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Abstract: The transient behavior of an ensemble of ellipsoidal particles in a supercooled binary melt is
considered. The model laws, based on the Fokker-Planck type kinetic equation for the particle-volume
distribution function, the thermal and mass integral balances for the binary melt temperature and
solute concentration, as well as the corresponding boundary and initial conditions, are formulated
and solved analytically. We show that the temperature and concentration increase with time due to the
effects of impurity displacement and latent heat emission by the growing ellipsoidal particles. These
effects are also responsible for metastability reduction. As this takes place, increasing the initial solute
concentration in a metastable binary melt increases the intensity of its desupercooling. The theory is
developed for arbitrary nucleation frequency with special consideration of two important nucleation
kinetics according to the Meirs and Weber-Volmer-Frenkel Zel’dovich mechanisms. An analytical
solution to the integrodifferential model equations is found in a parametric form. The theory contains
all limiting transitions to previously developed analytical approaches. Namely, it contains the growth
of spherical crystals in binary melts and ellipsoidal crystals in single-component melts.

Keywords: crystal growth; nucleation; ellipsoidal particles; particulate assemblages; binary melts

1. Introduction

It is well-known that a bulk crystallization process occurring from a metastable liquid
state takes place in various natural phenomena (e.g., freezing of supercooled water, magma
chambers, and lava lakes [1–6]). In addition, such a process is used in the chemical and
pharmacological industries as well as materials science and metallurgy to obtain various
substances (e.g., food additives and pharmaceuticals) with given properties [7–12]. The
volumetric crystallization process is based on nucleation and crystal growth of a new
phase in a metastable medium. At present, the theory of such a phase transformation
is well developed for spherical crystals (see, among others, [13–20]). However, often
the anisotropy of crystals transforms their shape by stretching the particles along one
direction [21–28]. In this case, it is convenient to use the ellipsoidal approximation of
growing particles to develop the theory. Previously, such an approach was developed for
volumetric crystallization of pure (one-component) melts [29,30].

In this paper, the theory of ellipsoidal crystal growth in binary melts is constructed.
The present study is based on two previously known methods for analyzing the evolution
of a polydisperse crystal ensemble in a metastable binary melt: (i) the theory of spherical
crystal ensemble growth in binary systems [31,32], and (ii) the theory of ellipsoidal crystal
ensemble evolution in single-component systems [29,30]. The analytical approach under
consideration has limiting transitions to these early known cases. Let us especially high-
light that the theory under consideration taking a non-spherical shape of growing crystals
into account can be used for the description of particle evolution in a metastable mag-
netic fluid [33], in the presence of buoyancy forces [34], polymerization [14] and removal
mechanisms of product crystals from a crystallizer [35–37].
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The main novelty of this paper is the theoretical consideration of the non-spherical
(ellipsoidal) shape of crystals growing in binary supercooled melts. It should be noted
that this theory generalizes previously known theories for ellipsoidal crystals evolving
in one-component supercooled melts [29,30] and spherical crystals evolving in binary
systems [31,32]. The paper is organized as follows. The growth rate of individual crystals
in binary melts is considered in Section 2. An integrodifferential model of governing
equations describing the evolution of a polydisperse ensemble of ellipsoidal particles is
formulated and solved in Section 3 using this growth rate. Our conclusions and possible
ways of developing the theory are formulated in Section 4.

2. Growth Rates of Individual Ellipsoidal Crystals in a Binary Melt

For the convenience of mathematical description of the growth of an ellipsoidal crystal,
we use the coordinate system of a prolate ellipsoid.

We consider the evolution of an ellipsoidal particle in a supercooled binary melt.
To find the temperature and solute concentration distributions as well as the particle
growth rate we introduce a special curvilinear coordinate system illustrated in Figure 1 [38].
These new ellipsoidal coordinates (σ, τ, and ϕ) can be expressed in terms of the Cartesian
coordinates x, y, and z as follows

x2 = a2
(

σ2 − 1
)(

1− τ2
)

cos2 ϕ,

y2 = a2
(

σ2 − 1
)(

1− τ2
)

sin2 ϕ, (1)

z = aστ,

where, the constant a describes a characteristic dimension of growing crystal, and σ ≥ 1,
−1 ≤ τ ≤ 1, 0 ≤ ϕ ≤ 2π.

Figure 1. Special curvilinear coordinates σ, τ, and ϕ of the prolate ellipsoid.

The Lamé parameters defining differential operators in curvilinear coordinates can be
written as follows

Hσ = a

√
σ2 − τ2

σ2 − 1
, Hτ = a

√
σ2 − τ2

1− τ2 , Hϕ = a
√
(σ2 − 1)(1− τ2). (2)
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The reasonability of using an ellipsoidal coordinate system (1) is justified by the fact
that (i) ellipsoidal coordinates of a prolate ellipsoid are a better approximation (as com-
pared to spherical particles) of the evolution of crystals in supercooled and supersaturated
liquids (see, for example, experimental data numerical simulations [21–28]), (ii) ellipsoidal
coordinates of a prolate ellipsoid allow one to obtain much simpler laws of evolution of
individual particles and ensembles of such particles (see, among others, Refs. [39,40]).

We will seek for a quasi-steady-state solution to the problem where the particle
surface σ = σ0 as well as the surfaces σ > σ0 surrounding σ0 represent the isothermal
(isoconcentration) surfaces. In this case, the temperature T and solute concentration C
satisfy the stationary equations ∇2T = 0 and ∇2C = 0 around the evolving crystal.
Assuming the steady-state conditions, these functions only depend on the distance σ from
the particle surface σ0, i.e., T = T(σ), and C = C(σ). For the sake of simplicity, we consider
the crystal temperature to be constant and neglect the diffusion mechanism in a crystal.
Taking this into account, the heat and mass transfer problem becomes

d
dσ

[(
σ2 − 1

)dT
dσ

]
= 0,

d
dσ

[(
σ2 − 1

)dC
dσ

]
= 0, σ ≥ σ0, (3)

σ̇ =
−λl

a2ρsL
dT
dσ

=
β∗
a
(
Tp −mC− T

)
, (1− k0)Cσ̇ = −D

a2
dC
dσ

, σ = σ0, (4)

T → Tl , C → Cl , σ� 1, (5)

where λl is the thermal conductivity parameter, LV = ρsL is the latent heat of solidification,
β∗ is the kinetic parameter, Tp is the phase transition temperature of pure melt, k0 and
m stand for the equilibrium segregation coefficient and liquidus slope, D is the solute
diffusion coefficient, and Tl and Cl are the temperature and solute concentration far from
the crystal surface.

Integrating Equation (3) with allowance for the boundary conditions (5), we come to
the temperature and solute concentration distributions in liquid

T(σ) = Tl + C1 ln
(

σ− 1
σ + 1

)
, C(σ) = Cl + C2 ln

(
σ− 1
σ + 1

)
, (6)

where C1 and C2 are constants.
Substituting Equation (6) into the first boundary condition (4), we arrive at

σ̇0 =
−2ε1C1

σ2
0 − 1

, C1 =

β∗
a

[
Tp − Tl −mCl −mC2 ln

(
σ0 − 1
σ0 + 1

)]
β∗
a

ln
(

σ0 − 1
σ0 + 1

)
− 2ε1

σ2
0 − 1

,

where ε1 = λl/(a2LV). The second boundary condition (4) leads to another expression for
C1 in the form of

C1 =
DC2

a2ε1(1− k0)

[
Cl + C2 ln

(
σ0 − 1
σ0 + 1

)] .

Equating C1 from these expressions, we obtain a quadratic equation for C2

αC2
2 + βC2 + γ = 0, (7)

α = β∗maε1(1− k0) ln2
(

σ0 − 1
σ0 + 1

)
,
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γ = −β∗
(
Tp − Tl −mCl

)
aε1(1− k0)Cl , β = − 2ε1D

σ2
0 − 1

+ β∗ ln
(

σ0 − 1
σ0 + 1

)

×
[

mClaε1(1− k0) +
D
a
−
(
Tp − Tl −mCl

)
aε1(1− k0)

]
.

The analytical solutions (6) and (7) show that the surface growth rate σ̇0 depends only
on σ0 and the binary melt temperature Tl and concentration Cl : σ̇0 = σ̇0(σ0, Tl , Cl). It means
that the particle volume growth rate dV/dt also depends on three variables V, Tl and Cl
and has the form

dV
dt

=
4
3

πa3
[
3σ2

0 (V)− 1
]
σ̇0(σ0(V), Tl , Cl), (8)

where σ0(V) is a real positive root of equation σ3
0 − σ0 −V1 = 0 and σ̇0 = σ̇0(σ0(V), Tl , Cl)

is determined by the analytical solution (6) and (7). Here V1 = 3V/(4πa3). Note that
the greater the parameter σ0, the closer the shape of the crystal to spherical (Figure 2).
To demonstrate the solution obtained let us introduce the dimensionless parameters as
follows ∆1 = ∆T/Tl , t1 = β∗Tlt/a, and α1 = β∗/(2aε1). Using these variables, we rewrite
expression (8) as

GR =
dV1

dt1
=

(3σ2
0 − 1)

(
∆1 − (mC2/Tl) ln σ0−1

σ0+1

)
1− α1(σ

2
0 − 1) ln σ0−1

σ0+1

. (9)

Note that expression (9) transforms to its analog for one-component melts at
C2 = Cl = 0 [30,41]. On the other hand, if crystals are almost spherical (σ0 � 1), the
growth rate tends to the corresponding law for spherical particles [42]. Figure 3 shows that
the volume growth rate GR increases with increasing the crystal volume V1 and binary melt
supercooling ∆1. In addition, the presence of dissolved impurities in the supercooled melt
reduces the growth rate of individual crystals. An important point is that this rate enters
the Fokker-Planck equation for the particle-volume distribution function and defines the
evolution of a polydisperse ensemble of ellipsoidal crystals in a supercooled binary melt.
This question is studied in the next section in more detail.

Figure 2. Ellipsoidal particles with different σ0.
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Figure 3. The growth rate GR of ellipsoidal crystals as a function of their volume V1 at a different melt
supercooling ∆1. The solid and dashed curves are plotted for binary (Cl = 55 at%) and one-component
(Cl = 0) melts, respectively. The model parameters are [43]: λl/(ρsL) = 2.75 · 10−8 m2 K−1 s−1,
a = 1.26 · 10−8 m, β∗ = 10−4 m K−1 s−1, m = 8.78 K at%−1, k0 = 0.86, D = 5.27 · 10−9 m2 s−1,
Tl = 2 · 103 K.

3. Evolution of a Particulate Ensemble of Ellipsoidal Crystals

Let us consider a binary melt which is initially supercooled by the value ∆T0 =
Tp − T0 −mC0 (T0 and C0 represent the initial temperature and solute concentration). We
assume that the melt is homogeneous and that, initially, it did not contain any particles. The
initial supercooling ∆T0 generates crystal nucleation and growth and partial supercooling
reduction due to the release of latent heat. Here we assume that each crystal evolves
changing its volume V and surface σ0 according to the theory developed in the previous
section (see also Figure 3). Taking possible fluctuations in particle growth rates into
account [44–47], we have the following kinetic equation for the particle-volume distribution
function f (V, t), which reads as

∂ f
∂t

+
∂

∂V

(
dV
dt

f
)
=

∂

∂V

(
DV

∂ f
∂V

)
, t > 0, V > V∗. (10)

This equation should be supplemented by the initial and boundary conditions

f = 0, t = 0;
dV
dt

f − DV
∂ f
∂V

= I(∆T), V = V∗; f → 0, V → ∞, (11)

where V∗ is the critical volume of nucleating particles. Here, the “diffusion” coefficient
DV of crystals in the space of their volumes includes the rate of particle fluctuations. For
the sake of simplicity, we consider the case when DV is proportional to the rate of particle
growth g = dV/dt [31,44] and has the form

DV = d0
g(t)

R(V)
, (12)

where d0 is a constant parameter, and R(V) is defined by the minimal work needed to
produce a crystal with volume V [44].

The frequency of nucleation I can be considered changing with the melt supercooling
∆T according to the Weber-Volmer-Frenkel Zel’dovich (WVFZ) or Meirs nucleation kinetics,
i.e., (see, among others, [31,48,49])
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I(∆T) =

 I∗ exp

[
−p(1−mCl/Tp)

∆T2
0

∆T2

]
, WVFZ

I∗(∆T)p, Meirs
,

where the parameters p and I∗ are different for WVFZ and Meirs kinetics are assumed to
be constant.

The heat and mass balance laws taking such fluctuations into account read as [31]

dTl
dt

= K
∞∫

V∗

(
dV
dt

f − DV
∂ f
∂V

)
dV, t > 0, K =

LV
ρmCm

, (13)

dCl
dt

= Cl(1− k0)

∞∫
V∗

(
dV
dt

f − DV
∂ f
∂V

)
dV, t > 0. (14)

Note that we have formulated the thermal and mass balances (13) and (14) through
the particle volume and not through the radius, as was done for spherical crystals [31].

It is significant that the balance laws (13) and (14) can be integrated using the kinetic
Equation (10) in the form of

Tl(t) = T0 + K
∞∫

V∗

V f dV, t > 0, (15)

Cl(t) = C0 exp

(1− k0)

∞∫
V∗

V f dV

, t > 0. (16)

As this takes place, the binary melt supercooling is given by [50]

∆T = Tp −mCl − Tl , t > 0. (17)

Let us especially underline that this model was previously used to study the evolution
of particulate assemblages of spherical crystals in Refs. [19,31,51] for pure and binary
supercooled liquids. Here we extend this analysis to the case of ellipsoidal crystals.

For the sake of convenience, we introduce dimensionless variables and parameters
as follows

τ =
t
t0

, s =
V
V0

, F = V2
0 f , s∗ =

V∗
V0

, z = s− s∗, u0 =
d0

V0
, w =

∆T
∆T0

,

Tdl =
Tl

∆T0
, Cdl =

Cl
C0

, Td0 =
T0

∆T0
, Tdp =

Tp

∆T0
, ξ1 =

K
∆T0

, (18)

V0 =

(
β∗∆T0

I0

)3/4
, t0 = (β3

∗∆T3
0 I0)

−1/4, I0 = I(∆T0), and

g0(t) =
ds
dt

=
t0

V0
g

at τ ≥ τ∗ and g0(t) = 0 at τ < τ∗, where τ∗ is the initiation time of a critical crystallite.
Rewriting the model (10)–(17) in dimensionless variables (19), one can get

∂F
∂x1

+
∂F
∂z1

= u0
∂2F
∂z2

1
, x1 > 0, z1 > 0, (19)
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F = 0, τ = 0; F → 0, z1 → ∞, (20)

F− u0
∂F
∂z1

=
exp(pϕ(w(x1))

µ(x1)
≡ J(x1), z1 = 0, (21)

where µ = g0 at s = s∗ and the modified time (x1) and space (z1) variables are used by
analogy with Refs. [19,31,51]

x1 =

τ∫
0

g0(τ̄)R(V0s(τ̄))dτ̄, z1 =

z∫
0

R1(z̄)dz̄, R1(z) = R(V0(z + s∗)), (22)

ϕ = ln w (Meirs kinetics), ϕ = 1− κCdl −
1− κCdl

w2 (WVFZ kinetics),

and κ = mC0/Tp.
Equation (19) supplemented by the initial and boundary conditions (20) and (21) can

be solved by means of the Laplace integral transform with respect to x1 (note that x1 = 0
corresponds to τ = 0). So, omitting tedious mathematical manipulations, we arrive at [52]

F(x1, z1) =

x1∫
0

J(x1 − y1)γ(y1, z1)dy1, (23)

γ(y1, z1) =
1

2u0
exp

(
2z1 − y1

4u0

)[
2
√

u0√
πy1

exp

(
−z2

1
4u0y1

)

− exp
(

z1

2u0
+

y1

4u0

)
erfc

(
z1

2
√

u0y1
+

√
y1

2
√

u0

)]
.

Now, assuming that R1(z̄) = z̄ [44] and substituting F from (23) into the heat and mass
balances (15) and (16), we come to the temperature and concentration of impurity

Tdl(x1) = Td0 + ξ1G0(x1), Cdl(x1) = exp[(1− k0)G0(x1)], (24)

G0(x1) =

x1∫
0

J(x1 − y1)h(y1)dy1, h(y1) =

∞∫
0

(
√

2z1 + s∗)γ(y1, z1)√
2z1

dz1. (25)

Now, combining expressions (17) and (24), one can obtain the supercooling w in the
form

w(x1) = Tdp − Td0 − ξ1G0(x1)−
mC0

∆T0
exp[(1− k0)G0(x1)]. (26)

Expressions (24)–(26) enable us to express w, Cdl , and G0 as functions of Tdl :

w(Tdl) = Tdp − Tdl −
mC0

∆T0
exp[(1− k0)(Tdl − Td0)/ξ1], (27)

Cdl(Tdl) = exp[(1− k0)(Tdl − Td0)/ξ1], G0(Tdl) =
Tdl − Td0

ξ1
. (28)
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In the case of one-component melts and Meirs kinetics, the melt supercooling can be
written in the form [52] (Cdl = 0 and w = Tdp − Tdl)

w(x1) = [(2− p)H(x1) + 1]1/(2−p), p 6= 2
w(x1) = exp[H(x1)], p = 2

(29)

It is significant that Equation (22) enables us to find the following dependence between
the dimensionless (τ) and modified (x1) times

τ(x1) =

x1∫
0

dx2

g0(Tl(x2))R1(z(x2))
. (30)

Note that Equations (27) and (28) determine w and Cdl as functions of Tdl whereas
Tdl(x1) and τ(x1) are given by Equations (24) and (30). Expressions (23), (27), (28) and (30)
represent a complete analytical solution obtained in a parametric form (with the decision
variable x1). The present solution contains limiting transitions to previously studied cases
of a pure melt with ellipsoidal crystals [30] and a binary melt with spherical crystals [31].

Our analytical solution is shown in Figures 4 and 5, where the dynamics of the melt
temperature, solute concentration, and supercooling are illustrated. As would be expected,
the solute concentration increases due to the effect of impurity displacement by growing
crystals. In addition, the latent heat of phase transformation released by them leads to an
increase in temperature. Both of these evolutionary dependencies are demonstrated in
Figure 4 (scales of values are marked on the left and right vertical axes). Desupercooling
dynamics in a binary melt are illustrated in Figure 5. As is easily seen, the melt super-
cooling w decreases with time as a result of latent heat emission. Moreover, the higher
the initial solute concentration (higher mC0), the faster the supercooling decreases. This
faster decay of supercooling corresponds to the previously constructed solution of the
similar problem about the evolution of an ensemble of spherical crystals in a supercooled
binary melt [31]. This is caused by the fact that increasing the solute concentration de-
creases the crystallization temperature of a binary system and, consequently, decreases its
supercooling.

Figure 4. Dimensionless temperature Tdl and solute concentration Cdl in a binary supercooled melt
as functions of dimensionless time τ.
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Figure 5. Dimensionless supercooling w in a binary melt as a function of dimensionless time τ at two
initial concentrations C0.

4. Conclusions

In summary, in this paper, we develop a theory of nucleation and evolution for a
polydisperse ensemble of ellipsoidal particles in a supercooled binary alloy. This theory is
developed with allowance for the “diffusion” mechanism of crystals in the space of their
volumes. Physically it means taking into account possible fluctuations in the particle growth
rates. The theory is developed for arbitrary nucleation frequency with special consideration
of two popular nucleation kinetics according to the Meirs and WVFZ mechanisms. An
analytical solution to the integrodifferential model equations is found in a parametric form.
We show that the melt temperature and solute concentration increase with time. This is
caused due to the effects of impurity displacement by the surfaces of growing crystals
and latent heat release during the bulk phase transformation. What is more, we show
that the melt supercooling decreases faster with increasing the initial solute concentration.
The theory contains all limiting transitions to previously developed analytical approaches.
Namely, it contains the growth of spherical crystals in binary melts [31,32] and ellipsoidal
crystals in single-component melts [29,30].

The theory under consideration is developed for a pure bulk phase transition process
when crystals appear and grow in the volume of an unbounded liquid. One of the most
significant factors playing an important role is to consider the walls, as well as the cooling of
the system through these walls. This can be done by analogy with the previously developed
theory [53–55] for spherical particles. Another important effect that should be taken into
account in future studies is the phase transition temperature shift due to the curvature
of the crystal surface and the kinetics of atoms joining it. Such a theory for ellipsoidal
particles can be developed by analogy with Ref. [56]. It also seems important to consider
the possibility of joint implementation of bulk and directional crystallization. Directional
phase transition (in addition to the bulk one) appears in the presence of a temperature
gradient along with one of the spatial directions (for example, as a result of melt cooling).
The development of the present theory to such a more general phase transformation process
can be conducted in the spirit of Refs. [57–59]. The present analytical approach, taking a
non-spherical shape of growing crystals into account, can be used when considering particle
evolution in external fields (e.g., metastable magnetic fluids [33], buoyancy forces [34],
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polymerization [14], external heat and mass exchange with the environment and removal
mechanisms of product crystals from a crystallizer [35–37]).
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