etc. Among them, CiteSpace is bibliometric software based on the
Java environment developed by Professor Chaomei Chen of Drexel University [39]. The
application program can mine the key data in the literature, extract important information,
and visualize it. Hence, it can play a role in many scientific fields [40]. Therefore, we chose
to use the CiteSpace tool to show the important research categories, keywords, and research
frontiers in the field of perovskite X-ray detectors. Moreover, on this basis, we made a
simple prediction of the future research hotspots.

2.1. Literature Development Trends

The number of documents published is a reliable index to measure the research status
of perovskite X-ray detectors. In this paper, the samples in Web of Science (WOS) Core
Collection were used to ensure the reliability of the data. The retrieval formula is as follows:
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TS = (“perovskite” AND (“Radiation detector” OR “X-ray detector” OR “scintillation”
OR “scintillant” OR “Direct type”))

All citespace data in this article will be exposed in the zip file of the
Supplementary Materials.

Figure 3 shows the annual and cumulative number of articles published in this field,
which shows that although research in this field did not receive extensive attention before
2017 (the annual average number of articles published was only 4.29). After 2017, the
number of articles published increased exponentially, and the annual average number of
articles published from 2018 to 2021 was 50.25. It shows that perovskite X-ray detectors
have attracted extensive attention among researchers since 2018.
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2.2. Macro Cooperation Network Analysis

The year slice was set to 2 years, and the node type was countries; the created visual
map is shown in Figure 4, and the top 10 countries exported are shown in Table 1. China,
Japan, and the United States accounted for the top three in the literature quantity. Therein,
there were 111 studies in China, 48 in Japan, and 41 in the United States. From the node
color ring, China and the United States began to study perovskite X-ray detectors on a large
scale in the last six years, while Japan began to study perovskite X-ray detectors on a large
scale ten years ago. The four countries with the largest sigma values were Italy (Σ = 10.58),
Czech public (Σ = 9.82), Ukraine (Σ = 6.17), and Belarus (Σ = 4.12). In addition, from the
connection between nodes, France had the largest frequency and time span of cooperation
with other countries.
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Table 1. Top 10 countries with published literature.

No. Freq Centrality Country

1 111 0.15 People’s R. of China
2 48 0 Japan
3 41 0.25 USA
4 35 0.68 Czech Republic
5 27 0.18 Poland
6 23 0.43 Italy
7 21 0.43 France
8 18 0.41 Ukraine
9 13 0 England
10 13 0.15 Russia

3. Academic Groupings and Research Focus
3.1. Category Co-Occurrence Analysis

We set the node type to category and created a visual map through “Pathfinder” and
“Purning the merged network”, as shown in Figure 5a. A total of 65 nodes and 135 links
were obtained. Among them, the node radius of “materials science” was the largest,
indicating that its literature frequency was the highest. In addition, “physics” had the most
abundant color rings, indicating that the time span of the literature under this category was
the largest. As shown in Figures 5b and 6, clusters were obtained after the clustering of the
visual map. Furthermore, the Kleinberg method is often used to identify burst nodes [41].
Table 2 lists the central WOS category nodes of the top 10 perovskite X-ray detectors from
1997 to 2022, among which “nuclear science and technology” (centrality = 0.52) was also
among the best in terms of burst intensity. Table 3 lists the top 5 WOS category nodes in this
field from 1997 to 2022. Among them, “nuclear science and technology” had the highest
burst intensity (strength = 12.5725), the largest time span (1997–2016), and the highest
sigma value (Σ = 201.12). Altogether, this reflects the importance of the node in the time
and network structure [42]. This was obviously related to the application direction and
principle of perovskite X-ray detectors.
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Table 2. Top 10 WOS category nodes according to centrality.

No. Freq Centrality WOS Category

1 7 0.82 Science Citation Index Expanded (SCI-EXPANDED)
2 82 0.64 Chemistry
3 36 0.52 Nuclear science and technology
4 171 0.24 Materials science
5 103 0.24 Materials science, multidisciplinary
6 21 0.22 Engineering
7 130 0.21 Physics
8 6 0.21 Electrochemistry
9 6 0.17 Energy and fuels

10 52 0.13 Chemistry, physical

Table 3. Top 5 WOS category nodes according to burst intensity.

No. WOS Category Strength Beginning End 1997–2022

1 Nuclear science and technology 12.5725 1997 2016
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2 Conference Proceedings Citation
Index—Science (CPCI-S) 7.9757 2001 2016
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3.2. Keyword Co-Occurrence Analysis

We set the node type to keyword. After clipping to improve data readability, we
manually merged synonyms. After keyword clustering, we created a visual map, as shown
in Figure 6. In total, 344 keywords, 783 connections, and 19 clusters were obtained. Table 4
lists the top 20 keywords based on their centrality from 1997 to 2022. Moreover, Table 5
lists the top 10 keywords according to burst intensity in this field from 1997 to 2022. They
highlight the most active research areas in the discipline in a certain period of time. Among
them, solar cell (centrality = 4.2476) and CsPbBr3 (centrality = 3.2263) are still active.

Table 4. Top 20 keywords according to centrality.

No. Freq Centrality Keyword

1 24 0.38 Crystal
2 24 0.35 Detector
3 17 0.31 Efficiency
4 44 0.27 Scintillation property
5 6 0.27 Yag
6 25 0.25 Emission
7 6 0.25 Ion
8 8 0.23 Stability
9 7 0.23 Lead halide perovskite
10 9 0.22 Crystal structure
11 63 0.21 Single crystal
12 6 0.2 Dynamics
13 14 0.19 Luminescence property
14 2 0.19 X-ray diffraction
15 4 0.18 Inorganic scintillator
16 49 0.17 Luminescence
17 15 0.17 Light yield
18 52 0.16 Growth
19 8 0.16 Crystal growth
20 2 0.16 Amorphous selenium
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Table 5. Top 10 keywords with the strongest citation bursts in the research history of perovskite
X-ray detectors.

No. Keyword Strength Beginning End 1997–2022

1 Scintillation property 6.9223 2005 2018
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strongest citation bursts during the research history of perovskite X-ray detectors; we can 

further find that all-inorganic halide perovskite materials were a research hotspot in the 

field of perovskite X-ray detectors. 

In 2019, Zongyan Gou et al. [43] successfully prepared CsPbBr3 microcrystalline thick 

film for self-powered X-ray sensors using a low-cost simple solution synthesis method. 

The photoelectric performance of the detector was further improved via multiple dissolu-

tion recrystallization. At the LOD of 0.053 µGyairs-1, the sensitivity of the CsPbBr3 micro-

crystalline thick film X-ray detector was improved to 470 µCGyair-1 cm-2. This sensitivity 

was higher than that obtained working at an electric field strength greater than 10 Vmm-

1, and it was more than that of the α-Se X-ray detector—20 times higher. In 2020, Gebhard 

J. Matt et al. [44] reported a simple, scalable, and low-cost preparation method for CsPbBr3 

thin films. Melt treatment was applied directly on substrates of any size. X-ray diffraction 

analyses of several 100 mm thick melt-treated films confirmed the crystalline domain in 

the range of cm2. The resistance of CsPbBr3 film was 8.5 GΩ cm, and the hole mobility was 

18 cm2 V-1 s-1. Under the electric field of 1.2 × 104 Vcm-1, the sensitivity was 1450 µCGyair-1 

cm-2, and the LOD was under sub µGyairs-1. The high crystallinity and high chemical purity 

of CsPbBr3 film after melt treatment showed that its performance was equivalent to the 

most advanced X-ray detector technology based on Cd(Zn)Te. In 2020, Bin Xin et al. [45] 

reported a CsPbX3 (X = Br, I) X-ray detector. The indirect band-gap properties of perov-

skite materials were revealed using optical characterization, time-resolved photolumines-

cence (TRPL), and theoretical simulation. It was shown that the temperature-related car-

rier lifetime difference related to the composition of CsPbX3 perovskite was due to the 

change in the band-gap structure. TRPL, theoretical analysis, and X-ray radiation meas-

urements showed that the high response of UV/visible-blind yellow-phase CsPbI3 under 

high-energy X-ray exposure was due to the nature of the indirect band-gap structure of 

CsPbX3. The yellow-phase CsPbI3 X-ray detector achieved a sensitivity of up to 83.6 

µCGyair-1 cm-2 and an LOD of 1.7 mGyairs-1 when the test electric field intensity was 0.17 

Vμm-1. It exceeded commercial X-ray detectors and further confirmed excellent material 

quality, although the active layer was only based on ultra-thin (≈ 6.6 μm) CsPbI3 nano-

crystalline film. In 2020, Yuki Haruta et al. [46] prepared a CsPbBr3 thick film using the 

mist deposition method. The use of the polymer as a buffer layer avoided the stripping of 

thick film and solved the problem that it is difficult to prepare perovskite thick film. In 

addition, CsPbBr3 thick films with a thickness of 110 μm were successfully obtained using 

the scalable solution method. In addition, an X-ray detector based on CsPbBr3 thick film 

was prepared, and the high sensitivity of 11,840 µCGyair-1 cm-2 was obtained. This sensi-

tivity was about 600 times that of the commercial α-Se X-ray detector. 
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Based on these keywords, we can observe the popular materials, preparation meth-

ods, and research hotspots in the field of perovskite X-ray detectors. Keywords related to 

crystals appeared four times in the first twenty centrality lists, namely, crystal (centrality 

= 0.38), crystal structure (centrality = 0.22), single crystal (centrality = 0.21), and crystal 

growth (centrality = 0.16). It shows that researchers are more concerned about the crystal 

growth of perovskite materials. Generally, people have academic interest in the crystal 

structure of many perovskite materials, such as large single crystals, polycrystalline struc-

tures, microcrystalline film, nanocrystalline structures, etc. CsPbBr3 (strength = 3.2263) 

and halide perovskite (strength = 3.0756) were among the top 10 keywords with the 

strongest citation bursts during the research history of perovskite X-ray detectors; we can 

further find that all-inorganic halide perovskite materials were a research hotspot in the 

field of perovskite X-ray detectors. 

In 2019, Zongyan Gou et al. [43] successfully prepared CsPbBr3 microcrystalline thick 

film for self-powered X-ray sensors using a low-cost simple solution synthesis method. 

The photoelectric performance of the detector was further improved via multiple dissolu-

tion recrystallization. At the LOD of 0.053 µGyairs-1, the sensitivity of the CsPbBr3 micro-

crystalline thick film X-ray detector was improved to 470 µCGyair-1 cm-2. This sensitivity 

was higher than that obtained working at an electric field strength greater than 10 Vmm-

1, and it was more than that of the α-Se X-ray detector—20 times higher. In 2020, Gebhard 

J. Matt et al. [44] reported a simple, scalable, and low-cost preparation method for CsPbBr3 

thin films. Melt treatment was applied directly on substrates of any size. X-ray diffraction 

analyses of several 100 mm thick melt-treated films confirmed the crystalline domain in 

the range of cm2. The resistance of CsPbBr3 film was 8.5 GΩ cm, and the hole mobility was 

18 cm2 V-1 s-1. Under the electric field of 1.2 × 104 Vcm-1, the sensitivity was 1450 µCGyair-1 

cm-2, and the LOD was under sub µGyairs-1. The high crystallinity and high chemical purity 

of CsPbBr3 film after melt treatment showed that its performance was equivalent to the 

most advanced X-ray detector technology based on Cd(Zn)Te. In 2020, Bin Xin et al. [45] 

reported a CsPbX3 (X = Br, I) X-ray detector. The indirect band-gap properties of perov-

skite materials were revealed using optical characterization, time-resolved photolumines-

cence (TRPL), and theoretical simulation. It was shown that the temperature-related car-

rier lifetime difference related to the composition of CsPbX3 perovskite was due to the 

change in the band-gap structure. TRPL, theoretical analysis, and X-ray radiation meas-

urements showed that the high response of UV/visible-blind yellow-phase CsPbI3 under 

high-energy X-ray exposure was due to the nature of the indirect band-gap structure of 

CsPbX3. The yellow-phase CsPbI3 X-ray detector achieved a sensitivity of up to 83.6 

µCGyair-1 cm-2 and an LOD of 1.7 mGyairs-1 when the test electric field intensity was 0.17 

Vμm-1. It exceeded commercial X-ray detectors and further confirmed excellent material 

quality, although the active layer was only based on ultra-thin (≈ 6.6 μm) CsPbI3 nano-

crystalline film. In 2020, Yuki Haruta et al. [46] prepared a CsPbBr3 thick film using the 

mist deposition method. The use of the polymer as a buffer layer avoided the stripping of 

thick film and solved the problem that it is difficult to prepare perovskite thick film. In 

addition, CsPbBr3 thick films with a thickness of 110 μm were successfully obtained using 

the scalable solution method. In addition, an X-ray detector based on CsPbBr3 thick film 

was prepared, and the high sensitivity of 11,840 µCGyair-1 cm-2 was obtained. This sensi-

tivity was about 600 times that of the commercial α-Se X-ray detector. 
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Based on these keywords, we can observe the popular materials, preparation meth-

ods, and research hotspots in the field of perovskite X-ray detectors. Keywords related to 

crystals appeared four times in the first twenty centrality lists, namely, crystal (centrality 

= 0.38), crystal structure (centrality = 0.22), single crystal (centrality = 0.21), and crystal 

growth (centrality = 0.16). It shows that researchers are more concerned about the crystal 

growth of perovskite materials. Generally, people have academic interest in the crystal 

structure of many perovskite materials, such as large single crystals, polycrystalline struc-

tures, microcrystalline film, nanocrystalline structures, etc. CsPbBr3 (strength = 3.2263) 

and halide perovskite (strength = 3.0756) were among the top 10 keywords with the 

strongest citation bursts during the research history of perovskite X-ray detectors; we can 

further find that all-inorganic halide perovskite materials were a research hotspot in the 

field of perovskite X-ray detectors. 

In 2019, Zongyan Gou et al. [43] successfully prepared CsPbBr3 microcrystalline thick 

film for self-powered X-ray sensors using a low-cost simple solution synthesis method. 

The photoelectric performance of the detector was further improved via multiple dissolu-

tion recrystallization. At the LOD of 0.053 µGyairs-1, the sensitivity of the CsPbBr3 micro-

crystalline thick film X-ray detector was improved to 470 µCGyair-1 cm-2. This sensitivity 

was higher than that obtained working at an electric field strength greater than 10 Vmm-

1, and it was more than that of the α-Se X-ray detector—20 times higher. In 2020, Gebhard 

J. Matt et al. [44] reported a simple, scalable, and low-cost preparation method for CsPbBr3 

thin films. Melt treatment was applied directly on substrates of any size. X-ray diffraction 

analyses of several 100 mm thick melt-treated films confirmed the crystalline domain in 

the range of cm2. The resistance of CsPbBr3 film was 8.5 GΩ cm, and the hole mobility was 

18 cm2 V-1 s-1. Under the electric field of 1.2 × 104 Vcm-1, the sensitivity was 1450 µCGyair-1 

cm-2, and the LOD was under sub µGyairs-1. The high crystallinity and high chemical purity 

of CsPbBr3 film after melt treatment showed that its performance was equivalent to the 

most advanced X-ray detector technology based on Cd(Zn)Te. In 2020, Bin Xin et al. [45] 

reported a CsPbX3 (X = Br, I) X-ray detector. The indirect band-gap properties of perov-

skite materials were revealed using optical characterization, time-resolved photolumines-

cence (TRPL), and theoretical simulation. It was shown that the temperature-related car-

rier lifetime difference related to the composition of CsPbX3 perovskite was due to the 

change in the band-gap structure. TRPL, theoretical analysis, and X-ray radiation meas-

urements showed that the high response of UV/visible-blind yellow-phase CsPbI3 under 

high-energy X-ray exposure was due to the nature of the indirect band-gap structure of 

CsPbX3. The yellow-phase CsPbI3 X-ray detector achieved a sensitivity of up to 83.6 

µCGyair-1 cm-2 and an LOD of 1.7 mGyairs-1 when the test electric field intensity was 0.17 

Vμm-1. It exceeded commercial X-ray detectors and further confirmed excellent material 

quality, although the active layer was only based on ultra-thin (≈ 6.6 μm) CsPbI3 nano-

crystalline film. In 2020, Yuki Haruta et al. [46] prepared a CsPbBr3 thick film using the 

mist deposition method. The use of the polymer as a buffer layer avoided the stripping of 

thick film and solved the problem that it is difficult to prepare perovskite thick film. In 

addition, CsPbBr3 thick films with a thickness of 110 μm were successfully obtained using 

the scalable solution method. In addition, an X-ray detector based on CsPbBr3 thick film 

was prepared, and the high sensitivity of 11,840 µCGyair-1 cm-2 was obtained. This sensi-

tivity was about 600 times that of the commercial α-Se X-ray detector. 
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Based on these keywords, we can observe the popular materials, preparation meth-

ods, and research hotspots in the field of perovskite X-ray detectors. Keywords related to 

crystals appeared four times in the first twenty centrality lists, namely, crystal (centrality 

= 0.38), crystal structure (centrality = 0.22), single crystal (centrality = 0.21), and crystal 

growth (centrality = 0.16). It shows that researchers are more concerned about the crystal 

growth of perovskite materials. Generally, people have academic interest in the crystal 

structure of many perovskite materials, such as large single crystals, polycrystalline struc-

tures, microcrystalline film, nanocrystalline structures, etc. CsPbBr3 (strength = 3.2263) 

and halide perovskite (strength = 3.0756) were among the top 10 keywords with the 

strongest citation bursts during the research history of perovskite X-ray detectors; we can 

further find that all-inorganic halide perovskite materials were a research hotspot in the 

field of perovskite X-ray detectors. 

In 2019, Zongyan Gou et al. [43] successfully prepared CsPbBr3 microcrystalline thick 

film for self-powered X-ray sensors using a low-cost simple solution synthesis method. 

The photoelectric performance of the detector was further improved via multiple dissolu-

tion recrystallization. At the LOD of 0.053 µGyairs-1, the sensitivity of the CsPbBr3 micro-

crystalline thick film X-ray detector was improved to 470 µCGyair-1 cm-2. This sensitivity 

was higher than that obtained working at an electric field strength greater than 10 Vmm-

1, and it was more than that of the α-Se X-ray detector—20 times higher. In 2020, Gebhard 

J. Matt et al. [44] reported a simple, scalable, and low-cost preparation method for CsPbBr3 

thin films. Melt treatment was applied directly on substrates of any size. X-ray diffraction 

analyses of several 100 mm thick melt-treated films confirmed the crystalline domain in 

the range of cm2. The resistance of CsPbBr3 film was 8.5 GΩ cm, and the hole mobility was 

18 cm2 V-1 s-1. Under the electric field of 1.2 × 104 Vcm-1, the sensitivity was 1450 µCGyair-1 

cm-2, and the LOD was under sub µGyairs-1. The high crystallinity and high chemical purity 

of CsPbBr3 film after melt treatment showed that its performance was equivalent to the 

most advanced X-ray detector technology based on Cd(Zn)Te. In 2020, Bin Xin et al. [45] 

reported a CsPbX3 (X = Br, I) X-ray detector. The indirect band-gap properties of perov-

skite materials were revealed using optical characterization, time-resolved photolumines-

cence (TRPL), and theoretical simulation. It was shown that the temperature-related car-

rier lifetime difference related to the composition of CsPbX3 perovskite was due to the 

change in the band-gap structure. TRPL, theoretical analysis, and X-ray radiation meas-

urements showed that the high response of UV/visible-blind yellow-phase CsPbI3 under 

high-energy X-ray exposure was due to the nature of the indirect band-gap structure of 

CsPbX3. The yellow-phase CsPbI3 X-ray detector achieved a sensitivity of up to 83.6 

µCGyair-1 cm-2 and an LOD of 1.7 mGyairs-1 when the test electric field intensity was 0.17 

Vμm-1. It exceeded commercial X-ray detectors and further confirmed excellent material 

quality, although the active layer was only based on ultra-thin (≈ 6.6 μm) CsPbI3 nano-

crystalline film. In 2020, Yuki Haruta et al. [46] prepared a CsPbBr3 thick film using the 

mist deposition method. The use of the polymer as a buffer layer avoided the stripping of 

thick film and solved the problem that it is difficult to prepare perovskite thick film. In 

addition, CsPbBr3 thick films with a thickness of 110 μm were successfully obtained using 

the scalable solution method. In addition, an X-ray detector based on CsPbBr3 thick film 

was prepared, and the high sensitivity of 11,840 µCGyair-1 cm-2 was obtained. This sensi-

tivity was about 600 times that of the commercial α-Se X-ray detector. 

9 Halide perovskite 3.0756 2019 2020

Crystals 2022, 12, x FOR PEER REVIEW 10 of 16 
 

 

5 Solar cell 4.2476 2019 2022 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ 

6 Phosphor 3.7023 2015 2018 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂ 

7 CsPbBr3 3.2263 2019 2022 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ 

8 Liquid-phase epitaxy 3.1693 2009 2018 ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂ 

9 Halide perovskite 3.0756 2019 2020 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂ 

10 Electron trap 3.0362 2005 2010 ▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂ 

Based on these keywords, we can observe the popular materials, preparation meth-

ods, and research hotspots in the field of perovskite X-ray detectors. Keywords related to 

crystals appeared four times in the first twenty centrality lists, namely, crystal (centrality 

= 0.38), crystal structure (centrality = 0.22), single crystal (centrality = 0.21), and crystal 

growth (centrality = 0.16). It shows that researchers are more concerned about the crystal 

growth of perovskite materials. Generally, people have academic interest in the crystal 

structure of many perovskite materials, such as large single crystals, polycrystalline struc-

tures, microcrystalline film, nanocrystalline structures, etc. CsPbBr3 (strength = 3.2263) 

and halide perovskite (strength = 3.0756) were among the top 10 keywords with the 

strongest citation bursts during the research history of perovskite X-ray detectors; we can 

further find that all-inorganic halide perovskite materials were a research hotspot in the 

field of perovskite X-ray detectors. 

In 2019, Zongyan Gou et al. [43] successfully prepared CsPbBr3 microcrystalline thick 

film for self-powered X-ray sensors using a low-cost simple solution synthesis method. 

The photoelectric performance of the detector was further improved via multiple dissolu-

tion recrystallization. At the LOD of 0.053 µGyairs-1, the sensitivity of the CsPbBr3 micro-

crystalline thick film X-ray detector was improved to 470 µCGyair-1 cm-2. This sensitivity 

was higher than that obtained working at an electric field strength greater than 10 Vmm-

1, and it was more than that of the α-Se X-ray detector—20 times higher. In 2020, Gebhard 

J. Matt et al. [44] reported a simple, scalable, and low-cost preparation method for CsPbBr3 

thin films. Melt treatment was applied directly on substrates of any size. X-ray diffraction 

analyses of several 100 mm thick melt-treated films confirmed the crystalline domain in 

the range of cm2. The resistance of CsPbBr3 film was 8.5 GΩ cm, and the hole mobility was 

18 cm2 V-1 s-1. Under the electric field of 1.2 × 104 Vcm-1, the sensitivity was 1450 µCGyair-1 

cm-2, and the LOD was under sub µGyairs-1. The high crystallinity and high chemical purity 

of CsPbBr3 film after melt treatment showed that its performance was equivalent to the 

most advanced X-ray detector technology based on Cd(Zn)Te. In 2020, Bin Xin et al. [45] 

reported a CsPbX3 (X = Br, I) X-ray detector. The indirect band-gap properties of perov-

skite materials were revealed using optical characterization, time-resolved photolumines-

cence (TRPL), and theoretical simulation. It was shown that the temperature-related car-

rier lifetime difference related to the composition of CsPbX3 perovskite was due to the 

change in the band-gap structure. TRPL, theoretical analysis, and X-ray radiation meas-

urements showed that the high response of UV/visible-blind yellow-phase CsPbI3 under 

high-energy X-ray exposure was due to the nature of the indirect band-gap structure of 

CsPbX3. The yellow-phase CsPbI3 X-ray detector achieved a sensitivity of up to 83.6 

µCGyair-1 cm-2 and an LOD of 1.7 mGyairs-1 when the test electric field intensity was 0.17 

Vμm-1. It exceeded commercial X-ray detectors and further confirmed excellent material 

quality, although the active layer was only based on ultra-thin (≈ 6.6 μm) CsPbI3 nano-

crystalline film. In 2020, Yuki Haruta et al. [46] prepared a CsPbBr3 thick film using the 

mist deposition method. The use of the polymer as a buffer layer avoided the stripping of 

thick film and solved the problem that it is difficult to prepare perovskite thick film. In 

addition, CsPbBr3 thick films with a thickness of 110 μm were successfully obtained using 

the scalable solution method. In addition, an X-ray detector based on CsPbBr3 thick film 

was prepared, and the high sensitivity of 11,840 µCGyair-1 cm-2 was obtained. This sensi-

tivity was about 600 times that of the commercial α-Se X-ray detector. 

10 Electron trap 3.0362 2005 2010

Crystals 2022, 12, x FOR PEER REVIEW 10 of 16 
 

 

5 Solar cell 4.2476 2019 2022 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ 

6 Phosphor 3.7023 2015 2018 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂ 

7 CsPbBr3 3.2263 2019 2022 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ 

8 Liquid-phase epitaxy 3.1693 2009 2018 ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂ 

9 Halide perovskite 3.0756 2019 2020 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂ 

10 Electron trap 3.0362 2005 2010 ▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂ 

Based on these keywords, we can observe the popular materials, preparation meth-

ods, and research hotspots in the field of perovskite X-ray detectors. Keywords related to 

crystals appeared four times in the first twenty centrality lists, namely, crystal (centrality 

= 0.38), crystal structure (centrality = 0.22), single crystal (centrality = 0.21), and crystal 

growth (centrality = 0.16). It shows that researchers are more concerned about the crystal 

growth of perovskite materials. Generally, people have academic interest in the crystal 

structure of many perovskite materials, such as large single crystals, polycrystalline struc-

tures, microcrystalline film, nanocrystalline structures, etc. CsPbBr3 (strength = 3.2263) 

and halide perovskite (strength = 3.0756) were among the top 10 keywords with the 

strongest citation bursts during the research history of perovskite X-ray detectors; we can 

further find that all-inorganic halide perovskite materials were a research hotspot in the 

field of perovskite X-ray detectors. 

In 2019, Zongyan Gou et al. [43] successfully prepared CsPbBr3 microcrystalline thick 

film for self-powered X-ray sensors using a low-cost simple solution synthesis method. 

The photoelectric performance of the detector was further improved via multiple dissolu-

tion recrystallization. At the LOD of 0.053 µGyairs-1, the sensitivity of the CsPbBr3 micro-

crystalline thick film X-ray detector was improved to 470 µCGyair-1 cm-2. This sensitivity 

was higher than that obtained working at an electric field strength greater than 10 Vmm-

1, and it was more than that of the α-Se X-ray detector—20 times higher. In 2020, Gebhard 

J. Matt et al. [44] reported a simple, scalable, and low-cost preparation method for CsPbBr3 

thin films. Melt treatment was applied directly on substrates of any size. X-ray diffraction 

analyses of several 100 mm thick melt-treated films confirmed the crystalline domain in 

the range of cm2. The resistance of CsPbBr3 film was 8.5 GΩ cm, and the hole mobility was 

18 cm2 V-1 s-1. Under the electric field of 1.2 × 104 Vcm-1, the sensitivity was 1450 µCGyair-1 

cm-2, and the LOD was under sub µGyairs-1. The high crystallinity and high chemical purity 

of CsPbBr3 film after melt treatment showed that its performance was equivalent to the 

most advanced X-ray detector technology based on Cd(Zn)Te. In 2020, Bin Xin et al. [45] 

reported a CsPbX3 (X = Br, I) X-ray detector. The indirect band-gap properties of perov-

skite materials were revealed using optical characterization, time-resolved photolumines-

cence (TRPL), and theoretical simulation. It was shown that the temperature-related car-
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Based on these keywords, we can observe the popular materials, preparation methods,
and research hotspots in the field of perovskite X-ray detectors. Keywords related to crystals
appeared four times in the first twenty centrality lists, namely, crystal (centrality = 0.38),
crystal structure (centrality = 0.22), single crystal (centrality = 0.21), and crystal growth
(centrality = 0.16). It shows that researchers are more concerned about the crystal growth
of perovskite materials. Generally, people have academic interest in the crystal structure
of many perovskite materials, such as large single crystals, polycrystalline structures,
microcrystalline film, nanocrystalline structures, etc. CsPbBr3 (strength = 3.2263) and
halide perovskite (strength = 3.0756) were among the top 10 keywords with the strongest
citation bursts during the research history of perovskite X-ray detectors; we can further
find that all-inorganic halide perovskite materials were a research hotspot in the field of
perovskite X-ray detectors.

In 2019, Zongyan Gou et al. [43] successfully prepared CsPbBr3 microcrystalline thick
film for self-powered X-ray sensors using a low-cost simple solution synthesis method. The
photoelectric performance of the detector was further improved via multiple dissolution
recrystallization. At the LOD of 0.053 µGyairs−1, the sensitivity of the CsPbBr3 microcrys-
talline thick film X-ray detector was improved to 470 µCGyair

−1 cm−2. This sensitivity
was higher than that obtained working at an electric field strength greater than 10 Vmm−1,
and it was more than that of the α-Se X-ray detector—20 times higher. In 2020, Gebhard J.
Matt et al. [44] reported a simple, scalable, and low-cost preparation method for CsPbBr3
thin films. Melt treatment was applied directly on substrates of any size. X-ray diffraction
analyses of several 100 mm thick melt-treated films confirmed the crystalline domain in
the range of cm2. The resistance of CsPbBr3 film was 8.5 GΩ cm, and the hole mobility
was 18 cm2 V−1 s−1. Under the electric field of 1.2 × 104 Vcm−1, the sensitivity was
1450 µCGyair

−1 cm−2, and the LOD was under sub µGyairs−1. The high crystallinity and
high chemical purity of CsPbBr3 film after melt treatment showed that its performance was
equivalent to the most advanced X-ray detector technology based on Cd(Zn)Te. In 2020, Bin
Xin et al. [45] reported a CsPbX3 (X = Br, I) X-ray detector. The indirect band-gap properties
of perovskite materials were revealed using optical characterization, time-resolved photolu-
minescence (TRPL), and theoretical simulation. It was shown that the temperature-related
carrier lifetime difference related to the composition of CsPbX3 perovskite was due to
the change in the band-gap structure. TRPL, theoretical analysis, and X-ray radiation
measurements showed that the high response of UV/visible-blind yellow-phase CsPbI3
under high-energy X-ray exposure was due to the nature of the indirect band-gap struc-
ture of CsPbX3. The yellow-phase CsPbI3 X-ray detector achieved a sensitivity of up to
83.6 µCGyair

−1 cm−2 and an LOD of 1.7 mGyairs−1 when the test electric field intensity
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was 0.17 Vµm−1. It exceeded commercial X-ray detectors and further confirmed excellent
material quality, although the active layer was only based on ultra-thin (≈6.6 µm) CsPbI3
nanocrystalline film. In 2020, Yuki Haruta et al. [46] prepared a CsPbBr3 thick film using
the mist deposition method. The use of the polymer as a buffer layer avoided the stripping
of thick film and solved the problem that it is difficult to prepare perovskite thick film.
In addition, CsPbBr3 thick films with a thickness of 110 µm were successfully obtained
using the scalable solution method. In addition, an X-ray detector based on CsPbBr3 thick
film was prepared, and the high sensitivity of 11,840 µCGyair

−1 cm−2 was obtained. This
sensitivity was about 600 times that of the commercial α-Se X-ray detector.

Furthermore, single-crystal technology appeared more and more in research on
X-ray detection. Compared with polycrystalline thin films, single crystals have smaller
well density and higher charge collection efficiency. In 2019, Weicheng Pan et al. [47]
prepared thick quasicrystal CsPbBr3 thin films via hot pressing, with a sensitivity of
55,684 µCGyair

−1 cm−2. The high crystalline quality of CsPbBr3 film and the shallow bro-
mide vacancy defects formed during high temperature led to large µτ. Thus, it had a high
photoconductivity gain factor and high detection sensitivity. The detector also showed
relatively fast response speed, negligible baseline drift, and excellent stability, which made
the CsPbBr3 X-ray detector very competitive in high-contrast X-ray detection. In 2020,
Qiang Xu et al. [48] used high-Z-value CsPbBr3 perovskite with large carrier diffusion
length for radiation detection application. Free-seeding CsPbBr3 single crystals were grown
directly on ITO. Moreover, the Ag/CsPbBr3/ITO sandwich X-ray detector with Schottky
contact was prepared at room temperature. The X-ray detection and phase-contrast X-ray
imaging of all-inorganic halide perovskite CsPbBr3 single crystals were studied. When
the applied voltage was 8 V, the device had low dark current density (5–27 nA cm−2)
(Figure 2a) and high sensitivity (770 µCGyair

−1 cm−2); this high-sensitivity X-ray detector
is expected to be used in pixel imaging applications. In 2020, Junchi Li et al. [49] adopted
the Rb-doping strategy to enhance the atomic interaction and orbital coupling between
Pb and Br atoms, so as to improve the carrier transport and X-ray detection performance.
The X-ray detector based on a small amount (0.037%) of Rb-doped Cs(1-x)RbxPbBr3 single
crystals showed a high sensitivity of 8097 µCGyair

−1 cm−2 (Figure 7a). This work pro-
vides a feasible strategy to improve the X-ray detection performance using the chemical
doping of all-inorganic perovskite X-ray detectors. In 2020, Hongjian Zhang et al. [50]
reported a sensitive X-ray detector for preparing inorganic perovskite lead CsPbBr3 sin-
gle crystal via solution growth and synthesized high-quality inorganic perovskite lead
CsPbBr3 single crystals using the improved low-temperature solution method, which had
high transmittance and mobility. By designing the detector with an asymmetric electrode
configuration, the migration of ions was effectively inhibited under high voltage, low dark
current, and excellent light response. The sensitivity of the optimized detector to 80 kVp
X-ray detection under 20 Vmm−1 electric field was 1256 µCGyair

−1 cm−2 (Figure 7b), which
was 60 times higher than that of the commercial α-Se detector. In 2021, Jiayu Di et al. [51]
reported the method of growing high-quality pure-phase CsPbBr3 perovskite single crys-
tals via humidity-controlled solvent evaporation at room temperature. At the same time,
the room-temperature phase-transition process from three-dimensional cubic CsPbBr3 to
two-dimensional layered tetragonal CsPb2Br5 and the specific mechanism of humidity
induction were revealed. In addition, compared with organic–inorganic perovskite, the
prepared CsPbBr3 single crystals were more stable under high humidity and met the long-
term working conditions of X-ray detectors. The X-ray detector based on CsPbBr3 single
crystals had high sensitivity, and the LOD was as low as 1.89 µGyairs−1, which can meet
the needs of medical diagnosis (Figure 7c).
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Although perovskite nanocrystalline (NC) scintillators can be used with silicon detec-
tors, they have strong reabsorption problems, and the response rate of silicon detectors is
usually low. Therefore, in 2020, Xiaoming Li et al. [52] reported an effective strategy based
on all-perovskite integrated devices. On the one hand, the efficient ultrafast exciton routing
in CsPbBr3 NCs induced a large Stokes shift, which greatly improved the photolumines-
cence quantum yield (>50%) and the radiation luminescence efficiency (>3-fold). On the
other hand, perovskite photodiodes with a broadband response rate higher than 0.4 AW−1

were prepared. The integrated detector made full use of the high X-ray emission efficiency
of engineered CsPbBr3 NCs and the high response rate of perovskite photodiodes and
realized the high sensitivity of 54,684 µCGy−1 cm−2 at the dose rate of 8.8 µGy−1.

In addition, it is worth noting that the scintillation property ranks fourth in Table 4
(centrality: 0.27) and first in Table 5 (strength: 6.9223) and lasted the longest (2005–2018). It
shows that most researchers in the field of perovskite X-ray detectors paid more attention to
research on scintillator performance. In scintillator imaging, all-inorganic perovskite halides
have irreplaceable advantages because of their low price. In 2019 [53], Yuhai Zhang et al.
reported a colloidal scintillator containing CsPbBr3 nanosheets (up to 150 mg/mL) synthe-
sized at room temperature. Compared with the commercially available Ce: LuAG single-
crystal scintillator (18,000 photons/MeV), the CsPbBr3 colloid had a higher light yield
(21,000 photons/MeV). The scintillators based on these nanosheets showed strong radiation
luminescence and long-term stability under X-ray illumination. Importantly, the colloidal
scintillator could be easily cast into uniform crack-free large-area film (8.5 cm × 8.5 cm)
that had the thickness required for high-resolution X-ray imaging applications. In 2020 [54],
Fei Cao et al. synthesized low-cost polymer CsPbBr3@Cs4PbBr6 materials using the simple
solution method, and the price per gram is about USD 3.1. Moreover, made using blade-
coating technology, CsPbBr3@Cs4PbBr6 large-area film (360 mm × 240 mm) was used for
X-ray imaging; it showed stable and sensitive scintillation response to X-ray signals and had
a superior linear range (93.75 to 1340.37 µGyairs−1) and ultra-high time resolution (delay
time was only 3 ns). In 2021, Zhaofen Wang et al. [55] synthesized the concentrated colloid
of CsPbBr3 nanotablets using the coprecipitation method. Through drop casting, smooth
scintillation screens (5 cm × 5 cm) with different thicknesses were formed via self-assembly,
showing high internal and external photoluminescence quantum yields (PLQYs) (84.5%
and 75.1%, respectively). The screen-based X-ray detector showed an amazing LOD, up
to 27 nGyairs−1, two orders of magnitude lower than the conventional dose of medical
diagnosis. It is important that the optimum thickness of the screen was 15 µm, and show-
ing unprecedented spatial resolution (26 µm). This represented an order-of-magnitude
improvement in the perovskite community.

Moreover, in 2018, Jin Hyuck Heo et al. [56] developed a high-performance nanocrys-
talline CsPbBr3 scintillator with high spatial resolution (9.8 lpmm−1 at modulation transfer
function (MTF) = 0.2; 12.5–8.9 lpmm−1 for a linear line chart), fast response time (about
200 ns), and excellent stability. Its average photoluminescence lifetime was about 5.6 times
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faster than that of commercial gadolinium oxysulfide (GOS), and its emission intensity
was stronger. GOS:Eu or GOS:Pr,Ce,F of other GOS without Tb activator had thin emis-
sion bands. In 2020, Sangeun Cho et al. [57] prepared mixed liquid scintillators using
perovskite nanocrystalline CsPbA3 (A: Cl, Br, I) combined with organic molecules (2,5-
diphenylloxazole). Compared with the most advanced cesium iodide and Gd2O2S, the
mixed liquid scintillators showed significant and highly competitive radioluminescence
quantum yields under X-ray irradiation commonly used for diagnosis and treatment.
Experimental and theoretical analyses showed that the enhanced quantum yield was re-
lated to the charge transfer from organic molecules induced by X-ray photons. In 2020,
Qiang Xu et al. [58] prepared a zero-dimensional Cs4PbBr6 material embedded in CsPbBr3
nanocrystals using the solution growth method. It had fast decay time (<10 ns), high-energy
resolution (3.0 ± 0.1%, 241 Am, 59.5 keV), high light yield (64,000 photons/MeV), and
long-term stability in various atmospheres (humidity, radiation). This zero-dimensional
CsPbBr3/Cs4PbBr6 material was proved to have large exciton binding energy. It increased
radiative emission and minimized non-radiative emission. Its fast, high-energy resolution
and high optical yield were mainly attributed to exciton recombination rather than free
carrier recombination. In 2021, Wang Chen et al. [59] made CsPbBr3 perovskite nanocrystals
nucleate and crystallize uniformly in high-viscosity PMMA. The image spatial resolution
of the flexible polymer ceramic scintillator screen reached 12.5 lpmm−1, and the LOD was
120 nGyairs−1. It is worth noting that the damaged CsPbBr3 nanocrystals under the influ-
ence of high-dose radiation could be completely repaired via annealing. In 2021, Yinsheng
Xu et al. [11] reported the formation of stable CsPbBr3 nanocrystals in an all-inorganic
glass matrix. Due to the protective effect of inorganic glass, the transparent composite
had good luminescence performance at the 520 nm center and good stability to water and
heat (250 ◦C in air). The high refractive index of the inorganic glass matrix improved the
radiation transition rate. CsPbBr3 nanocrystalline glass ceramics with these characteristics
showed good X-ray response and rapid attenuation. Under X-ray radiation (50 kV), the
emission intensity of CsPbBr3 nanocrystalline glass ceramics was half of that of commer-
cial scintillator Bi4Ge3O12 (BGO), and the decay time (15.2 ns) was one-twentieth of that
of BGO.

4. Conclusions

Based on bibliometrics, this paper summarizes the research progress in perovskite X-
ray detectors. According to the research focus in different periods, the following conclusions
can be drawn:

(1) After 2017, the number of papers published in this field increased exponentially.
Perovskite X-ray detectors have attracted extensive attention among researchers;

(2) In the last five years, studies on perovskite X-ray detectors were published in the
fields of biochemistry and molecular biology, applied chemistry, energy and fuels,
mechanics, and other disciplines, which shows that interdisciplinary research in this
field progresses day by day.

According to bibliometric research on the development trend of perovskite X-ray
detectors, we believe that the future development direction of this field may focus on the
following issues:

(1) The high-sensitivity detection of perovskite X-ray detectors is no longer a challenge for
researchers, but too-cumbersome synthesis processes and too-complex nanostructures
hinder the understanding of its mechanism;

(2) The high cost of laboratory products restrains the large-scale application of perovskite
X-ray detectors;

(3) The stability of perovskite materials, especially those containing organic–inorganic
hybrid perovskite materials, needs to be improved. How to improve their stability to
face the complex radiation environment is not a small challenge.
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