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Abstract: We designed an ionic salt by combining a π-conjugated anion and a cholinium cation.
It formed homogeneous mixtures with water in various weight ratios. The obtained mixtures
showed chromonic liquid-crystalline behavior in a wider concentration range as compared to
analogous compounds with inorganic cations. Although only an exhibition of nematic phases was
previously reported by Kasianova et al. for analogous compounds with an inorganic cation in 2010,
the ionic salt with a cholinium cation showed not only nematic phases but also hexagonal columnar
phases. The formation of hexagonal columnar phases is attributed to its ability to form mesophases
even in a high concentration range, which enables the cylindrical aggregates of the π-conjugated
anions to form dense packing. By examining the states of the water molecules, we revealed that
the ability of the cholinium cation to form a hydrated ionic liquid state strongly contributes to the
widening of the concentration range forming chromonic liquid-crystalline behavior.
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1. Introduction

Chromonic liquid crystals are a class of lyotropic liquid crystals. A unique point of
chromonic liquid crystals is that they have molecular structures composed of a polycyclic
aromatic core having several ionic and/or hydrophilic groups at its periphery [1–8]. It
has been generally understood that the aromatic core plays a key role for the formation of
self-assembled cylindrical aggregates through π-π interactions and/or other interactions.
The hydrophilic groups are important for solubility into water. To date, there have been
many reports of ionic compounds exhibiting chromonic liquid-crystalline (LC) behavior.
Most of them are composed of π-conjugated mesogens with anionic groups and inorganic
cations [1–6] while, in some case, chromonic liquid crystals composed of π-conjugated
cations and inorganic anions have been also reported [7,8].

On the other hand, in the several decades of studies, there have been a growing interest
on the use of organic cations for creating functional ionic compounds, such as ionic liq-
uids [9–11], ionic liquid crystals [12–15], ionic plastic crystals [16–18], and ionic crystals [19].
In the course of studies on ionic liquids, it has been revealed that there is a potential that a
slight difference of the organic cation structures results in the large difference of physico-
chemical properties and functions. For example, imidazolium cations are recognized as
one of the most suitable cations for designing ionic liquids dissolving cellulose [20,21].
On the other hands, the use of cholinium cation has attracted an increasing attention for
yielding hydrated ionic liquids for dissolving some bio-functional polymers [22]. For exam-
ple, Fujita and Ohno reported that hydrated ionic liquids have a great potential as liquid
media for enzyme storage [23–25]. One of the important characteristics of hydrated ionic
liquids is that they maintain liquid states even in quite high concentration conditions. This
characteristic leads us to envision that the employment of suitable organic cations would
be one of an advanced strategy for controlling the chromonic LC behavior of π-conjugated
compounds with anionic groups.
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As an anion with π-conjugated structure, we have employed 4,4-(5,5-dioxidodibenzo[b,
d]thiene-3,7-diyl)dibenzenesulphonic acid (pQpdS) anion. It is an anion whose Cs salt
was reported to exhibit chromonic LC behavior at a water content of 85 wt% by Kasianova
et al. in 2010 [26]. As an organic cation, a cholinium (Ch) cation has been selected. By
combining these cation and anion, we have synthesized an organic salt, pQpdS-Ch (Fig-
ure 1). Its chromonic LC behavior in water has been examined using polarized optical
microscopy (POM) observation, differential scanning calorimetry (DSC), and X-ray diffrac-
tion (XRD) measurements.
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Figure 1. Molecular structure of pQpdS-Ch.

2. Materials and Methods

The synthesis scheme of pQpdS-H is shown in Scheme 1. To an aqueous solution
of choline hydroxide, an equimolar amount of 4,4-(5,5-dioxidodibenzo[b,d]thiene-3,7-
diyl)dibenzenesulphonic acid (pQpdS-H) was added. The solution was stirred until the
white solid of pQpdS-H dissolved into the solution. Evaporation of water yielded a
pQpdS-Ch as a white solid.
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Scheme 1. Synthesis of pQpdS-Ch.

1H NMR (400MHz, D2O): δ = 7.78 (s, 2H), 7.64 (d, J = 8.4 Hz, 4H), 7.41–7.35 (m, 8H),
3.92–3.89 (m, 4H), 3.37–3.35 (m, 4H), 3.05 (s, 18H).

3. Results and Discussion

Mixtures of pQpdS-Ch and H2O in 100–X:X weight ratios (X = 90, 80, 70, 60, and 50)
were prepared by adding two components into Eppendorf tubes. In order to increase the
homogeneity of the mixtures, the tubes were vibrated and centrifugation was performed.
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We could obtain the homogeneous mixtures when 90 ≥ X ≥ 50 while it was not obtained
when X ≤ 40. Small amounts of the homogeneous mixtures were put on a slide glass
and covered with a cover glass. Polarizing optical microscope (POM) observation was
carried out for them while cooling from isotropic phases observed at around 80 ◦C. The
obtained textures are shown in Figure 2. It has been found that the samples with X
≥ 90 shows no birefringence in the temperature range, indicating that mesomorphic
behavior is not induced when X ≥ 90. On the other hand, the mixture with X = 80 shows
a schlieren texture, which is a characteristic of nematic phases. This behavior is similar
to that reported by Kasianova et al. for pQpdS with Cs cation [26]. A notable difference
has been observed when X ≤ 70. These mixtures show focal conic fan-textures, which are
indicative of the formation of columnar LC phases. The thermotropic phase transition
behavior of the mixtures is summarized in a bar graph (Figure 3). The formation of
the nematic phases results from the cylinder aggregation of the pQpdS anions and
the subsequent axial alignment of the cylinders. That of the columnar phases can be
attributed to the formation of the positional order of the cylinders as the decrease of the
inter-cylinder distance.
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weight ratios. (a) X = 90 at 25 ◦C, (b) X = 80 at 10 ◦C, (c) X = 70 at 25 ◦C, (d) X = 60 at 25 ◦C, and
(e) X = 50 at 25 ◦C.
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In order to confirm the formation of columnar phases, we have performed XRD
measurements for the mixtures at 30 ◦C. For avoiding the evaporation of water from
the sample, the LC samples were put on an aluminium pan and rapidly covered by a
polymer film (DURA SEAL, DIVERSIFIED BIOTECH). A XRD pattern observed for the
mixture (X = 60) is shown in Figure 4. An intense peak and two weak peaks were found
in the small angle region. The d-values estimated from the peak position θ values are
32.7, 18.7, and 16.0 Å, respectively. These peaks can be indexed as (100), (110), and (200)
reflections of a hexagonal structure, which lead us to identify the columnar phase as a
hexagonal columnar (Colh) phase. The intercolumnar distances in the Colh LC phase
can be calculated to be 37.8 Å from the d-values. The formation of Colh phases for bent
shaped chromonic liquid crystals has been also reported by Wang et al. in 2018 [27],
which supports our characterization.
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POM observation for macroscopically aligned samples is a useful strategy for
deducing the molecular assembled structures in LC states. In order to employ this
strategy for the present materials, we sandwiched a small amount of a pQpdS-Ch/H2O
(X = 60) mixture between a cover glass and a slide glass and then added a mechanical
shearing to the cover glass. It is a technique to align the column axis to the shearing
direction [28]. As expected, the sheared sample show a homogeneous texture under
POM observation, which is indicative of the formation of 1D-aligned columnar phases.
The aligned samples were observed under POM with a 530 nm retardation plate inserted
in the optical path at 45 degrees. The shearing direction is set parallel and perpendicular
to the slow axis direction of the retardation plate. It has been found that, when these two
directions are parallel, the texture is observed in a yellow (Figure 5a). It turns into in a
blue as the rotation of the sample through 90 degrees (Figure 5b). These results mean
that the slow axis of the Colh liquid crystals is perpendicular to the column axis, namely
the pQpdS-Ch/H2O (X = 60) mixture has a negative birefringence. It is consistent with
the results obtained for analogous compound with the Cs cation in a nematic phase that
was reported by Kasianova et al. [26].
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Figure 5. Polarized optical microscopic images of the mixtures of pQpdS-Ch/H2O (X = 60) in the
Colh phase after shearing. (a) The shearing direction is parallel to the slow axis of the retardation
plate. (b) The shearing direction is perpendicular to the slow axis of the retardation plate.

In order to further confirm the molecular assembled structure of the pQpdS-
Ch/H2O mixtures in the Colh phase, we have performed polarized IR measurements. A
1D-aligned sample of the pQpdS-Ch/H2O (X = 70) mixture was prepared by the same
method. IR absorbance was measured with setting the angle of the polarizer (θp) in
the range from 0 to 180 degrees. The Colh LC sample was set in such a way that its
column axis was parallel to θp = 0 degree. While the S=O stretching vibration (νS=O)
of the pQpdS molecules was observed at 1301 cm–1 independent of the θp angles, the
peak strength of νS=O clearly depended on the θp angles. For example, the absorbance of
νS=O was 0.20 when θp = 0 degree, which increases as the increase of θp (Figure 6a). For
further clarify θp-dependence of the νS=O absorbance, we have constructed a polar plot
(Figure 6b). It indicates that the sulfonyl groups of the pQpdS molecules are oriented
perpendicular to the 1D column axis.
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The phase transition behavior of these mixtures has been further examined using DSC
measurements. The DSC measurements were performed in the temperature range from 0 to
80 ◦C at the heating/cooling rate of 10 ◦C min−1. The obtained DSC charts on cooling and
heating are shown in Figure 7a,b, respectively. In the cooling process, an exothermic peak is
found for each sample when X ≤ 80. These peaks can be attributed to the enthalpy change
at the phase transition from an isotropic phase to an LC phase. It can be seen that the peak
position shifts to higher temperature region as the decrease of X, which is consistent with
the isotropization temperatures observed by POM observation. The thermal stabilization
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of the mesophases upon the decrease of X can be explained by the increase of the packing
density of the cylinder aggregates. Another notable trend is that the peak area increases as
the decrease of X. For example, the peak area of the phase transition from the Colh to Iso
phases is 0.83 mJ/mg for the pQpdS-Ch/H2O (X = 70) mixture while it increases to 2.16
mJ/mg for pQpdS-Ch/H2O (X = 50). These enthalpy changes can be mainly ascribed to the
cleavage of the dipole–dipole interaction between the sulfonyl groups. Rough calculation
is described in the Supplemental Information.
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It is considered that the water molecules in the mixtures exist as bound water
and/or free water. With an aim to investigate the states of water in the mixtures, we have
performed DSC measurements in lower temperature region. The DSC measurements
were carried out from room temperature to –80 ◦C. A peak corresponding to crystalliza-
tion of free water was found at a temperature lower than 0 ◦C. By estimating the amount
of free water in the mixtures from the peak area, the molar ratios of bound water and
free water in the mixtures (X = 50–90) were investigated and summarized in Table 1. It
has been found that 15–25 water molecules strongly interact with a pQpdS-Ch molecule
and then exist as bound water. These results are consistent with the number of hydration
water molecules reported for cholinium-based hydrated ionic liquids [29]. We assume
that the cylindrical aggregates formed by the pQpdS anions are surrounded by sheath
of hydrated ionic liquids that produce liquidity and prevent crystallization even in the
water poor condition (70 ≥ X ≥ 50).

Table 1. Weight ratios and molar ratios of pQpdS-Ch, free water, and bound water.

Water
Content X

Exothermic Peak
Area (mJ/mg)

Component Ratios in Weight Component Ratios in Mole

pQpdS-Ch Free Water Bound Water pQpdS-Ch Free Water Bound Water

90 256 10 77 13 1 313 55

80 228 20 38 12 1 139 24

70 184 30 55 15 1 75 20

60 135 40 40 20 1 41 20

50 106 50 32 18 1 26 15

Based on the results of POM observation, DSC, and XRD measurements, here
we discuss the molecular assembled structure of the pQpdS-Ch/H2O mixtures. For
assuming the molecular assembled structures, an important characteristic of pQpdS-Ch
is that it has a strong dipole moment at the sulfonyl group, which can be calculated



Crystals 2022, 12, 1548 7 of 11

to be 5.2 D by DFT calculation (Figure S1) (see supplementary materials). Therefore,
it is expected that it forms a dimer in the dissolved state as well as in the assembled
states in water. The size of the pQpdS-Ch anion is about 20 Å. Based on these results,
here we imagine a molecular assembled structure of the pQpdS-Ch/H2O (X = 60)
mixture in the Colh phase. The number of bound water per the dimer of the pQpdS-Ch
molecules calculated from the endothermic peaks in the DSC charts is 20×2 = 40. The
inter columnar distance is calculated to be 37.8 Å as explained in the above paragraph.
Considering these data and the component weight ratio, the molecular assembled
structures of the pQpdS-Ch/H2O (X = 60) mixture in the Colh phase is drawn as shown
in Figure 8.
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mixture in the Colh phase.

In order to further confirm the effects of the cation species, we have also prepared
analogous compounds with other inorganic cations, such as Li, Na, and K cations. pQpdS-
Y (Y = Li, Na, and K) were prepared according to the same procedure used for pQpdS-Ch.
They were obtained as white or slightly yellowish white compounds (Figure S2). The
mixtures of these compounds and water were prepared with varying the component ratios
and their phase transition behavior was examined by POM observation.
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It has been found that the exhibition of N phases was observed for the pQpdS-Li/H2O
mixtures when the water content value is 90 ≥ X ≥ 85 and that of Colh phases was observed
when X = 80 (Figure 9). The water content dependence of the mesophase pattern is similar
to that of the pQpdS-Ch/H2O mixtures. These results indicate that the formation of Colh
is a phenomena that is observed not solely for pQpdS-X with organic cations but also for
pQpdS-X with inorganic.

Crystals 2022, 12, 1548 8 of 11 
 

 

 
Figure 9. Polarized optical microscopic images of the pQpdS-Li/H2O mixtures in the 100–X:X 
weight ratios. (a) X = 95 at 25 °C, (b) X = 90 at 20 °C, (c) X = 85 at 25 °C, (d) X = 80 at 50 °C, and (e) X 
= 70 at 25 °C. 

On the other hand, we have found that the pQpdS-Na/H2O mixtures forms only N 
phases when 95 ≥ X ≥ 80 (Figure 10) and those with 70 ≥ X form crystalline states. Com-
paring the water content range forming mesophases for the pQpdS-X/H2O mixtures (Fig-
ures 3 and 11), it can be seen that the employment of the cholinium cation provides chro-
monic liquid crystals showing LC behavior in the widest water content range. It is at-
tributed to the higher solubility of pQpdS-Ch into water that results from its lower crys-
tallinity than those with inorganic cations. Namely, the employment of the cholinium cat-
ion increases the conformational degrees of freedom, which contributes to the inhibition 
of the crystallization. The melting point of pQpdS-Ch is higher than 100 °C (Figure S3) 
that is the important temperature of the definition of ionic liquids. However, considering 
the recent studies on ionic liquids where hydrated organic salts are called hydrated ionic 
liquids [23–25,30], we expect that pQpdS-Ch/H2O mixture can be regarded as hydrated 
ionic liquids exhibiting chromonic LC behavior.  

 
Figure 10. Polarized optical microscopic images of the pQpdS-Na/H2O mixtures in the 100–X:X 
weight ratios. (a) X = 95 at 25 °C, (b) X = 90 at 25 °C, (c) X = 85 at 25 °C, and (d) X = 80 at 25 °C. 

Figure 9. Polarized optical microscopic images of the pQpdS-Li/H2O mixtures in the 100–X:X weight
ratios. (a) X = 95 at 25 ◦C, (b) X = 90 at 20 ◦C, (c) X = 85 at 25 ◦C, (d) X = 80 at 50 ◦C, and (e) X = 70
at 25 ◦C.

On the other hand, we have found that the pQpdS-Na/H2O mixtures forms only
N phases when 95 ≥ X ≥ 80 (Figure 10) and those with 70 ≥ X form crystalline states.
Comparing the water content range forming mesophases for the pQpdS-X/H2O mixtures
(Figures 3 and 11), it can be seen that the employment of the cholinium cation provides
chromonic liquid crystals showing LC behavior in the widest water content range. It
is attributed to the higher solubility of pQpdS-Ch into water that results from its lower
crystallinity than those with inorganic cations. Namely, the employment of the cholinium
cation increases the conformational degrees of freedom, which contributes to the inhibition
of the crystallization. The melting point of pQpdS-Ch is higher than 100 ◦C (Figure S3)
that is the important temperature of the definition of ionic liquids. However, considering
the recent studies on ionic liquids where hydrated organic salts are called hydrated ionic
liquids [23–25,30], we expect that pQpdS-Ch/H2O mixture can be regarded as hydrated
ionic liquids exhibiting chromonic LC behavior.

In the course of studies on ionic liquids, they have been used in a wide range of fields,
including electrochemistry, analysis, catalysis, and solvents. Focusing on hydrated ionic
liquids, they have been expected as potential solvent for biomolecules [23,31]. On the
other hand, chromonic liquid crystals have been investigated as sensors [32] and optical
materials [33]. We believe that the present material design will attract attention in a wide
field of research ranging from biotechnology to material chemistry.
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4. Conclusions

We have succeeded in preparing a new class of an organic salt pQpdS-Ch showing
chromonic liquid-crystalline (LC) behavior. This compound is composed of a rod-shaped
aromatic anion with a strong dipole moment and cholinium cations. Both of two compo-
nents owes their specific tasks. The former plays a key role for the formation of cylindrical
aggregates via dipole–dipole interactions. The latter plays an important role for the for-
mation of hydrated states. Moreover, since the hydrated cholinium cation has a larger
positional and conformational degrees of freedom than inorganic cations, it results in the
inhibition of the crystallization of the cylindrical aggregates. This effect enables to form
chromonic LC mesophases even in a wider concentration range than a series of analogous
compounds with inorganic cations, which leads to the exhibition of chromonic hexagonal
columnar phases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12111548/s1, Figure S1: A schematic image of the molecular
assembled structure. Figure S2: Pictures of the synthesized compounds; Figure S3: TG/DTA result.
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